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Abstract

Background As muscle capillarization is related to the oxidative capacity of the muscle and the size of muscle fibres, capillary
rarefaction may contribute to sarcopenia and functional impairment in older adults. Therefore, it is important to assess how
ageing affects muscle capillarization and the interrelationship between fibre capillary supply with the oxidative capacity and
size of the fibres.
Methods Muscle biopsies from healthy recreationally active young (22 years; 14 men and 5 women) and older (74 years; 22
men and 6 women) people were assessed for muscle capillarization and the distribution of capillaries with the method of cap-
illary domains. Oxidative capacity of muscle fibres was assessed with quantitative histochemistry for succinate dehydrogenase
(SDH) activity.
Results There was no significant age-related reduction in muscle fibre oxidative capacity. Despite 18% type II fibre atrophy
(P = 0.019) and 23% fewer capillaries per fibre (P < 0.002) in the old people, there was no significant difference in capillary
distribution between young and old people, irrespective of sex. The capillary supply to a fibre was primarily determined by
fibre size and only to a small extent by oxidative capacity, irrespective of age and sex. Based on SDH, the maximal oxygen
consumption supported by a capillary did not differ significantly between young and old people.
Conclusions The similar quantitative and qualitative distribution of capillaries within muscle from healthy recreationally
active older people and young adults indicates that the age-related capillary rarefaction, which does occur, nevertheless
maintains the coupling between skeletal muscle fibre size and capillarization during healthy ageing.
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Introduction

The microcirculation plays a crucial role in the delivery of
oxygen, nutrients, and hormones to, and removal of heat,
metabolites, and waste products from, muscle fibres. In line
with the idea that the main role of capillaries is oxygen deliv-
ery, oxidative muscles with a large maximal oxygen demand
have a higher capillary density than glycolytic muscles.1–3

Even at the level of the single fibres, a positive relationship
between the mitochondrial volume density and number of
capillaries supplying a fibre has been reported.4 Other studies
have shown that the number of capillaries per fibre is also
positively related to fibre size.5–7 The coupling between fibre
size and capillaries per fibre is further emphasized by the
similar time course of hypertrophy and angiogenesis during
the development of hypertrophy.8 Given these observations,
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one might expect that the age-related decreases in fibre size
and oxidative capacity are associated with capillary
rarefaction.

So far, studies have shown that the capillary density is
largely maintained during ageing, indicating that capillary rar-
efaction, as reflected by a reduction in the capillary-to-fibre
ratio, is proportional to the decrease in fibre size.9 However,
the slope of the relationship between the number of capil-
laries supplying a fibre and the size of the fibre was slightly
reduced in old rats,5 possibly because of the lower oxidative
capacity of the old rat muscle.10 Even so, some studies indi-
cate a superfluous capillary supply in old rodent muscles,
where there were no differences in capillary density and
capillary-to-fibre ratio, despite a reduction in the oxidative
capacity,11 or even a higher capillary density, with similar ox-
idative capacity, than in young rats.12 There are indications
that these relationships may also change in human muscle
as the relationship between maximum oxygen uptake and
oxygen kinetics with capillarization in young people has dis-
appeared in old men.13,14

Not only the number of capillaries per fibre and fibre area
are important for tissue oxygenation but also the way capil-
laries are distributed, where a heterogeneous distribution of
capillaries has a negative impact on tissue oxygenation.15–18

Indeed, model calculations indicate that random blockage of
capillaries, resulting in an increased heterogeneity of the dis-
tribution of perfused capillaries during sepsis, contributes to
the ensuing muscle pathology.19 In rats, there is some indica-
tion that the heterogeneity of capillary spacing increases with
age, which appeared to be related to the increased heteroge-
neity in fibre size.20 While it is likely that the increased hetero-
geneity in fibre sizes is the consequence of a denervation–
reinnervation process during ageing,21 the associated increase
in the heterogeneity of capillary spacing may accelerate the
development of age-relatedmuscle wasting. If such a situation
also occurs in human muscle, it may adversely affect muscle
oxygenation, as well as the removal of metabolites and heat
from active skeletal muscles, and thereby contribute to the
age-related reduction in physical performance.

The aim of the present study was to compare overall
capillarization and capillary supply of individual fibres in

muscles from young and old men and women. To investigate
this, we calculated capillary domains as the areas surrounding
a capillary delineated by equidistant boundaries from adja-
cent capillaries,22 which is an index of the oxygen supply area
of a capillary, including in muscles with a heterogeneous fibre
type composition.23 Quantitative succinate dehydrogenase
(SDH) histochemistry was used to estimate the maximal
oxygen consumption of a fibre,24 to determine (i) the rela-
tionship between the oxidative capacity and the capillary
supply to a fibre and (ii) whether this relationship is different
in older human muscle compared with young muscle. We hy-
pothesized that compared with young muscle, older muscle
would have (i) lower capillary density, indicative of capillary
rarefaction exceeding fibre atrophy; (ii) greater heterogeneity
of capillary spacing; and (iii) a capillary supply to a fibre in
excess of its oxidative capacity due to a proportionally larger
loss in fibre oxidative capacity.

Methods

Subject characteristics and biopsy sampling

Forty-seven healthy men and women were recruited to
study the effects of ageing on muscle morphology (Table 1).
The local ethics committees of Manchester Metropolitan
University (United Kingdom) and of Ile-de-France VI in Paris
(France) approved the study, and all participants provided
written informed consent. All experiments have been per-
formed in accordance with the ethical standards laid down
in the 1964 Declaration of Helsinki and its later amend-
ments. The older participants in the study were healthier
than typical for their age,25 and subjects suffering from
known cardiovascular, neuromuscular, or respiratory dis-
eases were excluded. Thirty-five participants completed a
questionnaire to generate a habitual physical activity
score,26 where scores <6 represent a sedentary lifestyle
and >9 indicate a high level of physical activity. Vastus
lateralis muscle biopsies were taken midway between the
patella and greater trochanter under aseptic conditions with

Table 1 Participant characteristics

Young Old Effects (P-values) Interactions
(P-values)

Men,
N = 14

Women,
N = 5

Men,
N = 22

Women,
N = 6 Age Sex AS

Age (years) 22.1 ± 2.9 21.0 ± 2.4 73.5 ± 3.9 74.5 ± 3.7 <0.0005 0.990 0.386
Height (m) 1.78 ± 0.06 1.64 ± 0.03 1.72 ± 0.07 1.60 ± 0.05 0.012 <0.0005 0.716
Body mass (kg) 70.7 ± 10.8 61.1 ± 9.0 81.6 ± 14.4 60.4 ± 6.0 0.241 0.001 0.176
BMI (kg · m-2) 22.3 ± 2.6 22.6 ± 2.9 27.6 ± 3.4 23.7 ± 1.9 0.004 0.101 0.051
PAS 9.8 ± 1.0 9.7 ± 1.5 8.3 ± 1.6 8.7 ± 1.5 0.054 0.875 0.676

AS, age × sex interaction; BMI, body mass index; PAS, physical activity score (available for 35 participants; 6 young men, 3 young women,
20 old men, and 6 old women).
Values are presented as mean ± standard deviation.
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either a conchotome or Bergström needle after local anaes-
thesia with 2% lidocaine. The muscle sample was placed on
cork with Optimum Cutting Temperature compound
(Scigen® Gardena) and rapidly frozen in isopentane cooled
in liquid nitrogen, or with vigorous shaking in liquid nitro-
gen and stored at �80°C until analysis.

Histochemistry

Serial 10 μm cross-sections of the vastus lateralis muscle
biopsies were cut in a cryostat and capillaries and type I fibres
co-stained (Figure 1A) as described previously.2,27 Briefly,
sections were dried and fixed in ice-cold acetone for 5 min
and after washing in 2-[4-(2-hydroxyethyl)piperazin-1-yl]
ethanesulfonic acid (HEPES) buffer, the sections were blocked
in 0.1% bovine serum albumin in HEPES for 60 min. After
15 min peroxide incubation, the sections were incubated with
Ulex europaeus Agglutinin I lectin (50 μg mL�1) in 1% bovine
serum albumin-HEPES combined with anti-Myosin Heavy
Chain type I [0.41 μg mL�1, Developmental Studies Hybrid-
oma Bank (DSHB, USA)] for 1 h to detect capillary locations
and type I fibres, respectively. Sections were then incubated
with a secondary ‘Vectastain anti-mouse IgG antibody’
(Vector Laboratories, Peterborough, UK) and stained using
the ‘Vectastain ABC’ kit (Vector Laboratories). Finally, type I
fibres were visualized by incubation in the peroxidase sub-
strate ‘Vector VIP’ kit (Vector Laboratories). The sections
were mounted in glycerol-gelatin for further analysis.2,27

A serial section was stained for SDH (Figure 1B), as a
marker of fibre oxidative capacity.2,7,27 Briefly, the section
was dried for 15 min and then incubated at 37°C in the dark
for 20 min in a medium consisting of 0.37 M sodium phos-
phate buffer (pH 7.6), 74 mM sodium succinate, and
0.4 mM tetranitroblue tetrazolium. The reaction was stopped
with a 30 s incubation in 0.01 M Hydrogen chloride, washed
with distilled water, and mounted in glycerol-gelatin.

Morphometry

Fibre outlines on printed images (Figure 2A) were traced on a
digitizing tablet (model MMII 1201, Summagraphics, Austin,
TX, USA), and the co-ordinates of the outline stored for further
analysis with AnaTis (BaLoH software, NL) (Figure 2B). The
variation in fibre cross-sectional area (FCSA) was given as the
standard deviation of the FCSA (SD FCSA). Roundness was cal-
culated as follows27: perimeter2/(4π·FCSA); increasing values
indicate increasing deviation from circularity (irregularities).
Fibre type proportions were expressed as (i) the fibre number
percentage, and (ii) the fibre area percentage (FAP) expressed
as the cross-sectional area of each fibre type as a percentage
of the total fibre area. Finally, the non-contractile tissue
(NCT) percentage area was calculated by subtracting the total
fibre area in the region of interest from the area of the region
of interest, divided by the total area of the region of interest.

We used the method of capillary domains22 to analyze the
capillarization in the muscle. Capillary co-ordinates were
taken from photographs of histological sections stained for
capillaries with a digitizing tablet (Summagraphics model
MMII 1201). The co-ordinates were imported into AnaTis to
calculate the capillary domains, defined as the area of a
muscle cross-section surrounding an individual capillary
delineated by equidistant boundaries from neighbouring
capillaries (Figure 2C). A capillary domain is a good estimate
of the capillary oxygen supply area.23 This method not only
provides overall indices of muscle capillarization, such as
capillary density (number of capillaries per mm2) and the
capillary-to-fibre ratio but also allows to determine the capil-
lary supply to individual fibres even when they lack direct
capillary contact (Figure 2D). The local capillary-to-fibre ratio
(LCFR), defined as the sum of the fractions of the capillary
domains overlapping an individual fibre, gives a continuous,
rather than a discrete value of the capillary supply to a fibre
and also takes into account that a capillary supplies more
than one fibre. The capillary fibre density (CFD) is calculated

Figure 1 Typical example of serial vastus lateralis muscle sections from an old man stained for (A) myosin heavy chain (MHC) type I (dark stained) and
capillaries (dark dots), (B) succinate dehydrogenase (SDH) activity. Note that type I fibres (dark stained) had, as expected, a higher SDH activity com-
pared with type II fibres (light stained). Asterisk (*) identifies same fibre in the two panels.
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as LCFR divided by the FCSA of the given fibre. Finally, the
method of capillary domains gives a measure of the hetero-
geneity in capillary spacing [logarithmic standard deviation
of the domain areas (LogDSD)].

3

The staining intensity for SDH was determined as the
optical density (SDH_OD (A660)) of the final reaction product
using an interference filter of 660 nm at a magnification of
×10 (ImageJ, National Institute of Health, Bethesda, MD,
USA) and was given as the absorbance at 660 nm (A660). In
determining the OD of a fibre, the outline of the fibre was
traced and the background OD subtracted. Fibres with freez-
ing artefacts were excluded from the analysis. To minimize
bias due to differences in lighting, for each section, a
separate third-order polynomial regression calibration curve
was constructed with grey filters with a known OD. Van der
Laarse et al.24 have shown that the maximal mass-specific
maximal oxygen uptake (VO2maxmass specific) is proportional
to the mitochondrial volume density and that the integrated
SDH activity (SDH_INT = SDH_OD x FCSA) is linearly related
with the maximum rate of oxygen uptake (VO2maxfibre) or
oxidative capacity of the muscle fibre.

VO2maxmass specific was expressed in L·kg�1·min�1 and
calculated as follows:

VO2 max mass specificð Þ ¼ 0:672�SDH OD A660ð Þ

The maximal oxygen uptake of an individual muscle fibre
(VO2maxfibre in pL·mm�1·min�1) was estimated from the
VO2maxmass specific as follows:

VO2 max fibreð Þ ¼ 0:672�SDH INT
¼ VO2 max mass specificð Þ�FCSA

The maximal oxygen consumption supported by a capillary
(MO2max) was calculated as described previously28:

MO2 max ¼
Xn

i¼1

VO2 max mass specificð Þ�Aovlð Þ

where Aovl is the area of each fibre within the capillary
domain.

Statistics

All data were analyzed with SPSS (Statistics version 21, IBM,
Chicago, IL, USA), and P < 0.05 was taken to indicate a signif-
icant effect. Age and sex differences in anthropometric char-
acteristics, FCSA and its respective standard deviation (SD
FCSA), fibre type composition, NCT percentage, capillary
supply indices that do not take into account fibre type, and
MO2max were tested using a two-way analysis of variance
with age and sex as factors. In order to know whether type
I and II fibres respond differently with age and sex, repeated
measures analysis were performed for FCSA, SD FCSA, LCFR,
CFD, VO2maxmass specific, and VO2maxfibre. If age × fibre type
or sex × fibre type interactions were found, a two-way analy-
sis of variance with age and sex as factors was repeated for
each fibre type separately. In testing for factors like FCSA,
fibre type, and VO2maxmass specific that predict the capillary
supply of the fibre (LCFR and CFD), a stepwise regression

Figure 2 Fibre outlines and capillary domain areas. In (A), an example of a small part of a muscle section from a young man stained for myosin heavy
chain type I (type I fibres appear dark and type II fibres light) and capillaries (black dots around the fibres). In (B), the type II fibre outlines are shown
with the capillaries as red dots. In (C), the capillary domains are illustrated; the contours indicate the borders of the capillary domains, and the red dots
correspond to the capillaries. In (D), the overlap of capillary domains and type II fibres is illustrated. It is important to note that a fibre may receive
oxygen also from capillaries not in direct contact with the fibre; this situation occurs when a fibre overlaps a domain from a non-adjacent capillary
(in grey, indicated by the arrow).
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analysis was performed. Unless otherwise stated, results are
presented as mean ± SD.

Results

Participant characteristics

Participant characteristics are given in Table 1. Women were
shorter (P < 0.0005) and had a lower body mass than men
(P = 0.001). Older participants were shorter than the young
participants (P = 0.012), and with no significant age-related
differences in body mass, the body mass index was higher
in the older participants than the younger participants
(P = 0.004), irrespective of sex. The level of physical activity
was not significantly different between young and old partic-
ipants (although there was a tendency for higher activity in
young participants; P = 0.054). Only 4 of the 26 older people
had a physical activity score of 6 (indicating sedentary living),
showing that the majority was recreationally active.

Fibre size and shape

On average, 128 (32–311) fibres per participant were ana-
lyzed for fibre size. No hybrid fibres were detected in the
muscle biopsies of 21 participants. In the others, hybrid fibres
were excluded from further analysis as they represented only
2% of the fibre population.

The FCSA of all fibres combined was larger in muscles
from men than in women (P = 0.001; Figure 3). A sex × fibre
type interaction (P = 0.001) showed that while women had
smaller type II fibres than men (P < 0.0005), the FCSA of

type I fibres did not differ significantly between sexes. There
was a significant age × fibre type interaction (P < 0.0005),
indicating that the effects of age on FCSA differed between
type I and II fibres. It can be seen that while the FCSA of
type I fibres did not differ significantly between young and
old participants, the FCSA of type II fibres was significantly
smaller in older participants than younger participants, irre-
spective of sex (P = 0.019; Figure 3). There were no signifi-
cant differences between fibre types, sex, or age in the fibre
size variation, reflected by SD FCSA (Table 2).

The shape factor of muscle fibres is given in Table 2.
Overall, a higher deviation from circularity was observed
in type II compared with type I fibres (P < 0.0005). There
was a significant age × fibre type interaction (P = 0.002)
for roundness, and it appeared that only type II fibres were
less circular in the older muscle than young muscle
(P < 0.0005). Finally, there was a positive correlation
between LogDSD and FCSA SD (R = 0.302; P = 0.039) in
our human muscle samples.

Fibre type composition

The fibre type composition is given in Table 2. While no
significant age effects were observed in the fibre number
percentage of type I and II fibres, there was a tendency for
a higher proportion of type II fibres in women than men
(P = 0.051) and consequently a lower proportion of type I
fibres in women (P = 0.077), irrespective of age. There was,
however, no sex difference in the FAP occupied by the differ-
ent fibre types. Irrespective of sex, the type II FAP was lower
in the old people than the young people (P = 0.009) and con-
versely so for the type I FAP (P = 0.007), principally because
of the smaller type II FCSA in muscles from older participants
compared with young participants (P = 0.019; Figure 3). The
percentage NCT did not differ significantly between the mus-
cles from men and women, and those from young and old
participants.

Capillarization

On average, 224 (59–488) capillaries per participant were an-
alyzed. Indices of muscle capillarization are given in Table 3.
The capillary density, capillary-to-fibre ratio, and size of the
capillary domain did not differ significantly between men
and women, or young and older participants. In addition,
the heterogeneity of capillary spacing, reflected by the
LogDSD, was similar in all groups.

The LCFR of all fibre types combined was lower in
women than in men (P < 0.05; Figure 4A). A sex × fibre
type interaction (P = 0.003) for CFD was reflected by the
higher CFD of type II than type I in women, whereas it
was the opposite in men.

Figure 3 Fibre cross-sectional area (FCSA) in the vastus lateralis muscle
of young (N = 14) and old men (N = 22) and young (N = 5) and old women
(N = 6) according to fibre type (type I and II and ‘all fibres’). Note that in
‘all fibres’, type I and II and hybrid fibres are included in the analysis.
Values are mean ± SD; asterisk (*) indicates significant difference be-
tween men and women at P = 0.001; number sign (#) indicates significant
difference from sex-matched young people at P = 0.019; dollar sign ($) in-
dicates type effect at P < 0.01.
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There were significant age × fibre type interactions for
LCFR (P < 0.0005). When the fibre types were analyzed sep-
arately, the LCFR of type II, but not type I fibres, was lower
in older muscles than younger muscles (P < 0.01). These

observations were explicable by the smaller size of the type
II fibres in the older muscles, as the CFD did not differ
significantly between young and old people, irrespective of
fibre type and sex (Figure 4B).

Table 3 Indices of capillary supply in the human vastus lateralis muscle

Young Old Effects (P-values) Interactions (P-values)

Men, N = 13 Women, N = 5 Men, N = 22 Women, N = 6 Age Sex AS

CD (cap·mm�2) 331 ± 94 340 ± 120 286 ± 78 312 ± 139 0.284 0.606 0.795
C/F ratio 1.74 ± 0.57 1.44 ± 0.69 1.46 ± 0.41 1.08 ± 0.38 0.073 0.054 0.806
DOM (μm2) 3233 ± 1252 3149 ± 855 3667 ± 969 3434 ± 963 0.341 0.674 0.843
LogDSD 0.171 ± 0.022 0.166 ± 0.016 0.172 ± 0.018 0.158 ± 0.019 0.533 0.145 0.446

AS, age × sex interaction; CD, numerical capillary density; C/F ratio, ratio between the number of capillaries and number of fibres; DOM,
capillary domain area; LogDSD, logarithmic standard deviation of the domain areas (representing heterogeneity of capillary spacing).
Data are presented as mean ± standard deviation.

Table 2 Fibre size variation and fibre type distribution in the vastus lateralis muscle

Young Old Effects (P-values) Interactions (P-values)

Men,
N = 14

Women,
N = 5

Men,
N = 22

Women,
N = 6 Age Sex Type AS AT ST

SD FCSA All 1405 ± 461 1024 ± 173 1555 ± 455 1487 ± 540 0.056 0.158 0.322
SD FCSA I and II 1201 ± 389 901 ± 267 1444 ± 446 1181 ± 422 0.068 0.053 0.132 0.817 0.172 0.926
SD FCSA I 1263 ± 322 863 ± 356 1501 ± 496 1320 ± 589 0.032 0.071 0.487
SD FCSA II 1173 ± 414 936 ± 226 1404 ± 491 1081 ± 364 0.221 0.072 0.776
FNP I (%) 44.5 ± 15.0 34.3 ± 9.5 44.6 ± 10.2 40.2 ± 8.4 0.471 0.077 0.481
FNP II (%) 52.9 ± 15.2 65.4 ± 10.1 54.1 ± 11.0 58.6 ± 8.9 0.511 0.051 0.350
FAP I (%) 38.1 ± 14.3 34.1 ± 7.3 45.7 ± 12.4 51.6 ± 13.7 0.007 0.826 0.269
FAP II (%) 57.6 ± 14.9 65.4 ± 8.1 51.5 ± 13.3 45.7 ± 13.5 0.009 0.832 0.153
Roundness I and II 1.28 ± 0.09 1.31 ± 0.07 1.36 ± 0.06 1.39 ± 0.06 0.002 0.308 <0.0005 0.908 0.002 0.019
Roundness I 1.31 ± 0.08 1.28 ± 0.06 1.34 ± 0.05 1.30 ± 0.03 0.132 0.115 0.845
Roundness II 1.32 ± 0.04 1.33 ± 0.08 1.42 ± 0.08 1.47 ± 0.07 <0.0005 0.178 0.339
NCT (%) 9.5 ± 2.8 10.5 ± 1.7 10.4 ± 2.8 10.7 ± 1.1 0.545 0.465 0.699

I, type I fibres; II, type II fibres; AS, age × sex interaction; AT, age × fibre type interaction; FAP, fibre area percentage; FCSA, fibre cross-
sectional area; FNP, fibre number percentage; NCT, non-contractile tissue; SD, standard deviation; ST, sex × fibre type interaction.
If the sum of fibre type proportions is less than 100%, this is due to hybrid fibres. Values are presented as mean ± standard deviation.

Figure 4 (A) Local capillary-to-fibre ratio (LCFR) and (B) capillary fibre density (CFD) in the vastus lateralis muscle of young (N = 13) and old men
(N = 22), and young (N = 5) and old women (N = 6) according to the fibre type (types I and II and ‘all fibres’). Note that in ‘all fibres’, type I and II
and hybrid fibres are included in the analysis. Values are mean ± SD; asterisk (*) indicates significant difference between men and women at
P < 0.05; number sign (#) indicates significant difference from sex-matched young people at P < 0.05; beta (β) indicates significant type × sex inter-
action reflected by a larger CFD of type II fibres in women than men.
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Succinate dehydrogenase activity

An average of 104 ± 48 fibres was analyzed for SDH activity per
participant. There was, unfortunately, no muscle left to collect
these data in young women. VO2maxfibre and VO2maxmass spe-

cific values in young men, old men, and old women for each
fibre type are presented in Table 4 and Figure 5, respectively.
VO2maxmass specific and VO2max fibre were all higher in type I
than type II fibres (P < 0.05; Table 4; Figure 5). There were
no significant age or sex differences in VO2maxmass specific for
each fibre type. There was, however, a significant fibre
type × age interaction for VO2maxfibre (P = 0.010). This was
reflected by a lower VO2maxfibre in old muscles than young
muscles (P = 0.022) for type II, but not type I, fibres. Also,
the VO2maxfibre was lower in women than men (P = 0.012).

Differences in type II FCSA between men and women and
young and old people, respectively, mainly explained these
observations.

The estimated MO2max did not differ significantly be-
tween sex or age groups (Table 4), but there was a positive
relationship between the capillary domain area and MO2max
(Figure 6).

Relationships between capillarization, succinate
dehydrogenase activity, fibre cross-sectional area,
and fibre type

The VO2maxmass specific was not significantly related to FCSA
(Figure 7). In both young and old muscles, the LCFR

Table 4 Indices of oxidative capacity in the human vastus lateralis muscle

Young men,
N = 5

Old men,
N = 14

Old women,
N = 5

Effects (P-values) Interactions (P-values)

Age Sex Type AT ST

VO2maxfibre All 727 ± 201 657 ± 191 397 ± 107 0.463 0.012
VO2maxfibre I and II 727 ± 202 658 ± 191 398 ± 107 0.464 0.012 <0.0005 0.010 0.367
VO2maxfibre I 735 ± 242 793 ± 242 590 ± 161 0.635 0.103
VO2maxfibre II 720 ± 188 526 ± 157 242 ± 62 0.022 0.002
MO2max 496 ± 82 456 ± 131 388 ± 91 0.517 0.269

I, type I fibres; II, type II fibres; MO2max, maximal oxygen consumption supported by a capillary (in pL·mm�1·min�1); VO2maxfibre: maximal
oxygen consumption of a fibre (in pL·mm�1·min�1). Data are presented as mean ± standard deviation.

Figure 5 Fibre oxidative capacity (A) per unit muscle volume (VO2max mass specific) and (B) per mm fibre length (VO2max fibre) in the vastus lateralis
muscle of young men (N = 5), old men (N = 14), and old women (N = 5) according to the fibre type (types I and II and ‘all fibres’). (C) Local maximal
oxygen demand supported by a capillary (MO2max) in the vastus lateralis muscle of the same population. Note that in ‘all fibres’, type I and II and
hybrid fibres are included in the analysis. Values are mean ± SD; asterisk (*) indicates significant difference between men and women at P < 0.05;
number sign (#) indicates significant difference from sex-matched young people at P < 0.05; dollar sign ($) indicates type effect at P < 0.01.
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correlated positively with FCSA (Figure 8A). In assessing the
contribution of different factors to the LCFR (capillary supply
of a fibre), a stepwise linear regression was performed in
which factors included sex, age, FCSA, VO2maxmass specific,
and fibre type. The primary determinant of LCFR was FCSA,
which explained 46% of the variance in LCFR (R = 0.644;
P < 0.0005). VO2maxmass specific and fibre type explained an
additional 5.3% (R = 0.253; P < 0.0005) and 0.1%
(R = 0.038; P < 0.018) of the variance in LCFR, respectively.
There were no significant contributions of age or sex, sug-
gesting that the qualitative and quantitative relationships
between size and oxidative capacity of fibre with capillary
supply are similar in men and women and do not change
during healthy ageing.

Discussion

The main observation of this study was that the age-related
preferential atrophy of type II fibres was accompanied by a
decline in the number of capillaries supplying these fibres,
such that the capillary density for type II fibres was similar
in young and old, male and female muscles. There was no
significant difference in the mass-specific oxidative capacity
of muscle fibres between young and old people. The similar
quantitative and qualitative distribution of capillaries within
muscles from healthy recreationally active older people and
young adults indicates that the age-related capillary rarefac-
tion is not random, but maintains the coupling between
skeletal muscle fibre size and capillarization during healthy
ageing.

Fibre size, fibre type composition, and shape factor

The capillary supply to a fibre was primarily determined by
fibre size, and only to a small extent by the mass-specific
oxidative capacity in both young and aged muscles. In line
with previous observations,29–31 men had larger—particu-
larly type II—muscle fibres than women in the vastus
lateralis muscle.30 While some studies reported no sex dif-
ference in muscle fibre type distribution,31,32 we observed
a tendency toward a higher proportion of type II fibres in
women than men, as seen previously,29 but not when
expressed as area percentage that takes the size of the
fibres into account.

The approximately 35% lower muscle volume that we
previously reported in this participant group33 was only
partially explained by fibre atrophy. In agreement with
many other studies,34–36 we found that the type II fibres
were 18% smaller in muscles from the older participants
than from the younger participants, while no such atrophy
was observed for type I fibres. However, the similar aver-
age size of all fibres pooled in the old and the young par-
ticipants and the greater variation in type I fibre size in the
older participants suggest that the atrophy of type II fibres
was accompanied by a concomitant (compensatory) hyper-
trophy, although not significant, of some type I fibres. We
estimated up to 28% loss of muscle fibres per se, involving
both types I and II fibres because the fibre type proportion
did not differ between young and old people. It may be
argued that this is an underestimation of the age-related
fibre loss, as it assumes that the whole muscle is built up
of muscle fibres only, and it has been reported that the
fat and connective tissue content in the muscle may in-
crease with age.37 However, we did not find a significant
difference in the percentage of NCT in the muscle biopsies.
The increased variation in the size of type I fibres and inci-
dence of angular type II fibres observed in our samples and

Figure 6 The relationship between the local muscle maximal oxygen
demand supported by a capillary (MO2max) and their respective domain
area in the vastus lateralis muscle. A positive correlation was observed
between MO2max and domain area (R = 0.604, N = 4095 capillaries,
P = 0.001). R = 0.854 ± 0.031 for regression lines from each young person
(N = 6 individuals; black triangles) and R = 0.828 ± 0.018 for regression
lines from each old man (N = 19 individuals; white square); mean ± SEM.

Figure 7 Fibre oxidative capacity per unit muscle volume (VO2max mass

specific) in relation to fibre cross-sectional area (FCSA) in young (N = 6
individuals; black triangles; R2 = 0.024) and old men (N = 19 individuals;
white squares; R2 = 0.055) in the vastus lateralis muscle.
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others studying ageing,27 disuse,2 denervation,38 and rein-
nervation39 is likely a feature of the ongoing denervation–
reinnervation process of motor unit remodelling.40 A
12 year follow-up of older individuals also showed that
the decrease in muscle volume was not associated with fi-
bre atrophy,41 adding further evidence that fibre loss is the
primary cause of the age-related decrease in vastus lateralis
muscle volume.35

Mass-specific oxidative capacity

The mass-specific oxidative capacity, measured as the optical
density of SDH-stained muscle sections, is closely related to
the fatigue resistance of the motor unit.42,43 Values in type I
fibres were around 45% greater than those in type II, but there
were no age or sex differences in the oxidative capacity of
fibres (reflecting the volume density of mitochondria) signify-
ing a remarkable preservation in aged muscle in spite of the
substantial muscle fibre morphological remodelling. Previous

reports of age-related reduction in the oxidative capacity from
rat muscles44 and the human gastrocnemius45 may be due to
an age-related decrease in physical activity levels, whereas
our physically and socially active participants likely benefited
from activity-related maintenance of oxidative capacity.46,47

Capillarization

There were no sex-related differences in capillary density or
capillary-to-fibre ratio. A lower number of capillaries supplying
type II fibres in women compared with men was proportional
to the smaller size of the type II fibres in women, because the
CFD did not differ significantly between men and women.

While overall muscle capillarization, in terms of capillary
density and heterogeneity of capillary spacing, was similar in
young and old people, the number of capillaries per type II fi-
bre (LCFR) was 38% lower in the old muscles than in the young
muscles, which is indicative of capillary rarefaction. The loss of
capillaries occurred primarily around type II fibres as has also

Figure 8 Relationships between the local capillary-to-fibre ratio (LCFR) with (A) the fibre cross-sectional area (FCSA) and (B) the fibre oxidative capac-
ity (VO2max fibre) in young (N = 6 individuals; black triangles) and old men (N = 19 individuals; white squares) in the vastus lateralis muscle. Relation-
ships between the capillary fibre density (CFD) with (C) FCSA and (D) fibre oxidative capacity per muscle volume unit (VO2max mass specific) in young
(N = 6 individuals; black triangles) and old men (N = 19 individuals; white squares) in the vastus lateralis muscle. Note that in (A) the FCSA and LCFR
were significantly and positively correlated.
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been seen by others,48 while the capillary supply per unit type
II fibre area was not affected by age. This indicates that the loss
of capillaries was proportional to the atrophy of type II fibres.
As discussed previously, there might have occurred a 28% loss
of muscle fibres, probably because of an incomplete reinner-
vation of fibres denervated consequent to motor neuron loss
in old age.49 Such a loss of fibres without capillary rarefaction
would result in an increased capillary-to-fibre ratio or LCFR,
something we did not observe. Capillary rarefaction during
ageing thus appears to be proportional to the combined
decrease in fibre size and fibre loss.

The close relationship between capillary supply and fibre
size, but less so for fibre oxidative capacity, in young and aged
muscles5–7,28 as well as the reported similar time course of fi-
bre hypertrophy and angiogenesis during the development of
compensatory hypertrophy8 indicate that the size and
capillary supply of a fibre share similar control mechanisms.
In fact, both endothelial cells and muscle cells are
mechanosensitive, and each secrete factors that stimulate
muscle growth and angiogenesis.50

One factor that has previously not been considered in stud-
ies of ageing human muscle is the heterogeneity of capillary
spacing, reflected by the logarithmic standard deviation of
the capillary supply areas (LogDSD).

22 An increase in the het-
erogeneity of capillary spacing has an adverse impact on tissue
oxygenation.15–17,19,51,52 Here, we found in human muscle,
similar to the observation in rat muscle,20 that the heteroge-
neity of capillary spacing is related to the variability in fibre
size, as reflected by the positive correlation between LogDSD
and FCSA SD in the human study. Even though the FCSA SD
of type I fibres was higher in the older muscles, it is striking
that the heterogeneity of capillary spacing was maintained,
considering also there must have been significant capillary rar-
efaction as reflected by the maintained capillary density in the
face of an up to 28% loss of muscle fibres. The similar LogDSD
in young and old people indicates that the capillary rarefaction
during ageing does not occur at random, but rather maintains
the distribution of capillaries to preserve the potential for
adequate intramuscular oxygenation. The capillary rarefaction
was evident in the absence of fibre atrophy in a 12 year
follow-up study,41 which suggests that capillary rarefaction is
a prelude to age-related fibre atrophy.

Even though the anatomical capillary supply may be similar
in young and old people, this does not necessarily mean that
the maximal oxygen delivery to the muscle and muscle fibres
is also maintained in old age. It has been shown for instance
that the vasodilatory response during exercise, and hence
blood flow to the muscle, decreases with age.53,54 Because
shear stress plays an important role in the maintenance of
the capillary bed and angiogenesis,1 it may well be that this
impaired vasodilatory response underlies the progressive,
gradual loss of capillaries during ageing. If so regular physical
activity, which will increase muscle blood flow and hence
endothelial shear stress, may prevent some of the age-

related capillary rarefaction. Indeed, in master athletes, the
capillary-to-fibre ratio was larger than in activity-matched
young controls,47 while in sedentary older people the
capillary-to-fibre ratio was reduced.45

Relationships between the capillary supply to a
fibre and its size, type, and oxidative capacity

An inverse relationship between fibre size and oxidative
metabolism has been suggested.55 However, our results
challenge this finding by showing no inverse relationship
between FCSA and VO2maxmass specific (Figure 7) and are in
line with our previous work showing that considerable hyper-
trophy can develop without, as predicted by this concept,
concomitant decrease in the mass-specific oxidative capacity
of muscle fibres.56 A rather surprising finding was that in
muscles from young people,28 and also in those from older
people, the maximal oxygen consumption supported by a
capillary varies more than 100-fold between capillaries
(Figure 6). This indicates that the local muscle capillarization
is not necessarily matched to local oxidative capacity.28 Mito-
chondria may not work maximally during contractile activity,
and a heterogeneous capillary perfusion57,58 affecting tissue
oxygenation59 may help match oxygen demand and delivery.
Such a functional connectivity between active muscle fibres,
their surrounding capillaries and the arterioles is well
known.60,61 Nevertheless, the 100-fold variation in maximal
oxygen demand supported by a capillary deviates from the
concept of symmorphosis, which states that structures and
demand are matched.62 An explanation proposed by Wüst
et al.7 for such a phenomenon is that tight packing of
subsarcolemmal mitochondria in close proximity to capillaries
leads to non-homogeneous mitochondrial distribution within
muscle fibres, particularly those with high mitochondrial den-
sity, which was also evident in our samples (data not shown)
and previous studies.63,64

Study limitations

From the cross-sectional design of our study, it is not possible
to determine whether changes in muscle capillarization with
ageing precede or follow changes in muscle fibre size and
number. A 12 year longitudinal study showing capillary
rarefaction without fibre atrophy41 suggests that rarefaction
may precede atrophy during ageing. Muscle biopsies by
definition provide only a small sample of the whole muscle
and can introduce a sampling bias, at least partly related to
differences in fibre type composition over the depth of the
muscle.65 To minimize this latter bias, we have taken all
biopsies from a similar location in the mid-muscle belly of
the vastus lateralis muscle, determined by distances from
landmarks, and depth. Finally, it is possible that the SDH
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activity does not fully reflect changes in oxidative capacity in
aged muscles because ageing may be associated with greater
reductions in the activity of electron transport chain com-
plexes containing mitochondrial DNA encoded subunits (e.g.
complexes I, III, IV, and V)66 than that of mitochondrial
enzymes that are entirely nuclear DNA encoded (e.g. complex
II).67 Such a situation would be reflected in muscle biopsies
by fibres with an increased activity of SDH, as a compensation
for, for example, the reduction in cytochrome oxidase (com-
plex IV) activity.68 It is unlikely that such a situation would
bias our data significantly as the SDH activity in muscle fibres
was similar in young and old muscles (Figure 5A).

Conclusions

The main observation of the present study is that in
recreationally active older adults with similar physical activity
levels as younger adults, there is no significant decrease in
muscle fibre oxidative capacity, but significant type II fibre
atrophy and capillary rarefaction. Despite the fibre atrophy,
fibre loss, and capillary rarefaction, the relationship between
capillary supply and fibre size was maintained in the old
people. The similar capillary distribution indicates that the
capillary rarefaction during ageing does not occur at random,
but maintains the distribution of capillaries to preserve the
potential for intramuscular oxygenation.

Acknowledgements

The authors wish to thank the Comité Départemental de la
Retraite Sportive de Paris, the Lions Club de Paris, and their
members who volunteered and the volunteers in the UK to
take part in this study for providing muscle biopsies. The
authors appreciate the help from G. Ferris with the histolog-
ical staining.

The authors certify that they comply with the ethical
guidelines for authorship and publishing of the Journal of
Cachexia, Sarcopenia, and Muscle.69

Funding

This work was supported in part by the European Union
within the FP7 Project ‘Myoage’ (contract no 23576), the
Association Française contre les Myopathies, and the
Research Councils UK the Lifelong Health and Wellbeing
cross-Council initiative (MR/K025252/1).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. Hudlicka O, Brown M, Egginton S. Angio-
genesis in skeletal and cardiac muscle.
Physiol Rev 1992;72:369–417.

2. Bosutti A, Salanova M, Blottner D,
Buehlmeier J, Mulder E, Rittweger J, et al.
Whey protein with potassium bicarbonate
supplement attenuates the reduction in
muscle oxidative capacity during 19 days
of bed rest. J. Appl. Physiol. Bethesda Md
1985 2016;121:838–848.

3. Degens H, Turek Z, Hoofd LJ, Van’t Hof MA,
Binkhorst RA. The relationship between
capillarisation and fibre types during com-
pensatory hypertrophy of the plantaris
muscle in the rat. J Anat 1992;180:455–463.

4. Mathieu-Costello O, Agey PJ, Quintana ES,
Rousey K, Wu L, Bernstein MH. Fiber
capillarization and ultrastructure of pigeon
pectoralis muscle after cold acclimation. J
Exp Biol 1998;201:3211–3220.

5. Degens H, Turek Z, Hoofd LJ, Binkhorst RA.
Capillary proliferation related to fibre types
in hypertrophied aging rat M. plantaris.
Adv Exp Med Biol 1994;345:669–676.

6. Ahmed SK, Egginton S, Jakeman PM,
Mannion AF, Ross HF. Is human skeletal
muscle capillary supply modelled according
to fibre size or fibre type? Exp Physiol
1997;82:231–234.

7. Wüst RCI, Gibbings SL, Degens H. Fiber
capillary supply related to fiber size and
oxidative capacity in human and rat
skeletal muscle. Adv Exp Med Biol
2009;645:75–80.

8. Plyley MJ, Olmstead BJ, Noble EG. Time
course of changes in capillarization in
hypertrophied rat plantaris muscle.
J. Appl. Physiol. Bethesda Md 1985
1998;84:902–907.

9. Degens H. Age-related changes in the
microcirculation of skeletal muscle. Adv
Exp Med Biol 1998;454:343–348.

10. Degens H, Veerkamp JH, van Moerkerk HT,
Turek Z, Hoofd LJ, Binkhorst RA. Metabolic
capacity, fibre type area and capillarization
of rat plantaris muscle. Effects of age,
overload and training and relationship with
fatigue resistance. Int J Biochem
1993;25:1141–1148.

11. Hepple RT, Vogell JE. Anatomic
capillarization is maintained in relative
excess of fiber oxidative capacity in some
skeletal muscles of late middle-aged rats.
J Appl Physiol Bethesda Md 1985
2004;96:2257–2264.

12. Mathieu-Costello O, Ju Y, Trejo-Morales M,
Cui L. Greater capillary-fiber interface per
fiber mitochondrial volume in skeletal

muscles of old rats. J. Appl. Physiol. Be-
thesda Md 1985 2005;99:281–289.

13. Chilibeck PD, Paterson DH, Cunningham
DA, Taylor AW, Noble EG. Muscle
capillarization O2 diffusion distance, and
VO2 kinetics in old and young individuals.
J. Appl. Physiol. Bethesda Md 1985
1997;82:63–69.

14. Parízková J, Eiselt E, Sprynarová S,
Wachtlová M. Body composition, aerobic
capacity, and density of muscle capillaries
in young and old men. J Appl Physiol
1971;31:323–325.

15. Degens H, Ringnalda BE, Hoofd LJ.
Capillarisation, fibre types and myoglobin
content of the dog gracilis muscle. Adv
Exp Med Biol 1994;361:533–539.

16. Degens H, Deveci D, Botto-van Bemden A,
Hoofd LJC, Egginton S. Maintenance of het-
erogeneity of capillary spacing is essential
for adequate oxygenation in the soleus
muscle of the growing rat. Microcirc N Y
N 1994 2006;13:467–476.

17. Piiper J, Scheid P. Diffusion limitation of O2
supply to tissue in homogeneous and
heterogeneous models. Respir Physiol
1991;85:127–136.

18. Turek Z, Olders J, Hoofd L, Egginton S,
Kreuzer F, Rakusan K. PO2 histograms in

Skeletal muscle fibre size and capillarization 657

Journal of Cachexia, Sarcopenia and Muscle 2017; 8: 647–659
DOI: 10.1002/jcsm.12194



various models of tissue oxygenation in
skeletal muscle. Adv Exp Med Biol
1989;248:227–237.

19. Goldman D, Bateman RM, Ellis CG. Effect
of decreased O2 supply on skeletal mus-
cle oxygenation and O2 consumption
during sepsis: role of heterogeneous
capillary spacing and blood flow. Am J
Physiol Heart Circ Physiol 2006;290:
H2277–H2285.

20. Degens H, Morse CI, Hopman MTE.
Heterogeneity of capillary spacing in the
hypertrophied plantaris muscle from
young-adult and old rats. Adv Exp Med Biol
2009;645:61–66.

21. Larsson L, Ansved T. Effects of ageing
on the motor unit. Prog Neurobiol
1995;45:397–458.

22. Hoofd L, Turek Z, Kubat K, Ringnalda BE,
Kazda S. Variability of intercapillary
distance estimated on histological sections
of rat heart. Adv Exp Med Biol
1985;191:239–247.

23. Al-Shammari AA, Gaffney EA, Egginton S.
Modelling capillary oxygen supply capacity
in mixed muscles: capillary domains
revisited. J Theor Biol 2014;356:47–61.

24. van der Laarse WJ, Diegenbach PC, Elzinga
G. Maximum rate of oxygen consumption
and quantitative histochemistry of succi-
nate dehydrogenase in single muscle fibres
of Xenopus laevis. J Muscle Res Cell Motil
1989;10:221–228.

25. McPhee JS, Hogrel J-Y, Maier AB, Seppet E,
Seynnes OR, Sipilä S, et al. Physiological
and functional evaluation of healthy young
and older men and women: design of the
European MyoAge study. Biogerontology
2013;14:325–337.

26. Baecke JA, Burema J, Frijters JE. A
short questionnaire for the measurement
of habitual physical activity in
epidemiological studies. Am J Clin Nutr
1982;36:936–942.

27. Kirkeby S, Garbarsch C. Aging affects differ-
ent human muscles in various ways. An
image analysis of the histomorphometric
characteristics of fiber types in human
masseter and vastus lateralis muscles from
young adults and the very old. Histol
Histopathol 2000;15:61–71.

28. Bosutti A, Egginton S, Barnouin Y, Ganse B,
Rittweger J, Degens H. Local capillary
supply in muscle is not determined
by local oxidative capacity. J Exp Biol
2015;218:3377–3380.

29. Essén-Gustavsson B, Borges O. Histochemi-
cal and metabolic characteristics of human
skeletal muscle in relation to age. Acta
Physiol Scand 1986;126:107–114.

30. Miller AE, MacDougall JD, Tarnopolsky MA,
Sale DG. Gender differences in strength
and muscle fiber characteristics. Eur J Appl
Physiol 1993;66:254–262.

31. Staron RS, Hagerman FC, Hikida RS, Murray
TF, Hostler DP, Crill MT, et al. Fiber
type composition of the vastus lateralis
muscle of young men and women. J
Histochem Cytochem Off J Histochem
Soc 2000;48:623–629.

32. Grimby G, Danneskiold-Samsøe B, Hvid K,
Saltin B. Morphology and enzymatic

capacity in arm and leg muscles in 78-
81 year old men and women. Acta Physiol
Scand 1982;115:125–134.

33. Maden-Wilkinson TM, Degens H, Jones
DA, McPhee JS. Comparison of MRI and
DXA to measure muscle size and age-
related atrophy in thigh muscles. J
Musculoskelet Neuronal Interact
2013;13:320–328.

34. Larsson L, Sjödin B, Karlsson J. Histochemi-
cal and biochemical changes in human
skeletal muscle with age in sedentary
males, age 22–65 years. Acta Physiol Scand
1978;103:31–39.

35. Lexell J, Taylor CC, Sjöström M. What is the
cause of the ageing atrophy? Total number,
size and proportion of different fiber types
studied in whole vastus lateralis muscle
from 15- to 83-year-old men. J Neurol Sci
1988;84:275–294.

36. Nilwik R, Snijders T, Leenders M, Groen
BBL, van Kranenburg J, Verdijk LB, et al.
The decline in skeletal muscle mass with
aging is mainly attributed to a reduction
in type II muscle fiber size. Exp Gerontol
2013;48:492–498.

37. Ballak SB, Degens H, Busé-Pot T, de Haan A,
Jaspers RT. Plantaris muscle weakness in
old mice: relative contributions of changes
in specific force, muscle mass, myofiber
cross-sectional area, and number. Age
Dordr Neth 2014;36:9726.

38. Armbrustmacher VW. Skeletal muscle in
denervation. Pathol Annu 1978;13:1–33.

39. Griffin JL, Pezeshkpour GH. Myosin
ATPase intermediate density fibers for
diagnosis of reinnervation. Muscle Nerve
1988;11:915–921.

40. Piasecki M, Ireland A, Jones DA, McPhee JS.
Age-dependent motor unit remodelling in
human limb muscles. Biogerontology
2016;17:485–496.

41. Frontera WR, Hughes VA, Fielding RA,
Fiatarone MA, Evans WJ, Roubenoff R.
Aging of skeletal muscle: a 12-yr longitudi-
nal study. J Appl Physiol Bethesda Md 1985
2000;88:1321–1326.

42. Burke RE, Levine DN, Tsairis P, Zajac FE.
Physiological types and histochemical pro-
files in motor units of the cat gastrocne-
mius. J Physiol 1973;234:723–748.

43. Degens H, Veerkamp JH. Changes in
oxidative capacity and fatigue resistance
in skeletal muscle. Int J Biochem
1994;26:871–878.

44. Takekura H, Kasuga N, Yoshioka T. Differ-
ences in ultrastructural and metabolic pro-
files within the same type of fibres in
various muscles of young and adult rats.
Acta Physiol Scand 1994;150:335–344.

45. Coggan AR, Spina RJ, King DS, Rogers MA,
Brown M, Nemeth PM, et al. Histochemi-
cal and enzymatic comparison of the gas-
trocnemius muscle of young and elderly
men and women. J Gerontol 1992;47:
B71–B76.

46. Coggan AR, Spina RJ, King DS, Rogers MA,
Brown M, Nemeth PM, et al. Skeletal
muscle adaptations to endurance training
in 60- to 70-yr-old men and women.
J. Appl. Physiol. Bethesda Md 1985
1992;72:1780–1786.

47. Coggan AR, Spina RJ, Rogers MA, King DS,
Brown M, Nemeth PM, et al. Histochemi-
cal and enzymatic characteristics of
skeletal muscle in master athletes.
J. Appl. Physiol. Bethesda Md 1985
1990;68:1896–1901.

48. Proctor DN, Sinning WE, Walro JM, Sieck
GC, Lemon PW. Oxidative capacity of
human muscle fiber types: effects of age
and training status. J. Appl. Physiol. Be-
thesda Md 1985 1995;78:2033–2038.

49. Tomlinson BE, Irving D. The numbers of
limb motor neurons in the human lumbo-
sacral cord throughout life. J Neurol Sci
1977;34:213–219.

50. Christov C, Chrétien F, Abou-Khalil R,
Bassez G, Vallet G, Authier F-J, et al. Muscle
satellite cells and endothelial cells: close
neighbors and privileged partners.Mol Biol
Cell 2007;18:1397–1409.

51. Egginton S, Gaffney E. Tissue capillary sup-
ply—it’s quality not quantity that counts!
Exp Physiol 2010;95:971–979.

52. Hoofd L, Turek Z. Oxygen pressure
histograms calculated in a block of rat
heart tissue. Adv Exp Med Biol
1992;317:561–566.

53. Dinenno FA, Jones PP, Seals DR, Tanaka H.
Limb blood flow and vascular
conductance are reduced with age
in healthy humans: relation to elevations
in sympathetic nerve activity and declines
in oxygen demand. Circulation
1999;100:164–170.

54. Proctor DN, Parker BA. Vasodilation and
vascular control in contracting muscle of
the aging human. Microcirc N Y N 1994
2006;13:315–327.

55. Degens H. Determinants of skeletal muscle
hypertrophy and the attenuated hypertro-
phic response at old age. J Sports Med
Doping Stud 2012; https://doi.org/
10.4172/2161-0673.S1-003.

56. Ballak SB, Busé-Pot T, Harding PJ, Yap MH,
Deldicque L, de Haan A, et al. Blunted
angiogenesis and hypertrophy are associ-
ated with increased fatigue resistance and
unchanged aerobic capacity in old
overloaded mouse muscle. Age Dordr Neth
2016;38:39.

57. Bagher P, Segal SS. Regulation of blood
flow in the microcirculation: role of con-
ducted vasodilation. Acta Physiol Oxf Engl
2011;202:271–284.

58. Frame MD, Sarelius IH. Regulation of capil-
lary perfusion by small arterioles is spa-
tially organized. Circ Res 1993;73:155–163.

59. Hoofd L, Degens H. The influence of flow
redistribution on working rat muscle
oxygenation. Adv Exp Med Biol
2009;645:55–60.

60. Berg BR, Cohen KD, Sarelius IH. Direct cou-
pling between blood flow and metabolism
at the capillary level in striated muscle.
Am J Physiol 1997;272:H2693–H2700.

61. Murrant CL, Sarelius IH. Local and remote
arteriolar dilations initiated by skeletal
muscle contraction. Am J Physiol Heart Circ
Physiol 2000;279:H2285–H2294.

62. Hoppeler H, Weibel ER. Structural and
functional limits for oxygen supply to mus-
cle. Acta Physiol Scand 2000;168:445–456.

658 Y. Barnouin et al.

Journal of Cachexia, Sarcopenia and Muscle 2017; 8: 647–659
DOI: 10.1002/jcsm.12194

https://doi.org/10.4172/2161-0673.S1-003
https://doi.org/10.4172/2161-0673.S1-003


63. Hoppeler H, Mathieu O, Krauer R, Claassen
H, Armstrong RB, Weibel ER. Design of the
mammalian respiratory system. VI
distribution of mitochondria and capillaries
in various muscles. Respir Physiol
1981;44:87–111.

64. SwatlandHJ. The radial distribution of succi-
nate dehydrogenase activity in porcinemus-
cle fibres. Histochem J 1984;16:321–329.

65. Dahmane R, Djordjevic S, Simunic B,
Valencic V. Spatial fiber type distribution

in normal human muscle Histochemical
and tensiomyographical evaluation. J
Biomech 2005;38:2451–2459.

66. Wallace DC. Mitochondrial genetics: a par-
adigm for aging and degenerative dis-
eases? Science 1992;256:628–632.

67. Brierley EJ, Johnson MA, Lightowlers RN,
James OF, Turnbull DM. Role of mitochon-
drial DNA mutations in human aging: impli-
cations for the central nervous system and
muscle. Ann Neurol 1998;43:217–223.

68. Bua E, Johnson J, Herbst A, Delong B,
McKenzie D, Salamat S, et al. Mitochon-
drial DNA-deletion mutations accumulate
intracellularly to detrimental levels in aged
human skeletal muscle fibers. Am J Hum
Genet 2006;79:469–480.

69. von Haehling S, Morley JE, Coats AJS, Anker
SD. Ethical guidelines for authorship and
publishing in the Journal of Cachexia,
Sarcopenia, and Muscle. J Cachexia
Sarcopenia Muscle 2015;6:315–316.

Skeletal muscle fibre size and capillarization 659

Journal of Cachexia, Sarcopenia and Muscle 2017; 8: 647–659
DOI: 10.1002/jcsm.12194


