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ABSTRACT

Genome replication, a key process for a cell, relies
on stochastic initiation by replication origins, caus-
ing a variability of replication timing from cell to cell.
While stochastic models of eukaryotic replication are
widely available, the link between the key parame-
ters and overall replication timing has not been ad-
dressed systematically. We use a combined analyti-
cal and computational approach to calculate how po-
sitions and strength of many origins lead to a given
cell-to-cell variability of total duration of the replica-
tion of a large region, a chromosome or the entire
genome. Specifically, the total replication timing can
be framed as an extreme-value problem, since it is
due to the last region that replicates in each cell.
Our calculations identify two regimes based on the
spread between characteristic completion times of
all inter-origin regions of a genome. For widely dif-
ferent completion times, timing is set by the single
specific region that is typically the last to replicate
in all cells. Conversely, when the completion time of
all regions are comparable, an extreme-value esti-
mate shows that the cell-to-cell variability of genome
replication timing has universal properties. Compar-
ison with available data shows that the replication
program of three yeast species falls in this extreme-
value regime.

INTRODUCTION

In all living systems, the duration of DNA replication cor-
relates with key cell-cycle features, and is intimately linked
with transcription, chromatin structure and genome evolu-
tion. Dysfunctional replication kinetics is associated to can-
cer and found in aging cells. Eukaryotic organisms rely on
multiple discrete origins of replication along the DNA (1,2).

These origins are ‘licensed’ during the G1 phase by origin
recognition complexes and MCM helicases, and can initi-
ate replication during S phase (3). Once one origin is acti-
vated (‘fires’), a pair of replication forks are assembled and
move bidirectionally. In one cell cycle, one origin already ac-
tivated or passively replicated cannot be activated again (2).
Origins have specific firing rates, possibly connected to the
number of bound MCM helicase complexes (4), and their
specificity determines the kinetics of replication during S
phase, or ‘replication program’.

To investigate genomic replication kinetics, DNA copy
number can be measured with microarray or sequencing,
as a function of genome position and time (see, e.g. (5–7)).
Based on such high-throughput replication timing data, it
is possible to infer origin positions and the key parameters
for a mathematical description of the replication process
(see, e.g. (5,8,9)). Recent methods also allow to extract the
same information from free-cycling cells (10). The mathe-
matical modeling of genome-wide replication timing data
shows that replication kinetics results from the stochastic
mechanism of origin firing (3,6). In other words, replication
timing originates from individual probabilities of origin fir-
ing (and their correlations with genome state (11–13)). In
such models, firing rate of individual origins determine the
kinetic pattern of replication along the chromosomal coor-
dinate, and fork velocity is typically assumed to be nearly
constant along the genome (in absence of blockage).

Evidence of this stochasticity directly from single cells
(which should give access to relevant correlation patterns) is
less abundant. Importantly, replication timing patterns ob-
served in population studies can be explained by stochas-
tic origin firing at the single-cell level (14). Stochastic acti-
vation of origins leads to stochasticity of termination and
cell-to-cell variability of the total duration of replication of
a chromosome, a genomic region, or the whole S-phase (6),
with possible repercussions on the cell cycle. This raises sev-
eral questions, including how the individual rates and spa-
tial distribution of origins cooperate to generate variabil-
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ity in replication timing, the extent of such variability, and
whether it is possible to identify specific regimes or opti-
mization principles in terms of cell-to-cell variability. How-
ever, such questions have not been systematically addressed
in the available models.

A series of pioneering studies (15,16) has used techniques
of extreme-value theory to derive the distribution of repli-
cation times in the particular case where each locus of the
genome is a potential origin of replication, as in the embry-
onic cells of X. laevis. These efforts allowed to clarify the
possible optimization principles underlying the replication
kinetics in such organisms.

Here, we extend this approach to the widely relevant case
of discrete origins with fixed positions (2,17,18) using a
modeling framework for stochastic replication to investi-
gate the cell-to-cell variability of the duration of S-phase (or
of the replication of any genomic region such as one chro-
mosome). We use analytical calculations based on extreme-
value theory and simulations, employ experimental data to
infer replication parameters and identify the main features
of empirical origin strengths and positions, and their re-
sponse to specific changes.

MATERIALS AND METHODS

Model

We make use of a 1D nucleation-growth model (19) of
stochastic replication kinetics with discrete origin locations
xi, similar to models available in the literature (5,20). Ac-
tivation of origins (firing) is stochastic, and is described
as a non-stationary Poisson process. The firing rate Ai(t)
of the origin located at xi is a function of time, Ai(t) =
�it� �(t), where �(t) is the step function, and �i and � are
constants (5,15,21). We assume that the parameter � and
the fork velocity v are common to all origins, whereas �i,
which reflects the specific strength of each origin, is ori-
gin dependent. The probability density function (PDF) fi(t)
of the firing time t for the i-th origin, given that the ori-
gin fires during that replication round, can be obtained as

fi (t) = Ai (t) exp
(
− ∫ t

0 Ai (τ )dτ
)

, which gives

fi (t) = λi tγ θ (t) exp
(

−λi
tγ+1

γ + 1

)
. (1)

When � > 0, i.e. when the firing rate increases with time,
fi(t) is a stretched exponential distribution. When � = 0,
the firing rates are constant and the process is stationary, so
Ai(t) = �i and fi (t) = λiθ (t)e−λi t.

Once an origin has fired, replication forks proceed bidi-
rectionally at constant speed, possibly overriding other ori-
gins by passive replication. When two forks meet in an inter-
origin region, replication of that region is terminated. The
length of the i-th region is defined as di = xi + 1 − xi; the time
when its replication is completed is Ti. The duration of the
S phase TS is the time needed for all inter-origin regions to
be replicated.

Fits

Empirical parameters were inferred through fitting experi-
mental data from refs. (6,7,22,25) on DNA copy number as

a function of position and time with the model. The posi-
tions of replication origins were obtained directly from the
literature and considered fixed (6,7,22,25). The fits are per-
formed by minimizing the distance between the replication
timing profiles in the model and in the experimental data.
This is carried out by updating the global parameters (� and
v) and the local parameters (�i, i ∈ {1, 2, ..., n}) iteratively
(see Supplementary Text). The parameters from these fits
are presented in Supplementary Table S1.

Simulations

Our theoretical calculations (described below) allow to ob-
tain the cell-to-cell variability of TS in special regimes. We
compare simulations using the complete information on the
locations and strengths of all origins fitted from the data,
with randomized chromosomes having similar properties.
In these randomized chromosomes we consider the inter-
origin distances di and the strengths �i as independent ran-
dom variables. They are drawn from probability distribu-
tions recapitulating their empirical mean and variability.
More precisely, from the fitted parameters we fix the mean
〈d〉 and the standard deviation �d of the distance, and the
mean 〈�〉 and the standard deviation �� of the strength. The
actual distances di and strengths �i are then drawn by sam-
pling from two gamma distributions

di ∼ �

(
〈d〉2

σ 2
d

,
〈d〉
σ 2

d

)
, λi ∼ �

(
〈λ〉2

σ 2
λ

,
〈λ〉
σ 2

λ

)
. (2)

The gamma distribution �(a, b) (parametrized in terms of
a shape parameter a and a rate parameter b) has PDF
p(x)∝xa − 1exp (−bx). It yields positive values, with mean
a/b and variance a/b2, and it is the maximum-entropy dis-
tribution with fixed mean and fixed mean of the logarithm.
We verified that the assumption of a gamma distribution
was in line with empirical data (Supplementary Figure S1).

To explore the full range of parameters, we also used
stochastic simulations, which were performed both (i) with
the precise origin locations and strengths fitted from the
data, and (ii) with di and �i drawn randomly as described
above. To avoid the boundary effects of linear chromo-
somes, we consider circular chromosomes with n origins,
unless specified otherwise (boundary effects are discussed
in the Supplementary Text and Supplementary Figure S2,
and do not affect our main conclusions.)

To analyze the biologically relevant regimes, we consid-
ered replication kinetics data on different yeast species, from
refs. (6,7,22,25), ran simulations with such parameters, and
compared with the theoretical predictions using the em-
pirical values for �d, �� and mean origin positions and
strengths.

RESULTS

The S-phase duration is the result of a maximum operation
on the stochastic replication times of inter-origin regions

We start by discussing how the stochastic nature of single-
origin firing affects the total replication timing of a chromo-
some. Figure 1A and B illustrates this process. In each cell,
a chromosome is fully replicated when the last inter-origin
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Figure 1. The S-phase duration is the maximum between the stochastic
termination time of all inter-origin regions. The illustration considers repli-
cation of one linear chromosome with three origins. (A) The activation of
each origin is stochastic, and the firing time t(i )

f follows a given phenomeno-
logical distribution. (B) In each cell, each origin randomly chooses a firing
time from this distribution. The last replicated inter-origin region, which
may be different in different cells, determines the total duration of the S
phase. In the sketch, red circles indicate origins. Dark blue circles indicate
the latest replicated loci for each inter-origin region. Some origins (e.g. the
one between I2 and I3 in cell 1) may be replicated passively, and never fire
in some realization. (C) The stochastic model generates a distribution of
S-phase durations, which expresses the cell-to-cell variability. The param-
eters used in the plots are: chromosome length L = 300 kb, fork velocity
v = 1 kb/min , firing exponent � = 0 (blue line in (A) and blue circles in
(C)) or 1 (red line in (A) and red triangles in (C)), origin locations x1 = 50
kb, x2 = 150 kb and x3 = 250 kb, origin strength �1, 2, 3 = 0.02 min −1 (for
� = 0) or 6.3 × 10−4 min −2 (for � = 1).

region is complete. In other words, the last-replicated region
sets the completion time for the whole chromosome. Con-
sequently, the total duration is the maximum among the
replication times of all inter-origin regions (16). For sim-
plicity, we first consider the case of a genome with only
one chromosome. The duration of the S phase is therefore
TS = max (T1, T2, ..., Tn) where n is the number of inter-
origin regions. The stochasticity of the replication time Ti
of each inter-origin region makes the S-phase duration TS
itself stochastic, thus giving rise to cell-to-cell variability,
which can be estimated by the model (Figure 1C). In the
case of multiple chromosomes, the same reasoning applies
to the last-replicated inter-origin region over all chromo-
somes.

A theoretical calculation reveals the existence of two distinct
regimes for the replication program

It is possible to estimate the distribution of TS analytically,
starting from the distribution of Ti. Two distinct limit-case
scenarios can be distinguished. In the first scenario, a spe-
cific inter-origin region r is typically the slowest to complete
replication and thus represents a ‘replication bottleneck’. In
this case, TS is dominated by Tr, meaning that TS ≈ Tr. Tr
is identified as the one which is largest on average. Figure
2A shows an example chromosome with 10 origins with the

A

C D

B

Figure 2. Analytical estimates indicate the existence of two replication
regimes. (A) If a single ‘bottleneck’ inter-origin region (labelled by the in-
dex 1 in panels A and B) is typically the last to complete replication, TS
will be typically equal to T1 (inter-origin distances in the example are di =
167 kb for all origins except d1 = 500 kb). (B) If the replication times of all
inter-origin regions are comparable, and they are considered independent
and identically-distributed (iid) random variables, the distribution of TS
can be obtained by extreme-value-distribution (EVD) theory (inter-origin
distances are di = 200 kb). Simulations of the model (blue circles), when
one inter-origin distance is much larger than the others (C), and when all
inter-origin distances and strengths are comparable (D), agree with the cor-
responding analytical calculations (red and green curves). (Origin number
n = 10 origins, fork velocity v = 1 kb/min , origin strength �i = 0.02 min
−1.)

same strength, where one inter-origin distance (d1) is much
larger than the others. Owing to this disparity, T1 is very
likely the maximum among all Ti, and is therefore the region
determining TS. In this scenario, which we term ‘bottleneck
estimate’, the distribution of TS will be approximately the
same as that of the bottleneck Tr (Figure 2C).

In the second scenario, each inter-origin region has a
similar probability to be the latest to complete replication.
In this case, every inter-origin region contributes to the
distribution of TS. Since TS = max (T1, T2, . . . , Tn), we
apply the well-known Fisher–Tippett–Gnedenko theorem
(23,24), which is a general result on extreme-value distribu-
tions (EVD). In order to use this theorem, we make the fol-
lowing two assumptions: (i) T1, T2, . . . , Tn are statistically
independent, i.e. each inter-origin replication time is an in-
dependent random variable, incorporating the essential in-
formation about origin variability and rates; (ii) Ti follows
a stretched-exponential distribution, independent of i, i.e.

p(Ti < t) = 1 − e−α(t−t0)β , (3)

when t > t0, while p(Ti < t) = 0 when t ≤ t0. The (posi-
tive) parameters �, � and t0, effectively describe the conse-
quences of the model parameters v, � , inter-origin distances
(d1, d2, ..., dn) and origin strengths (�1, �2, ..., �n) on com-
pletion timing of inter-origin regions (see below and Sup-
plementary Text), and can be obtained by fitting the distri-
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bution of replication time for a typical inter-origin region
(obtained from simulations) with Eq. (3).

Our fits show that Eq. (3) is a remarkably good phe-
nomenological approximation of the distribution of Ti
(see Supplementary Text and Supplementary Figure S3),
thus justifying assumption (ii) above. Note that the fitted
stretched exponential form also incorporates effectively the
coupling existing between different inter-origin regions. In-
deed, neighboring regions are correlated since they use a
pair of replication forks stemming from their common ori-
gin. Moreover, even distant inter-origin regions can share
the same fork if they are passively replicated. In order to jus-
tify the assumption (i), we tested the effect of the correlation
between different regions, by sampling T1, T2, . . . , Tn from
the distribution in Eq. (3) independently and then taking
their maximum T∗

S . We verified that the difference between
the distribution of T∗

S and that of TS obtained from simula-
tion (where the correlations are present) is small. Therefore,
the effect of these relatively short-ranged correlations can
be, to a first approximation, neglected at the scale of the
chromosomes and of the genome, and described by the ef-
fective stretched-exponential form (see Supplementary Fig-
ure S4).

Based on these assumptions, we can use the Fisher–
Tippett–Gnedenko theorem and derive the following cumu-
lative distribution function for TS as a function of the num-
ber of origins n and the parameters �, � and t0 (the calcu-
lation is detailed in the Supplementary Text):

P(TS ≤ t) ≈ exp
{
− exp

[
β log n

(
1 − (α/ log n)1/β (t − t0)

)]}
. (4)

Equation (4) gives a direct estimate of the distribution of
the S-phase duration in this second scenario, which we term
‘extreme-value’ or ‘EVD’ regime. The resulting distribution
is universal, since it does not depend on the detailed posi-
tions and rates of the origins, and depends in a simple way
on the parameters �, �, t0 and n. Although the extreme-
value estimate should apply to the case of large n, the ap-
proximation Eq. (4) holds to a satisfactory extent also for
realistic values, when n is order 10 (see Supplementary Fig-
ure S12). We also derived approximate analytical expres-
sions for �, � and t0 as functions of the parameters v, � , for
a ‘typical’ region characterized by 〈�〉 and 〈d〉 under the as-
sumption of negligible interference from non-neighbor ori-
gins (see Supplementary Text).

The procedure by which we apply Eqs. (3) and (4)
is the following. Given inter-origin distances and origins
strengths assigned arbitrarily or inferred from empirical
data, the simulation of the replication of a chromosome
gives the distribution of Ti and TS. A fit of the distribution
of Ti from simulation using Eq. (3) gives the parameters �,
� and t0. Finally, the EVD estimate for the distribution of
TS, can be obtained from Eq. (4), and compared with the
distribution of TS form simulations. This procedure can be
seen as a variant of the method introduced in (15,16) appli-
cable to the case of discrete origins (see Discussion).

Figure 2B shows one example where one circular chromo-
some has 10 origins with identical strengths and identical
inter-origin distances. The estimated distribution of S-phase
duration from Eq. (4) is well-matched with the simulated
one (Figure 2D). Figure 2 also shows how the bottleneck es-

Figure 3. Effects of perturbations of a single inter-origin region on S-
phase duration. (A) The bottleneck inter-origin region of the chromosome
shown in Figure 2A is perturbed by increasing its length by �d (i.e. d1 →
d1 + �d). The black solid line with points is the average S-phase duration,
which increases linearly with �d. The black dotted line, with slope 1/(2v),
is a guide to the eye. The inset shows that the perturbation shifts the dis-
tribution of TS by �d/2v (circles are simulations for the unperturbed chro-
mosome, and triangles correspond to �d = d1/2; the two curves are the
analytical estimates in the bottleneck regime). (B) The same perturbation
as in (A) is performed on an inter-origin region of the chromosome shown
in Figure 2B, which lies in the EVD regime. Symbols are as in (A). The
distribution of TS is robust to this perturbation.

timate works for the opposite scenario, and compares sim-
ulations with both estimates in the two different regimes.
Similar to Figure 2, Supplementary Figure S5 shows the ex-
istence of the two regimes in presence of a single origin af-
fecting the two neighboring inter-origin regions. In the bot-
tleneck regime, these two regions replicate much later than
the others, because their common origin is much weaker
than the other origins; the S-phase duration is then domi-
nated by their replication time. This case also illustrates how
the bottleneck regime may not be limited to a single inter-
origin region. Finally, Supplementary Figure S6 shows the
distribution of the inter-origin completion times Ti in the
cases presented in Figure 2 and Supplementary Figure S5.
This analysis illustrates how extra peaks in the right tail of
Ti distribution relate to the failure of the extreme-value es-
timate for the distribution of S-phase duration. These ex-
amples indicate that, as expected, the presence of outliers in
the values of Ti (exceedingly slowly-replicating regions) is
responsible for the onset of the bottleneck behavior.

The extreme-value regime is robust to perturbations increas-
ing the replication timing of a local region

Origin number, origin strengths and inter-origin distances
can be perturbed due to genetic change (DNA mutation or
recombination), over evolution, and due to epigenetic ef-
fects such as binding of specific agents. We can compare
the robustness of the two regimes identified above to per-
turbations of these parameters. We consider in particular
the elongation of a single inter-origin distance di �→di + �d
(similar results to those reported below are obtained for a
perturbation affecting the strength of a single origin, see
Supplementary Figure S7). In such case, the change of Ti
is approximately equal to �d/2v. In the bottleneck regime, if
the perturbed inter-origin region is the slowest-replicating
one, 〈TS〉 increases linearly with �d with slope 1/2v, and the
distribution of TS shifts by a delay �d/2v (Figure 3A). In the
extreme-value regime, instead, there is no single bottleneck
inter-origin region, and the change of TS with the perturba-
tion turns out to be much smaller than �d/2v (Figure 3B).
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Figure 4. The variabilities of the inter-origin distances, �d, and of the firing
strengths, ��, set the replication regime. (A, B) Average S phase duration
(top panels) and its standard deviation (bottom panel) as functions of �d
(panel A) or �� (panel B), obtained by simulations of the model (blue cir-
cles and lines) and by the EVD estimate (green triangles and lines). Fifty
samples of inter-origin distances and origin strengths are chosen according
to the distributions in Eq. (2). Red lines indicate the transition points where
the simulated 〈〈TS〉〉 is 20% larger than at �d = 0 and �� = 0. The border
lines of the grey area show the transition points for 〈〈TS〉〉 + � (〈TS〉) and
〈〈TS〉〉 − � (〈TS〉) respectively. (C) Phase diagram separating the EVD and
bottleneck regimes. Red transition points with error bars (obtained with
the method shown in (A) and (B)) form an approximate rectangle phase
boundary. Parameters: fork velocity v = 1.81 kb/min , origin number n =
20, � = 1.5, 〈d〉 =28.13 kb, 〈�〉 =6.17 × 10−4 min −2.5, �� = 0 (A) and �d
= 0 (B).

Notice that in both regimes the variability of the S-phase
duration around its average is not affected sensibly (insets
of Figure 3).

In summary, the bottleneck region is ‘sensitive’ to the spe-
cific perturbations considered, since termination of repli-
cation is highly dependent on a single inter-origin region,
while the EVD regime is ‘robust’, as the effect of small local
perturbations can be absorbed by passive replication from
nearby origins (6).

Diversity between completion times of inter-origin regions
sets the regime of the replication program

The cases discussed above (Figure 2) recapitulate the ex-
pected behavior in case of high versus small variability of
the typical completion time of different inter-origin regions.
One can expect that if the variability of the inter-origin dis-
tances is large, or origin strengths are heterogenous, it will
be more likely to produce a bottleneck region, which in turn
will trivially affect replication timing. Conversely, the repli-
cation program will be in the extreme-value regime if the
completion times of all regions are comparable. In order to
show this, we tested systematically how average and vari-
ability of TS change with the variability of inter-origin dis-
tances and origin strengths in randomly generated genomes.
In this analysis, origin spacings and strengths are assigned
according to the prescribed probability distributions shown
in Eq. (2), with varying parameters (see the Methods for a
precise description of how chromosomes are generated).

Figure 4 shows the results. Importantly, we find that the
regimes defined above as extreme cases apply for most pa-
rameter sets, and there is only a small region of the param-
eters where we find intermediate cases. Specifically, two pa-
rameters, the standard deviations �d and ��, of the inter-
origins distances and the origin strengths respectively, are
sufficient to characterize the system. Figure 4A indicates
that as long as �d is smaller than a threshold (∼30 kb), the
average 〈TS〉 and the standard deviation �(TS) of the repli-

cation time are approximately constant. In this regime, the
extreme-value estimate matches well the simulation results.
When �d exceeds the threshold, the average of TS increases
and its standard deviation decreases with large fluctuations.
In this other regime, both 〈TS〉 and �(TS) deviate from the
EVD estimate. Figure 4B shows that varying �� at fixed ori-
gin positions produces a similar behavior (although with
smaller deviations from the EVD estimates).

This analysis shows an emergent dichotomy between
these two regimes, which depends on the distribution of
Ti (i.e. both inter-origin distances and origin firing rates).
In principle, more complex situations where e.g. a subset
of many comparably ‘slow’ inter-origin regions dominates
S-phase timing is possible, but this situation is very rare
(and negligible) if origin rates and positions are generated
with the criteria used here (given by Eq. 2). De facto, un-
der these prescriptions, motivated by empirical properties
of origin positions and strengths, only the two regimes de-
fined above as extreme cases were observable. For example,
one can imagine a situation where each chromosome are,
separately, in the EVD regime, but the replication of one of
the chromosomes takes considerably longer than the oth-
ers on average, which may lead the S-phase duration to be
in the bottleneck regime. However, we find that this situa-
tion is essentially never found if origin rates and positions
have empirically relevant values (i.e. for all realizations with
empirical means and variances of inter-origin distances and
origin firing rates). Qualitatively, this will always be the case
if the distribution of Ti shows a single mode, and there are
very few, or just one exceptional late-replicating region.

This behavior suggests to define ‘critical values’ of �d and
��, separating the extreme-value regime from the bottle-
neck regime, as follows. We define the σ c

d , at fixed ��, as
the value of �d at which 〈TS〉 (possibly averaged over many
samples of the origin configuration too, denoted 〈〈TS〉〉) is
20% larger than at �d = 0 and �� = 0. The results presented
here do not depend appreciably on this threshold and do
not change much if we define σ c

d as the value of �d at which
〈TS〉 is 20% off the prediction of the EVD theory. The same
definition holds for σ c

λ at fixed �d. Surprisingly, σ c
d turns out

to be independent of ��, and σ c
λ independent of �d. The re-

sulting ‘phase diagram’, shown in Figure 4C, separates the
space of parameters into an approximately rectangular re-
gion where the EVD estimate is precise, and an outer region
where heterogeneities dominate, which is identified with the
bottleneck regime.

We can give a simple argument for why this phase dia-
gram is approximately rectangle-shaped. Intuitively, a large
�d increases the probability of extracting a very large value
for d, and a large �� increases the probability of extracting a
very small �. In a realization of a randomized chromosome,
such rare events may generate an extremely slow-replicating
region acting as the bottleneck. Clearly, drawing an extreme
value for only one of the two variables is sufficient to gener-
ate the bottleneck region, giving rise to the two sides of the
rectangle. For values of the variances of both variables that
are below the individual thresholds, drawing a large d and
small � jointly makes the upper-right region of the rectan-
gle rounded. However, such joint extreme draws in the same
inter-origin region are very rare, because the two variables
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A B

Figure 5. The replication program of yeast is in the robust regime. (A)
Symbols are the parameters of S. cerevisiae (blue squares), L. kluyveri (red
triangles) and S. pombe (green circles), inferred from fits with replication
timing data from (6,7,22) respectively (see Supplementary Table S1). Filled
symbols correspond to the whole genome, hollow symbols to each chro-
mosome. (B) For each chromosome of S. cerevisiae, the average S-phase
duration (y axis) is compared (by simulations of the model) between em-
pirical origin positions and firing strengths (red circles) and randomized
origins with empirically fixed distributions (grey circles).

are drawn independently, so the rounded upper-right corner
is very small, as visible in Figure 4C.

The yeast replication program is just inside the EVD regime
and likely under selection for short S-phase duration

The results of the previous section indicate that the stan-
dard deviations of the origin distances and of the strengths
are the most relevant parameters determining the regime of
the distribution of the S-phase duration across cells. We in-
ferred the parameters from replication timing data of the
yeasts S. cerevisiae (6), L. kluyveri (7) and S. pombe (22).
Such fits fully constrain the model parameters: fork veloc-
ity v, � , start of the S phase t0, origin strengths �i and inter-
origin distances di, from which we calculated 〈d〉, 〈�〉, �d
and ��, and simulated the duration of S phase and replica-
tion time of each chromosome (see Supplementary Text and
Supplementary Figures S8–S10). In these simulations we
consider circular chromosomes with n origins, and bound-
ary effects are tested in the Supplementary Text and Supple-
mentary Figure S2, and do not affect our main conclusions,
indicating that, according to the model, the partition of the
genome into the empirical number of unconnected chromo-
somes has little effect on the statistics of S-phase duration.
The values of � that were obtained as best fits of the empir-
ical data (Supplementary Figure S8) were in line with pre-
vious analyses (e.g. (5,6)). In addition, we found that the
standard deviation of the predicted S-phase duration de-
creases with the parameter � (Supplementary Figure S9),
which agrees with the finding of previous studies focused
on X. laevis (15,16).

This analysis indicates that the whole-genome values
of �d and �� measured for S. cerevisiae, L. kluyveri and
S. pombe place these genomes within the extreme-value
regime. Rescaling �d and �� by the crossover values σ c

d and
σ c

λ respectively makes it possible to compare data with dif-
ferent mean TS. This comparison (Figure 5A) shows that
not only the genomic but also most of chromosomal pa-
rameters of L. kluyveri, S. cerevisiae and S. pombe are lo-
cated in the extreme-value regime. With the fitted parame-
ters, most of chromosomes and genomes are found in the
extreme-value regime (as an example, see Supplementary
Figure S10). Interestingly, all chromosomes (and the full

genome) lie close to the transition line. This may be a con-
sequence of the presence of competing optimization goals,
such as replication speed (or reliability) and resource con-
sumption by the replication machinery (16).

Furthermore, we considered data of two S. cerevisiae mu-
tants. In one mutant, three specific origins in three different
chromosomes (6, 7 and 10) were inactivated (6). The inacti-
vation of a specific origin slows down the replication of the
nearby region, which might cause a bottleneck. Our results
show that this origin mutant is still in EVD regime (Supple-
mentary Figure S13). Importantly, in this case the model
should be able to make a precise prediction for the replica-
tion profile of the chromosomes where one origin is inacti-
vated. Supplementary Figure S14 shows the prediction on
the replication profile of origin mutant strain based on the
parameters fitted from the data of wild-type strain (except
that the three inactivated origins are deleted from the origin
list). The model prediction is in fairly good agreement with
data. The mismatch between prediction and data in some
regions (but not others) is an interesting feature revealed by
the model, and may result from experimental error or gene-
expression adaptation of the mutants (6). The other mutant
strain that we considered is isw2/nhp10, from the study of
Vincent and coworkers (25), who analyzed the functional
roles of the Isw2 and Ino80 complexes in DNA replication
kinetics under stress. This study compares the behavior of
wild type (wt) strain and a isw2/nhp10 mutant in the pres-
ence of MMS (DNA alkylating agent methyl methanesul-
fonate) and found that S-phase in isw2/nhp10 is extended
compared to the wt strain because the Isw2 and Ino80 com-
plexes facilitate replication in late-replicating-regions and
improve replication fork velocity. In agreement with these
findings, the model fit of the data shows that isw2/nhp10
mutant has more inactive origins and smaller fork veloc-
ity. Such conditions may facilitate the onset of a bottleneck
regime in the mutant compared to the wt strain. We found
that S. cerevisiae wt strain treated with MMS still falls in the
extreme-value regime. Conversely, some chromosomes (e.g.
13 and 15) of the isw2/nhp10 mutant are in the bottleneck
regime, and in this case, the whole genome (entire S-phase),
is driven in the bottleneck regime (see Supplementary Fig-
ure S15). Strikingly, the model makes a good prediction on
the replication profile of the isw2/nhp10 mutant, using ori-
gin firing strengths and the � values fitted from the wild-
type strain experiments, and just adjusting two (global) pa-
rameters replication speed and an overall factor in all ori-
gin firing rates (Supplementary Figure S16). This provides
a good cross-validation of the applicability of the model in
a predictive framework.

A further question is whether we can detect signs of opti-
mization in the duration of chromosome replication. Figure
5b compare the S-phase durations obtained from simula-
tions of the model in two cases: (i) by using the origin posi-
tions and strengths from empirical data (see Supplementary
Figure S10), and (ii) by using a null model with random-
ized parameters (both origin strengths and inter-origin dis-
tances) drawn according to Eq. (2), and preserving the em-
pirical mean and variance. The results show that for some of
the chromosomes the average replication timing TS is close
to the typical one obtained from randomized origins (e.g.
chromosomes 1, 3, 5, 6, 8, 11, 13 in S. cerevisiae). For other

Downloaded from https://academic.oup.com/nar/article-abstract/45/14/8190/3894170/Cell-to-cell-variability-and-robustness-in-S-phase
by BIUS Jussieu user
on 11 September 2017



8196 Nucleic Acids Research, 2017, Vol. 45, No. 14

chromosomes (e.g. 2, 4, 7, 10, 12, 15, 16 in S. cerevisiae)
the empirical average TS is instead very close to the min-
imum reachable within their ensemble of randomizations.
Remarkably, chromosomes with higher average replication
timing in the randomized ensemble seem to be more sub-
ject to pressure towards decreasing their average TS (Sup-
plementary Figure S11). This result suggests that the whole
replication program may be under selective pressure for fast
replication.

DISCUSSION

The core of our results are analytical estimates that cap-
ture the cell-to-cell variability in S-phase duration based on
the measurable parameters of replication kinetics. Extreme-
value statistics has been applied to DNA replication before
(15,16), but only to the case of organisms like X. laevis,
where origin positions are not fixed and there is no spa-
tial variability of initiation rates. To our knowledge, this
method has not been applied systematically to fixed-origin
organisms such as yeast. More specifically, (15) explores
the case of a perfect lattice of equally spaced discrete ori-
gins with fixed and equal firing rates, but does not address
the role of the variability of inter-origin replication times
due to randomness in firing rates and inter-origin distance,
which is relevant for fixed-origin organisms. Another differ-
ence is that the authors of (15,16) derive the coalescence dis-
tribution starting from their model, while here we assume
a stretched-exponential, motivated by data analysis. Since
their distribution is more complex (although the model is
simpler), EVD estimate leads to a formula linking the pa-
rameters of the Gumbel distribution to the initiation pa-
rameters in the form of an implicit equation, that needs to
be solved numerically. Conversely, the assumption that the
shape of the distribution of Ti is given (and estimated from
data), gives an explicit relationship between the parameters
describing the Ti distribution and the Gumbel parameters,
leading to simpler formulas and applicability to the case of
discrete origins with different spacings and firing rates. The
parameters of the Ti distribution have then to be related to
the microscopic parameters (See Supplementary Text).

It is important to note that an approach based on
extreme-value distribution theory is general (16). Simula-
tions (including the model used here) are based on specific
assumptions that are often not simple to test and many
models on the market use slightly different assumptions. In-
stead, the extreme-value estimates are robust to different
shades of assumptions used in the models available in the
literature, and thus more comprehensive. Our estimates re-
veal universal behavior in the distribution of S-phase dura-
tion. There is a prescribed relation between mean and vari-
ance of S-phase duration, defining a ‘scaling’ behavior for
its distribution. Such universality has been observed in cell-
cycle periods and cell size (26,27). Qualitatively, we expect
the same universality to hold in a regime when origins have
<100% efficiencies, and some may not fire at all during S-
phase. Origins that fire only in a fraction of the realizations
are accounted for in our simulations, but they entail second-
neighbor effects that are not currently accounted in our es-
timates.

There are hundreds of origins in a genome, but our anal-
ysis shows that the relevant parameters to capture the over-
all behavior are the means and variances of inter-origin dis-
tances and origin firing rates. Specifically, we find that two
regimes describe most of the phenomenology, and they de-
pend on the values of these effective variables. Importantly,
the regimes identified here differ from those identified in
(15), which just identify a critical spacing between discrete
(equally spaced) origins, for which replication timing starts
to be linear with inter-origin distance.

The notion that the last regions to replicate may tend
to be different in every cell (our ‘extreme-value’ regime)
has been proposed already by Hawkins et al. (6). The op-
posite regime where some specific regions tend to always
replicate last (‘bottleneck region’), has been proposed for
mammalian common fragile sites (28). Such regions of slow
replication, pausing and frequent termination have also
been described in yeast (6,29–31). These studies make it
plausible to think that both extreme-value and bottleneck
regimes may apply to yeast, despite our analysis based on
replication kinetics data indicating some pressure towards
the extreme-value regime. Another important case for what
concerns replication termination is the rDNA locus, which
cannot be analyzed in replication kinetics data based on
microarrays/sequencing data due to its repetitive nature
(∼150 identical copies in yeast). However, the large inter-
origin distances, pseudo-unidirectional replication and epi-
genetic control of origin firing in this locus (32) make it a
good candidate for the last sequence to replicate in yeast.

Importantly the model used here is similar to a set of
previous studies, which have tested this approach and val-
idated it with experimental data (3,5,6,8,15,33). Our anal-
ysis of S-phase duration in single cells is generic, and ex-
pected to be robust to variations of model details. The mu-
tant data sets analyzed here also support the predictive
power of the model in presence of perturbations and pa-
rameter changes, and hence validate the use of the model
in a predictive framework. Our predictions are compati-
ble with the available values for average S-phase duration,
which can be roughly estimated through flow cytometry
(6,7), and corresponds well to the values obtained by the
model (around 60 min for S. cerevisiae, ref. 6). Other yeast
studies found smaller values in other conditions (34), which
would be interesting to study with the model. Additionally,
we provide a prediction for the cell-to-cell variability of S-
phase duration, which is an important step of the cell cy-
cle. Indeed, completion of replication needs to be coordi-
nated with growth and progression of the cell cycle stages
(35,36). Cell-to-cell variability in replication kinetics makes
the S phase subject to inherent stochasticity. Experimen-
tally, measuring the cell-to-cell variation of the S-phase du-
ration is a challenge. While some studies exist using mam-
malian (cancer) cell lines (37), they currently do not have the
precision needed to allow a quantitative match with models.
However, we expect that such measurements will become
available in the near future, thanks to rapidly developing
methods of single-cell biology (38). Our predictions define
some key properties of the replication period that may be
tested with, e.g., single-cell studies in budding yeast, using
the parameters available from replication kinetics studies.
In this model the S phase is (by itself) a ‘timer’, so its con-
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nection to cell size homeostasis must be affected by external
mechanisms (35). S-phase duration has been measured on
single E. coli cells, and found to be unlinked to cell size (39).
Interestingly, our predictions of S-phase duration and vari-
ability as a function of chromosome copy numbers (Supple-
mentary Figure S12) might apply to cancer cell lines with
different levels of aneuploidy (37). Finally, there is the pos-
sibility of applying this framework to describe relevant per-
turbations (40,41). This could also help elucidate how re-
sponse to DNA damage affects the replication timing and
its variability across cells.

Intriguingly, we also found evidence of bias towards
faster replication in empirical chromosomes compared to
randomized ones. Thus, our overall findings support the
hypothesis of a possible selective pressure for faster repli-
cation, and against bottlenecks. Other approaches have as-
sumed optimization for faster replication and looked for
optimal origin placement (42) or found other signs of op-
timality in similar data (5). Our results are in line with
these findings, and isolate a complementary direction for
such optimization. All these considerations support the bi-
ological importance of replication timing of inter-origin re-
gions and its variability. However, the sources of the con-
straints remain an open question. Clearly, overall replica-
tion speed can increase indefinitely by increasing origin
number and initiation rates. However, there are likely yet-
to-be-characterized tradeoffs in these quantities, that pre-
vent this from happening, and force the system to optimize
the duration of replication in a smaller space of parameters.
The molecular basis for such constraints likely lies at least in
part in the finite resources available for initiation complexes
(4).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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