Jean-Claude Bajard 
email: jean-claude.bajard@lip6.fr
  
Julien Eynard 
email: jeynard@uwaterloo.ca
  
Anwar Hasan 
email: ahasan@uwaterloo.ca
  
Paulo Martins 
  
Leonel Sousa 
  
Vincent Zucca 
email: vincent.zucca@lip6.fr
  
Efficient reductions in cyclotomic rings -Application to Ring-LWE based FHE schemes

Keywords: Polynomial Reduction, Number Theoretic Transform, Residue Number Systems, Ring-Learning With Errors, Homomorphic Encryption

With Fully Homomorphic Encryption (FHE), it is possible to process encrypted data without access to the private-key. This has a wide range of applications, most notably the offloading of sensitive data processing. Most research on FHE has focused on the improvement of its efficiency, namely by introducing of schemes based on Ring-Learning With Errors (RLWE), and techniques such as batching, which allows for the encryption of multiple messages in the same ciphertext. Much of the related research has focused on RLWE relying on power-of-two cyclotomic polynomials. While it is possible to achieve efficient arithmetic with such polynomials, one cannot exploit batching. Herein, the efficiency of ring arithmetic underpinned by non-power-of-two cyclomotic polynomials is analyzed and improved. Two methods for polynomial reduction are proposed, one based on the Barrett reduction and the other on a Montgomery representation. Speed-ups of up to 2.66 are obtained for the reduction operation using an i7-5960X processor when compared with a straightforward implementation of the Barrett reduction. Moreover, the proposed methods are exploited to enhance homomorphic multiplication of Fan-Vercauteren (FV) and Brakerski-Gentry-Vaikuntantahan (BGV) encryption schemes, producing experimental speed-ups of up to 1.37.

Introduction

There is an increasing conflict between the convenience provided by cloud services and privacy concerns. Privacy can be achieved by encrypting data before uploading it to the cloud. However, with traditional cryptosystems, one is not able to process encrypted data [START_REF] Goluch | The development of homomorphic cryptography[END_REF], nullifying the benefits of cloud computing. A solution to this problem is the application of FHE, which allows for the creation of malleable cryptograms [START_REF] Goluch | The development of homomorphic cryptography[END_REF]. Homomorphic operations can afterwards be applied to these cryptograms. Despite its wide range of applicability, FHE has seldom been applied in practice due to its low computational performance.

Most recent research on FHE has focused on improving its efficiency [START_REF] Martins | Enhancing Data Parallelism of Fully Homomorphic Encryption[END_REF]. LWE [START_REF] Regev | On Lattices, Learning with Errors, Random Linear Codes, and Cryptography[END_REF] and its ring-variant RLWE [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF] has been suggested in this context as a framework for improving the complexity of FHE. The benefits brought forth by RLWE are twofold. First, operations are executed in a cyclotomic ring, and therefore benefit from its algebraic structure. Second, the plaintext space is isomorphic to the Cartesian product of multiple smaller spaces, designated batching slots, allowing for multiple messages to be encrypted and processed in a single ciphertext in parallel. Most of the related research has focused on cyclotomic rings of the form Z[X]/(X N + 1), for N a power of two, due to the simple arithmetic associated with the resulting ring. However, they only allow for a single batching slot. While RLWE modulo other cyclotomic polynomials, providing for a large number of batching slots has been previously considered [START_REF] Gentry | Homomorphic Evaluation of the AES Circuit[END_REF][START_REF] Smart | Fully homomorphic simd operations[END_REF], it remains not used much because of its less efficient arithmetic. In [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF], Lyubashevsky et al. proposed algorithms using a multivariate/tensored representation of the elements of cyclotomic rings resulting in a more efficient arithmetic in the general case than those using the classical univariate representation. The implementations of their work [START_REF] Crockett | λ • λ: Functional lattice cryptography[END_REF][START_REF] Mayer | Implementing a toolkit for ring-lwe based cryptography in arbitrary cyclotomic number fields[END_REF] are, at the best of our knowledges, the only publicly available implementations optimized for general cyclotomic rings.

In this work we analyse and improve the arithmetic associated with the univariate representation in general cyclotomic rings with efficient reduction algorithms of same asymptotic complexities than those of [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF]. Barrett reduction, which is a generic technique to perform polynomial reduction, had been considered in [START_REF] Dai | cuHE: A Homomorphic Encryption Accelerator Library[END_REF] to perform such reductions. However, the algorithms used in [START_REF] Dai | cuHE: A Homomorphic Encryption Accelerator Library[END_REF] do not take into account the characteristics of cyclotomic polynomials, and hence are sub-optimal. Herein, the degree of the polynomials is reduced using cyclotomic properties before applying Barrett's algorithm, decreasing the complexity of the reduction and leading to theoretical speed-ups of up to 2.06. We also show that a Montgomery representation leads to more efficient reductions than generic Barrett algorithms, leading to theoretical speed-ups of up to 2.63.

These gains have been confirmed in practice, with experimental speed-ups of up to 1.95 and 2.55 for the improved Barrett and Montgomery reductions, respectively, when compared with a straightforward Barrett algorithm in an i7-5960X processor. Moreover we have tested the applicability of our algorithms to two of the most currently used homomorphic encryption schemes, BGV [START_REF] Brakerski | Fully homomorphic encryption without bootstrapping[END_REF] developed in HELib [START_REF] Halevi | Algorithms in helib[END_REF] and FV [START_REF] Fan | Somewhat Practical Fully Homomorphic Encryption[END_REF] developped in SEAL 2.0 [START_REF] Laine | Simple encrypted arithmetic library -seal (v2.0)[END_REF] resulting in speed-up of up to 1.37 for homomorphic multiplication. These results should reduce the performance differences between the univiate/multivariate representations and therefore bring more flexibility to future implementations.

Background

Throughout the paper, φ m (X ) ∈ Z[X] will denote the m-th cyclotomic polynomial of degree n = ϕ(m), where ϕ is Euler's totient function. The ring R = Z[X]/(φ m (X )) is the main structure of R-LWE-based schemes such as FV and BGV. An element of R can be thought of as a polynomial with integer coefficients and a degree strictly smaller than n. Unless mentioned otherwise, polynomials are represented in the power-basis {1, X, . . .

X n-1 }. For a = n-1 i=0 a i X i ∈ Z[X],
we denote a ∞ = max{|a i |, 0 i < n}. Finally, the underlying space for ciphertexts is R q = R/qR = Z q [X]/φ m (X ), which is composed of elements of R with coefficients reduced modulo q. The notation | • | q is used to denote the classical residue modulo q in [0, q), while the centered residue in [-q/2, q/2) is denoted by [•] q . Moreover • denotes flooring while • denotes rounding to the nearest integer.

Residue Number System (RNS)

In practice, the value of q underpinning R q is chosen to be the product of small different prime numbers q = q 1 • • • q k . Therefore, thanks to the Chinese Remainder Theorem (CRT), R q splits into a cartesian product of smaller rings through the following isomorphism:

RNS q=q 1 ...q k : R q → R q 1 × . . . × R q k a → (a mod q 1 , . . . , a mod q k ) (1) 
The RNS exploits (1) to transfer the arithmetic modulo q of the coefficients to k smaller arithmetics modulo each q i . Thus, better performance is achieved due to smaller arithmetics and parallel computations over each R q i .

Product of elements in R q

Since the degree n of the polynomials is large in practice, the polynomial product is a major bottleneck for the efficiency of R-LWE based schemes. However, when n is close or equal to a power of two, it can be performed efficiently thanks to the Number Theoretic Transform (NTT). Let N 2 be the function defined over N such that for any n ∈ N N 2 (n) is the smallest power of two greater than or equal to n. In our context the products have a degree strictly smaller than 2n, therefore we denote N = N 2 (2n). For a prime q, a primitive N th -root of unity ω ∈ Z q exists if and only if q ≡ 1 mod N. For a Z q equipped with ω, the following ring isomorphism is verified:

NTT q, N,ω : Z q [X]/(X N -1) → Z q [X]/(X -1) × • • • × Z q [X]/(X -ω N -1 ) a → a = a(1), a(ω), . . . , a(ω N -1 ) (2) 
Once ( 2) is applied to obtain the NTT representation of polynomials, their product can be performed coordinate-wise. The time-complexity of arithmetic becomes linear in N and the bottleneck changes to the evaluation of (2), as well as of its inverse whose evaluation require O(N log(N )) multiplications in Z q by state-of-the-art algorithms ( [START_REF] Harvey | Faster arithmetic for number-theoretic transforms[END_REF], [START_REF] Longa | Speeding up the Number Theoretic Transform for Faster Ideal Lattice-Based Cryptography[END_REF]). When the context is clear, we will denote an NTT transformation of degree N by NTT N instead of NTT q, N,ω .

In order to efficiently compute the product of elements a and b of R q , seen as polynomials over Z q [X] of degree at most n -1, one has to compute the NTT representation of c = a × b of degree 2n -2 through:

NTT N (c) = NTT N (a) NTT N (b) (3) 
where denotes the component-wise multiplication in Z q . To obtain the value of c = a × b ∈ R q , a second step is needed, which consists of reducing the result of (3) modulo φ m (X ). Notice that when m is a power of two (φ m (X ) = X m/2 + 1), one can use a negatively-wrapped convolution for the evaluation of the NTT and its inverse [START_REF] Longa | Speeding up the Number Theoretic Transform for Faster Ideal Lattice-Based Cryptography[END_REF]. This allows us to use an NTT of size N 2 (n) instead of N 2 (2n) for the evaluation of (3) and also to recover the polynomial reduced modulo X m/2 + 1 at the end of (3) just with an inverse NTT of size N 2 (n). However, for other values of m this method cannot be applied and a more complex reduction has to be carried out after applying (3). Barrett's strategy for modular reduction over the integers [START_REF] Barrett | Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor[END_REF] can be adapted to polynomial modular arithmetic to reduce a polynomial c of degree n+α by φ m of degree n. The quotient of the Euclidean division c/φ m is computed through multiplications by precomputed constants and shifts. We present this strategy in Algorithm 1. The performance of the algorithm is directly related to the size of the polynomial to be reduced: the algorithm is more efficient when α is small. By denoting ñ = N 2 (n) and A = N 2 (2α + 1) the cost of the algorithm is:

C NTT (N ) + 2C NTT (ñ) + 2C NTT ( A) + (ñ + A)MMult q
where C NTT (x) denotes the cost for evaluating (2) (or its inverse) of size x and MMult q the cost of a modular multiplication modulo q. One may also notice that Barrett's reduction used in [START_REF] Dai | cuHE: A Homomorphic Encryption Accelerator Library[END_REF] uses NTT of size N = N 2 (2n) to perform the second product while in fact it only requires NTT of size N 2 (n). For the sake of completeness a proof of the correctness of Alg. 1 is given in Appendix A.1.

Algorithm 1 NTTBarr(P, Z q , φ m ): NTT based Barrett reduction in Z q [X], for a prime q ≡ 1 mod N Require:

c NTT = NTT N (c) ∈ Z N q with deg(c) = n + α < 2n with q prime, n = deg(φ m ), ñ = N 2 (n), A = N 2 (2α + 1); precomputed NTT ñ (φ m ) and NTT A ( X n+α /φ m ). Ensure: c mod (q, φ m ) in power-basis. 1: c ← NTT -1 N (c NTT ) 2: f ← c/X n 3: r ← NTT -1 A (NTT A ( f ) NTT A ( X n+α /φ m )) 4: r ← r/X α 5: d ← NTT -1 ñ (NTT ñ (r ) NTT ñ (φ m )) 6: c ← c mod X ñ -1 7: return c -d 2.

RNS variant of the FV and BGV Encryption Schemes

Fan and Vercauteren [START_REF] Fan | Somewhat Practical Fully Homomorphic Encryption[END_REF] have adapted Brakerski's scale invariant FHE scheme [START_REF] Brakerski | Fully homomorphic encryption without modulus switching from classical GapSVP[END_REF] to the RLWE framework. More recently, Bajard et al. have provided a full RNS variant of FV [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF]. We briefly recall how this RNS variant works.

We first need to introduce the two functions ξ q : R q → R q 1 × • • • × R q k and P RNS,q : R q → R k q such that for any a ∈ R q , ξ q (a) = (| a • q i /q| q i ) i ∈[1,k] and P RNS,q (a) = (| a • q/q i | q ) i ∈ [1,k] . It is straightforward to notice that for any (a, b) ∈ R 2 q , ξ q (a), P RNS,q (b) ≡ ab mod q. This scalar product occurs in R q , and so it is composed of polynomial products.

In the context of the FV scheme, the secret-key s ∈ R is defined as a "small" polynomial drawn from a distribution χ key . An encryption of m ∈ R t corresponds to a pair of polynomials ct = (c 0 , c 1 ) ∈ R 2 satisfying:

[c 0 + c 1 s] q = [ q/t • [m] t + v] q (4)
where v is a noise term that is originally introduced during encryption (which is related to a distribution χ err ) and that grows as homomorphic operations are applied. Decryption works correctly so long as this noise is below a certain bound, which limits the amount of operations one can perform. The homomorphic addition of two ciphertexts corresponds to the pairwise addition of the ciphertexts' polynomials. Regarding homomorphic multiplication, it is useful to see ciphertexts as polynomials of degree 1 with coefficients in R. In this context, homomorphic multiplication takes place in two steps. First,

ct mult ← t q c 1 0 c 2 0 q , t q (c 1 0 c 2 1 + c 1 1 c 2 0 ) q , t q c 1 1 c 2 1 q
is computed with a Karatsuba like algorithm. During this procedure, the RNS representations of the input polynomials are extended to bases with larger dynamic ranges so as to compute the products over R instead of over R q . Moreover, the division operation is achievable using [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF]Section 4.4]. Finally, one has to convert the three-element ciphertext back to a two-element ciphertext, through a process called relinearization. This is done by multiplying ξ q (ct mult ) by pseudo-encryptions of P RNS,q (s 2 ) (designated --→ rlk), and adding the result to the other two elements:

ct r elin ← c 0 + ξ q (c 2 ), --→ rlk 0 q , c 1 + ξ q (c 2 ), --→ rlk 1 q ∈ R 2 q . (5) 
The scheme introduced by Brakerski, Gentry and Vainkuntanathan [START_REF] Brakerski | Fully homomorphic encryption without bootstrapping[END_REF] shares many features of FV, and can be similarly adapted to the techniques in [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF]. A secret-key is also defined to be a "small" polynomial s ∈ R q , and ciphertexts correspond to pairs (c 0 , c 1 ) ∈ R 2 , but messages are encrypted in the Least Significant Bits (LSBs) of ( 6):

[c 0 + c 1 s] q = [[m] t + tv] q (6)
The change in the positioning of the message bits leads to simpler homomorphic multiplications. First, we compute the degree 2 ciphertext ct mult ←

c 1 0 c 2 0 q , (c 1 0 c 2 1 + c 1 1 c 2 0 ) q , c 1 1 c 2 1 q
. Since operations are performed modulo q, no RNS base extension is required. Afterwards, an operation similar to ( 5) is applied, so as to convert the three-element ciphertext to a classical two-element ciphertext. Finally, a noise management technique is applied to reduce the growth rate of the norm of v in [START_REF] Joppew | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF]. This technique consists of scaling the ciphertext to a smaller ring R q with an appropriate rounding, and is performed in two steps:

δ i ← t • [-ct/t] q/q for i = 0, 1 ct ← ([q /q • (c 0 + δ 0 )] q , [q /q • (c 1 + δ 1 )] q )
In certain steps of the aforementioned schemes, one needs to add the result of multiple polynomial products. In this case, it is possible to combine the modular reduction of all products involved in the same sum, reducing the overall computational complexity. First, ( 3) is computed for all products. Then, the NTT representations of the products are added. Finally, a single polynomial reduction method can be applied to the result.

Batching

A common way to improve the efficiency of RLWE schemes is to encrypt several plaintexts in a single ciphertext, through a technique called batching [START_REF] Smart | Fully homomorphic simd operations[END_REF]. Under some conditions, φ m splits modulo t into distinct irreducible polynomials f 1 , . . . , f of degree n/ . This leads to the following ring isomorphism of the plaintext space

R t : R t Z t [X]/( f 1 ) ו • •×Z t [X]/( f ).
In this manner, plaintexts m 1 , . . . , m can be compactly represented as a single polynomial m ∈ R t . Afterwards m is encrypted and homomorphic operations applied to this ciphertext operate on each slot individually. This technique is mostly used when evaluating Boolean circuits, i.e. with t = 2, to pack -bits in a single ciphertext. However, since X m/2 + 1 ≡ (X + 1) m/2 mod 2, this technique cannot be used when m is a power of two. Thus the efficient arithmetic associated with power-of-two cyclotomic polynomials has limited applicability.

Improving polynomial reduction modulo φ m

In this section, we propose two efficient methods to compute polynomial reductions. The first method takes advantage of the properties of the cyclotomic polynomials to improve the efficiency of the Barrett algorithm. The second reduction rests on an adaptation of the Montgomery modular reduction [START_REF] Peter | Modular multiplication without trial division[END_REF] and can be adapted for other polynomials besides cyclotomics.

Improving Barrett's reduction for cyclotomic polynomials

As explained in section 2, the performance of Barrett's algorithm is sensitive to the difference between the degree of the polynomial to be reduced and that of the polynomial we want to reduce by. The smaller the difference, the more efficient the algorithm will be. Hence, herein we propose an efficient method to reduce this difference.

Polynomials to be reduced modulo φ m have a degree of at most 2n -2. Let c be such a polynomial. If c were reduced by a polynomial Q sp of degree n + α + 1, the difference between the degree of the polynomial and the degree of φ m would be reduced to α. However, in order to obtain the correct value of c mod φ m in the end, φ m has to divide Q sp . For this reduction to be efficient, Q sp should be sparse enough so that its reduction can be efficiently handled through few operations in Z q . Thanks to the cyclotomic property d/m φ d (X ) = X m -1, Q sp can be taken as the product of φ m and some φ d for d dividing m. Good candidates can be found by recursively using the fact that if p is a prime not dividing m then φ m •p (X ) • φ m (X ) = φ m (X p ). If the polynomial Q sp is found in this way with less than 2 recursions it has coefficients in {-1, 0, 1} since it will correspond to a cyclotomic with at most two distinct odd prime factors. In this case, the reduction modulo Q sp only requires shifts and additions in Z q and can be done very efficiently.

In addition, when m < 2n -2, c can initially be reduced by X m -1 with 2nm -1 additions in Z q . Since φ m (X )|Q sp (X )|X m -1 the strategy remains correct, and the complexity of the reduction by Q sp (X ) is further reduced. Let HW(Q sp ) be the Hamming weight of Q sp . The cost of the reduction of c by

Q sp is (HW(Q sp ) -1)(m -deg(Q sp )) additions in Z q . At this point, we obtain c = c mod Q sp (with deg(c ) ≤ n + α) and c ≡ c mod φ m .
The final algorithm is depicted in Algorithm 2. It starts by recovering c in power basis from the NTT representation outputted by [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF]. Then it consecutively reduces c of degree 2n-2 by X m -1 and the sparse polynomial Q sp . This allows to recover c = c mod Q sp of degree n + α very efficiently. Afterwards, a procedure identical to the one described in steps 2 to 7 in Alg. 1 is applied to c to get c = c mod φ m .

Algorithm 2 modBt φ m : NTT-based Barrett reduction in Z q [X], for q = q 1 . . . q k , with prime integers q i , q

i ≡ 1 mod N, N = N 2 (2n), ñ = N 2 (n) and A = N 2 (2α+1). Require: c NTT = NTT N (c) with deg(c) 2n -2 Ensure: c = c mod φ m in power-basis. 1: c ← NTT -1 N (c NTT ) 2: if m < 2n -2 then 3: c ← c mod X m -1 4: c ← c mod Q sp Reduction by Q sp of degree n + α + 1 5: f ← c/X n 6: r ← NTT -1 A (NTT A ( f ) NTT A ( X n+α /φ m )) 7: r ← r/X α 8: d ← NTT -1 ñ (NTT ñ (r ) NTT ñ (φ m )) 9: c ← c mod X ñ -1 10: return c -d
The impact of this sparse reduction is illustrated in Table 1, where polynomials Q sp are presented for different cyclotomic polynomials. Cyclotomics have been chosen with a degree n = ϕ(m) close or equal to a power of two. The number of batching slots associated with each cyclotomic is also presented. The degree of Q sp is n + α + 1 thus NTTs of size A = N 2 (2α + 1) are required to compute the first polynomial product in Alg. 2. This is in contrast with N = N 2 (2n) which would have been the size required for the Barrett algorithm without using the sparse reduction. In order to highlight the sparsity of Q sp we give HW(Q sp ) which is the number of non-zero coefficients of Q sp .

Complexity Since the complexity of computing multiplications in Z q is much higher than additions, the cost of the reduction by the sparse polynomial can be neglected. Moreover, with the RNS, each multiplication in R q , with q = q 1 . . . q k can be decomposed into k independent and smaller multiplications. Therefore the cost to reduce the polynomial c outputted by ( 3) is essentially k times the cost of Alg. 1:

k (N log 2 (N ) + 2A log 2 ( A) + 2ñ log 2 (ñ) + A + ñ)
While the cost of the method by using directly Barrett's algorithm, i.e. without performing the reduction by the sparse polynomial, is:

k (3N log 2 (N ) + 2ñ log 2 (ñ) + N + ñ)
Based on this analysis we also provide in Table 1 the theoretical speed-up obtained with the use of the sparse reduction. 1. Sparse polynomials used for partial reduction with their related parameters.

m n Q sp deg(Q sp ) α HW(Q sp ) A N Speed-

NTT-based Montgomery's reduction

We propose a Montgomery like reduction of a polynomial given in NTT representation inspired by [START_REF] Bajard | Arithmetic Operations in Finite Fields of Medium Prime Characteristic Using the Lagrange Representation[END_REF]. The bottleneck of our optimized Barrett algorithm is the computation of the inverse NTT of size N of (3). Our Montgomery reduction takes advantage of the presence of the NTT basis of size N/2 (seen as an RNS basis in [START_REF] Bajard | Arithmetic Operations in Finite Fields of Medium Prime Characteristic Using the Lagrange Representation[END_REF]) in the basis of size N allowing then to perform all the computations, in particular the inverse NTT evaluation, in the basis of size N/2 instead of N.

The NTT representation of a polynomial of size N was defined in (2) as the tuple of values {c mod X -ω j |0 ≤ j < N }. This representation can be seen as a polynomial-RNS representation of c mod X N -1 since X N -1 = 0≤ j<N (Xω j ) mod q, with respect to the NTT-basis:

B ω, N = {|X -1| q , |X -ω| q , . . . , |X -ω N -1 | q }
As X N -1 splits in (X N/2 -1)(X N/2 + 1) when N is even, half of the NTT N representation of c corresponds to its NTT N/2 representation. Hence, the basis B ω, N is split along even and odd powers of ω. We can then define two sub-bases defining two polynomials:

             B (e) ω, N = {[X -ω 2j | q , 1 ≤ j ≤ N/2} ; Ψ (e) = | N/2 j=1 (X -ω 2j )| q B (o) ω, N = {|X -ω 2j+1 | q , 0 ≤ j ≤ N/2 -1} ; Ψ (o) = | N/2-1 j=0 (X -ω 2j+1 )| q (7) 
It is straightforward to notice that Ψ (e) ≡ X N/2 -1 mod q and Ψ (o) ≡ X N/2 + 1 mod q. We also note that since N is a power of two, one has Ψ (o) ≡ φ N mod q. Thanks to Lemma 1, whose first point is a direct consequence of Lemma 2 in [START_REF] Filaseta | On coverings of the integers associated with an irreducibility theorem of A. Schinzel. Number theory for the millennium[END_REF], we can choose X N/2 + 1 as the Montgomery factor.

Lemma 1. Let φ m be the m-th cyclotomic polynomial of degree n and N be the smallest power of two greater than or equal to 2n. If m is not a power of two then:

there exists

(U, V ) ∈ Z[X] 2 such that U (X )φ m (X ) + V (X )φ N (X ) = 1.
for any prime p, φ m is coprime with X N -1 in Z p . In particular φ m is a unit in Z p [X]/(φ N ).

One can extract from the coordinates of c in B ω, N the representation c (e) of c in B (e) ω, N (resp. c (o) in B (o) ω, N ). So, given c (o) and c (e) , we can use the NTT operator to get:

NTT -1 N/2 ( c (e) ) = c mod (q, X N/2 -1) Definition 1. We define the following function, which takes in as input the residues of the polynomial c (deg(c) < N) modulo a prime p:

modMong φ m ,Ψ (o) , p (c) = c + φ m × | -c/φ m | Ψ (o) Ψ (o) mod p. (8) 
The modMong φ m ,Ψ (o) , p function defined in ( 8) is a classical Montgomery reduction with factor Ψ (o) consisting in an exact polynomial division. It always outputs a polynomial congruent to |c/Ψ

(o) | φ m but when deg(c) N/2 + n -1 the output is exactly |c/Ψ (o) | φ m . Lemma 2. If deg(c) N/2+n-1, then modMg φ m ,Ψ (o) , p ( c) = c/Ψ (o) mod (p, φ m ).
First the degree of the numerator in ( 8) is bounded max(deg(c), deg(φ m ) + deg(Ψ (o) ) -1) n+ N/2-1. Thus, the degree of the resulting quotient is bounded by n -1 < N/2. Therefore, the output is |c/Ψ (o) | φ m and the computation of ( 8) can be made modulo X N/2 -1, i.e. in an NTT representation of size N/2 when using primes q i ≡ 1 mod N. Algorithm 3 details the computation of [START_REF] Brakerski | Fully homomorphic encryption without bootstrapping[END_REF]. The following precomputations are used therein:

         W (o) : (-1/φ m ) mod (q, Ψ (o) ) in base B (o) ω, N Y (e) : (1/Ψ (o) ) mod (q, Ψ (e) ) in base B (e) ω, N Z (e) : (φ m /Ψ (o) ) mod (q, Ψ (e) ) in base B (e)
ω, N Algorithm 3 modMg φ m ,Ψ (o) : NTT-based Montgomery reduction in Z q [X], for q = q 1 . . . q k , with prime integers q i , and q i ≡ 1 mod N 2 (2n) BaseConv : (c(ω), c(ω 3 ), . . . , c(ω N -1 )) → (c(1), c(ω 2 ), . . . , c(ω N -2 )) (modq).

Require: c = NTT q, N (c) (ie c in base B (o) ω, N ∪ B (e) ω, N ), with N = N 2 (2n) and deg(c) 2n -2 < N/2 + n -1. Ensure: R = (c/Ψ (o) ) mod (q, φ m ) in power-basis. 1: ( c (e) , c (o) ) ← Split( c) Split the NTT coeff. wrt parity of indexes 2: Q (o) ← c (o) W (o) 3: Q (e) ← BaseConv( Q (o) ) base conversion from B (o) ω, N to B (e)
(9) In [START_REF] Bajard | Arithmetic Operations in Finite Fields of Medium Prime Characteristic Using the Lagrange Representation[END_REF], ( 9) is computed with a classical Lagrange interpolation. Our context is more specific, because the points in which polynomials are evaluated are powers of a N th root of unity ω. With this purpose, Alg. 4 implements such base conversion by only using NTTs of degree N/2, with ω 2 as a primitive N/2 th root of unity. The proof of correctness of Alg. 4 is given in Appendix A.3.

Complexity The total cost of Alg. 3 in terms of modular multiplications is:

k 3N 2 (n) log 2 (N 2 (n)) + 4N 2 (n)
One can find in Table 2 the predicted speed-up of the proposed Montgomery reduction. Despite its better complexity, the Montgomery algorithm suffers from Algorithm 4 BaseConv Require: (c(ω), c(ω 3 ), . . . , c(ω N -1 )) mod q i , for deg(c) < N/2, N a power of 2 and ω a primitive N th root of unity in Z q . Ensure: (c(1), c(ω 2 ), . . . , c(ω N -2 )) mod q.

1:

(c 0 , c 1 , . . . , c N/2-1 ) ← NTT -1 N/2,ω 2 (c(ω), c(ω 3 ), . . . , c(ω N -1 )) 2: (p 0 , p 1 , . . . , p N/2-1 ) ← (c 0 , c 1 , . . . , c N/2-1 ) (1, ω -1 , ω -2 , . . . , ω -(N/2-1) ) 3: (r 0 , r 1 , . . . , r N/2-1 ) ← NTT N/2,ω 2 (p 0 , p 1 , . . . , p N/2-1 ) 4: return (r 0 , r 1 , . . . , r N/2-1 )
one main drawback which is the presence of the Montgomery factor in the output. In the following section, modifications to the BGV and FV cryptosystems are proposed to handle this factor. 

Adaptation of FV and BGV to the Montgomery representation

In this section we show how the Montgomery representation impacts the BGV and FV schemes, and propose modifications to handle these changes. For simplicity, we denote by M the Montgomery factor X N/2 + 1 mod φ m . Thanks to Lemma 1 we also know that M -1 exists in R. We assume that ciphertexts ct are given in Montgomery representation such that ct = (c 0 M, c 1 M). The conversion to the Montgomery domain can be integrated in the encryption procedure for increased efficiency, and the M factor can be removed during decryption by applying a Montgomery reduction to [c 0 + c1 s] q . The Montgomery reduction only impacts procedures involving multiplications in R q by multiplying the product by M -1 . Therefore the Montgomery representation is stable with respect to multiplication. Homomorphic additions are not affected by the change in representation. Thus the only impact one has to consider is on homomorphic multiplication. Moreover, we recall that the expansion factor of the ring R is the quantity defined by

δ R = sup{ ab ∞ / a ∞ b ∞ (a, b) ∈ R -{0}}.

Impact of the Montgomery representation in FV

We note that the first step of the FV homomorphic multiplication corresponds to an extension of the polynomials of the ciphertexts to a larger RNS basis, so that multiplications are computed over R instead of R q . In order to improve efficiency, an approximate extension is used [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF] and thus the norm of the polynomials is bounded by q 2 (1 + ρ) for a parameter ρ > 0 [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF]. A bound on the noise growth of ct mult ←

t q M c 1 0 c 2 0 q , t q M (c 1 0 c 2 1 + c 1 1 c 2 0 ) q , t q M c 1 1 c 2 1 q
is given in Proposition 1 whose proof can directly be derivated from the one of [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF].

Proposition 1. Let (c 0 , c1 , c2 ) = ct mult , r ∞ = 1+ρ 2 (1+δ R s ∞ ) +δ R M ∞ and v i be the inherent noise of ct i . Then (c 0 +c 1 s+c 2 s 2 )M -1 ≡ ∆ [m 1 m 2 ] t +ṽ mult [q] with: ṽmult ∞ < δ R t(δ R M -1 ∞ r ∞ + 1 2 )( v 1 ∞ + v 2 ∞ ) + δ 2 min v i ∞ + δt|q| t (r ∞ + 1) + δ R M -1 ∞ 2 (1 + δ R s ∞ (1 + δ R s ∞ )) + |q | t 2 + 1. (10) 
Now, we assume that we need to relinearize the ciphertext ct mult = ( c 0 , c 1 , c 2 ). Before, the following dot products were computed over R q : ξ q (c 2 ), rlk i , where

evk 0 = [P R N S,q (s 2 ) + - → a s + - → e ] q and evk 1 = [-- → a ] q .
The goal of relinearisation is to obtain ξ q (c 2 ), P R N S,q (s 2 ) ≡ c 2 s 2 mod q with a limited increase of the noise. Indeed, modulo q we can write:

ξ q (c 2 ), evk 0 ≡ c 2 s 2 + ξ q (c 2 ), - → a s + ξ q (c 2 ), - → e ≡ c 2 s 2 + a s + e ξ q (c 2 ), evk 1 ≡ -ξ q (c 2 ), - → a ≡ -a (11) 
Now, we need to obtain the Montgomery representation of the output of this relinearization, i.e. a cryptogram like ((c 2 s 2 + a s + e )M, -M a ).

When the Montgomery representation is used, c 2 replaces c 2 in [START_REF] Fan | Somewhat Practical Fully Homomorphic Encryption[END_REF]. Hence, the relinerization key has to be modified as follows:

evkM 0 = [M 2 (P R N S,q (s 2 /M) + - → a s + - → e )] q , evkM 1 = [-M 2-→ a ] q
In the following equations, we simulate the effect of the Montgomery reduction by introducing a factor M -1 (modφ m ). Then, we can easily establish the following equalities:

ξ q ( c 2 ), evkM 0 M -1 = c 2 s 2 M + ξ q ( c 2 ), - → a sM 2 + ξ q ( c 2 ), - → e M 2 M -1 = c 2 s 2 + (a s + e )M = (c 2 s 2 + a s + e )M
Similarly, we get ξ q ( c 2 ), evkM 1 M -1 = -a M. Hence, we have obtained the Montgomery representation of the output of the relinearization step at no extra cost -both computationally and in terms of noise growth.

Impact of the Montgomery representation in BGV

For the first step of the BGV homomorphic multiplication, no scaling operation is required, and hence noise is not affected by a change in representation. Next, relinearization is applied. An analysis similar to the one in Section 4.1 can be performed, with minor adaptations to the relinearization key. Similarly, one concludes that the Montgomery reduction introduces no cost neither in terms of computation nor in noise growth. Finally, one needs to apply scaling so as to manage noise growth. We consider the ciphertext ( c 0 , c 1 ) in Montgomery representation encrypting m. Let q | q and δ i = [c i /t] q/q × t. Then the BGV-scaling function applied to c i outputs

c i = ( c i + δ i ) × q q . Lemma 3. If [c 0 +c 1 •s] q ∞ < q 2 -δ R M -1 ∞ q q t 2 (1+δ R • s ∞ ) and q = q mod t, then [( c 0 + c 1 • s)M -1 ] q = [c 0 + c 1 • s] q mod t (12) 
[(

c 0 + c 1 • s)M -1 ] q ∞ q q [c 0 + c 1 • s] q ∞ + δ R M -1 ∞ t 2 (1 + δ R s ∞ )(13)
Proof. The proof is similar to the proof of lemma 4 of BGV original paper. By definition of c i , we have:

[( c 0 + c 1 • s)M -1 ] q = [c 0 + c 1 • s] q = c 0 + c 1 • s -qu.
By definition of c i , we can write:

( c 0 + c 1 • s)M -1 = q q ( c 0 + c 1 • s + δ 0 + δ 1 • s)M -1 = q q (c 0 + c 1 • s) + q q (δ 0 + δ 1 • s)M -1 = q q [c 0 + c 1 • s] q + q u + q q (δ 0 + δ 1 • s)M -1 . (14) 
Moreover, since δ i ∞ qt 2q , we get the following bound

(δ 0 + δ 1 • s)M -1 ∞ δ R qt 2q M -1 ∞ (1 + δ R s ∞ ).
Thus, from the above and the hypothesis on [(

c 0 + c 1 • s)M -1 ] q ∞ = [c 0 + c 1 • s] q ∞ ,
we deduce that

( c 0 + c 1 • s)M -1 -q u ∞ < q /2
and then that

( c 0 + c 1 • s)M -1 -q u = [( c 0 + c 1 • s)M -1 ] q
Hence, from this previous equality and by bounding the norm of last member of ( 14), we obtain [START_REF] Gentry | Homomorphic Evaluation of the AES Circuit[END_REF].

Finally, we get [START_REF] Filaseta | On coverings of the integers associated with an irreducibility theorem of A. Schinzel. Number theory for the millennium[END_REF] by:

[( c 0 + c 1 • s)M -1 ] q = ( c 0 + c 1 • s)M -1 -q u = ( c 0 + c 1 • s)/M -qu mod t ( c i = c i mod t; q = q mod t) = c 0 + c 1 • s -qu mod t (def. of c) = [c 0 + c 1 • s] q mod t
From this lemma, we can see that the Montgomery representation of the ciphertext impacts the scaling by adding an extra factor δ R M -1 ∞ to the last term on the bound of the hypothesis and of (13).

Overall impact on noise growth

For both BGV and FV, the norms M ∞ , M -1 ∞ and the expansion factor δ R are involved in the noise growth due to the scaling steps performed with the Montgomery reduction. When m is a power of two, δ R is equal to n. However, for other m it can be larger than that. Let us consider

F m : Q 2n-2 [X] → Q[X]/(φ m (X )
), so that F m (a) = a mod φ m for every a ∈ Q[X] of degree lesser than or equal to 2n -2. These three parameters are given in Table 3 for the different cyclotomic polynomials considered in this paper. Assuming that distributions χ key and χ err output elements whose infinite norms are bounded by B key and B err = 6σ err , we analyse which depth can be reached in a multiplicative tree.

FV : The initial noise of a ciphertext is at most V init = B err (1 + 2δB key ) [START_REF] Fan | Somewhat Practical Fully Homomorphic Encryption[END_REF]. We recall that r ∞ = 1+ρ 2 (1 + δ R B key ) + δ R M ∞ , the output of a tree of depth L has a noise bounded by [START_REF] Joppew | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF], Lem. 9) with:

C L 1 V + LC L-1 1 C 2 (cf.
         C 1 = 2δ R t(δ R M -1 ∞ r ∞ + 1 2 ) + δ R 2 C 2 = δ R t|q| t (r ∞ + 1) + δ R M -1 ∞ 1+δ R B k ey (1+δB k ey ) 2 + |q | t 2 + 1 +k (1 + δ R B key (1 + δ R B key )) + δ R k B err 2 ν+1
We denote by

L max = max{L ∈ N | C L 1 V + LC L-1 1
C 2 B dec } the depth allowed by the homomorphic multiplication where B dec corresponds to the decryption bound given by the full RNS version of FV [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF].

BGV : As long as a ciphertext satisfies the condition on Lemma 3, one can perform a scaling operation and thus an homomorphic multiplication. Initially c 0 +c 1 s ∞ V init = t/2+t B err (2δ R B key +1). By assuming that after each scaling, the size of q is reduced by ω bits and let l ω,q = log ω q , then the growth of the size of c 0 + c 1 s, denoted V , after one multiplication can be expressed with:

q q (δ R V 2 + B relin ) + δ R M -1 ∞ t 1+δ R B k ey 2
where B r elin = δ R 2 ω,q ωB err B key represents the noise caused by the relinearisation step.

In Table 3 we present the maximal theoretical depths for BGV and FV with or without the use of the Montgomery reduction. For these computations we have taken parameters B key = 1, σ err = 2 √ n and a number k of 62-bits moduli to get the largest size for q ensuring at least 80-bits of security according to [START_REF] Albrecht | On the concrete hardness of Learning with Errors[END_REF].

We notice that the depths of BGV are almost unchanged with the usage of the Montgomery reduction. However for FV the depths are far smaller with a Montgomery representation. This behavior has been confirmed in practice. 
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Mixing Optimized Barrett and Montgomery reductions

Considering the non-negligible impact of the Montgomery representation on the multiplicative depth of FV, a more robust strategy for this cryptosystem corresponds to a mixed Barrett/Montgomery approach. Alg. 2 is used during the first stage of homomorphic multiplication, with ciphertexts not exploiting a Montgomery representation. This avoids the noise growth caused by the Montgomery factor. Nonetheless, the Montgomery reduction can still be used during the relinearization stage, since we have seen that this does not cause a larger noise growth. To obtain a valid result, the relinearisation key needs to be modified, by replacing the factor M 2 of the Montgomery approach by M.

Experimental Results

The proposed methods for polynomial reduction were implemented using C++, and compiled with gcc using the optimization flag -O3. All the experimental results presented herein were measured on an i7-5960X, running at 3.0 GHz with 32 GB of main memory. No parallelism was exploited.

In Figure 1, one can find the execution timings of polynomial reduction, using NFL for power-of-two cyclotomics [START_REF] Aguilar-Melchor | Topics in Cryptology -CT-RSA 2016: The Cryptographers[END_REF]; the unoptimized and optimized Barrett reductions and the Montgomery reduction for non-power-of-two cyclotomics. In order to highlight the gain brought by our algorithms compare to generic ones we also compare with NTL's reduction using preconditioning [START_REF] Halevi | Implementing bp-obfuscation using graph-induced encoding[END_REF]. All timings were normalized based on the number of batching slots , and executed for a single moduli of 62-bits. One find the straightforward application of Barrett reduction, to be more efficient than the preconditioned methods employed in the NTL library. Moreover, speed-ups of up to 1.95 and 2.55 were achieved for the optimized Barrett and Montgomery algorithms when compared with the unoptimized Barrett reduction. The figure suggests that using power-of-two cyclotomics is not scalable with respect to the throughput. In contrast, the remaining approaches present very little variation when considering the execution timing per batching slot for the different m given in Table 3. It should be noted that using larger values of m enables FHE parameters with a larger multiplicative depth.

The aforementioned reduction methods were used to implement the homomorphic multiplication operations of the FV and BGV schemes. One can find in 3. The experimental results for NFL are omitted due to its low performance with respect to the timing per batching slot. Unlike with Figure 1, the execution time of homomorphic multiplication increases significantly with increasing m. This trend is explained by the relinearization procedure, which requires a number of NTTs that increases quadratically with log 2 q. Nevertheless, the employed reduction procedure plays a preponderant role in the efficiency of the homomorphic multiplication. Indeed, one achieves speed-ups of up to 1.37 and 1.24 when comparing the homomorphic multiplication exploiting the optimized Barrett reduction with the one exploiting the unoptimized Barrett method for the FV and BGV schemes, respectively. Since with the mixed Barrett/Montgomery approach, required by the FV scheme, one is not able to fully take advantage of the gains brought forth by the Montgomery representation, one achieves speed-ups similar to those of the optimized Barrett reduction. In contrast, for BGV, one can exploit the Montgomery representation throughout the whole procedure, leading to speed-ups of up to 1.32.

The speed-up of the proposed methods decreases as the degree n of the cyclotomic, and thus log 2 q, get larger due to the increasing complexity of the relinearization procedure. This suggests that they are most beneficial when one needs to homomorphically evaluate small circuits. Since most of practical applications of FHE [START_REF] Gilad-Bachrach | Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy[END_REF][START_REF] Alhassan Khedr | SHIELD: scalable homomorphic implementation of encrypted data-classifiers[END_REF][START_REF] Naehrig | Can homomorphic encryption be practical[END_REF] have circuits with small depth, the proposed methods have a wide range of applicability.

Conclusion

In this paper, the arithmetic of non-power-of-two cyclotomics has been considered and improved. Two methods for polynomial reduction have been proposed: one based on the Barrett reduction and the other on a Montgomery representation. The optimized Barrett algorithm does not offer a better computational complexity than the Montgomery reduction. However, since it does not require changes in the representation of ciphertexts, it provides for a slower noise growth, making it more amenable to application in the FV homomorphic scheme than the Montgomery approach. In contrast, the Montgomery approach is more suitable for the BGV scheme. Moreover, since the Montgomery reduction does not rely on the properties of cyclomic polynomials, it can be used on schemes relying on other kinds of polynomials. Experimental results have shown the proposed methods to be more efficient than those employed in the NTL library. Furthermore, speed-ups of up to 1.95 and 2.55 have been obtained in an i7-5960X when comparing the optimized Barrett and Montgomery reductions with the unoptimized Barrett reduction, respectively. Finally, the polynomial reductions have been incorporated into the homomorphic multiplication procedures of FV and BGV, producing speed-ups of up to 1.37.

ω, N 4 :

 4 T (e) ← c (e) Y (e) + Q (e) Z (e) 5: R ← NTT -1 N/2 ( T (e) ) 6: return R In line 4 of Alg. 3, we require an operator which takes in as input a vector of coefficients in base B(o) ω, N . This vector defines a unique polynomial c with deg(c) < N/2. Then the operator must output the vector of coefficients of c in base B (e) ω, N . More precisely, the function BaseConv works as follows, for any c with deg(c) < N/2:

Lemma 4 .

 4 Let m be a positive integer and letR = Z[X]/(φ m (X )), with deg(φ m ) = n. If δ R denotes the expansion factor of the ring R, then δ R ≤ n • F m ∞ .

Fig. 1 .

 1 Fig. 1. Execution time per batching slot T/ [µs] for multiple reduction strategies and mth cyclotomic polynomials. The y-axis is in logarithmic scale

Fig. 2 .

 2 Fig. 2. Execution time per batching slot T/ [µs] for the homomorphic multiplication operation of FV with several reduction strategies and mth cyclotomic polynomials.

Fig. 3 .

 3 Fig. 3. Execution time per batching slot T/ [µs] for the homomorphic multiplication operation of BGV with several reduction strategies and mth cyclotomic polynomials.

Table 2 .

 2 Theoretical speed-up of Alg. 3 when compared with Alg. 1

	m	3855 4369 13107 21845 32767 65535
	n	2048 4096 8192 16384 27000 32768
	Speed-up 2.62 2.62 2.63 2.63 2.63 2.63

Table 3 .

 3 Theoretical depths with and without Montgomery reduction. Values in parenthesis are the depths observed in practice.

	4096 2	1	1	35n	1(1) 1(1) 1(4) 1(3)
	13107 8192 5	2	1	205n 4(4) 4(4) 6(17) 4(10)
	21845 16384 11	2	1	739n 10(10) 6(10) 13(40) 8(22)
	32767 27000 18	1	9	2621n 8(17) 7(17) 19(66) 12(39)
	65535 32768 22	4	1	9886n 7(21) 7(21) 22(80) 14(45)

A Proofs

A.1 Correctness of Alg. 1

Since ring F q [X] is Euclidean, we can write Euclidean division of c by Φ m , with a unique remainder r of degree at most n -1: c = c/Φ m Φ m + r. Let a, b 0 be integers. From the previous equation we get the following equivalent equations over the field of rational fractions of F q [X]:

and deg(R ) < a + b. By choosing b 0 and a α, the right term of left member of last equation above have a degree smaller than 0. In this case, we obtain an equality between the two floored polynomials. So, we take b = 0 and a = α, and we get that c Φ m is equal to the flooring of the left part of last equation, which is precisely what Alg. 1 computes. As the product X n+α /Φ m • c/X n is of degree strictly smaller than 2α + 1, the computation can be done with an NTT of size A = N 2 (2α + 1).

To finish, we notice that the result of the computation of r = cc/Φ m ×Φ m has a degree strictly smaller than n. Moreover, the polynomial c at line 5 is nothing but c/Φ m × Φ m mod X ñ -1. Indeed, the reduction modulo X ñ -1 is a consequence of the NTT based polynomial product in dimension ñ. Thus, at the end we have that c

The last equality holds precisely because the degree of c mod Φ m is strictly smaller than ñ.

A.2 Proof of Lemma 1

The first point is a direct consequence from Lemma 2 in [START_REF] Filaseta | On coverings of the integers associated with an irreducibility theorem of A. Schinzel. Number theory for the millennium[END_REF]. Since m is not a power of two, m cannot divide N. By denoting m = 2 r m with m > 1 an odd integer we have n = 2 r-1 ϕ(m ), thus 2n = 2 r ϕ(m ) and then if N divides m, N 2 (ϕ(m )) = 1 which is not possible since m 3. Therefore N and m do not divide each others and we can apply Lemma 2 from [START_REF] Filaseta | On coverings of the integers associated with an irreducibility theorem of A. Schinzel. Number theory for the millennium[END_REF].

Let α be a root of φ m in the algebraic closure of Z p . If α is also a root of X N -1 then α N = 1, since α is of order m by definition of φ m it implies that m divide N which is impossible since N is a power of two and m is not. So, φ m and X N -1 are coprime on the algebraic closure of Z p thus in Z p . The second point comes from Bezout equality in Z p and from the fact that X N -1 ≡ (X N/2 -1)(X N/2 +1) mod p.

A.3 Correctess of Alg. 4

First we notice that since c is a polynomial of degree smaller than N/2 we have (c(ω), . . . , c(ω N -1 )) = NTT N/2,ω 2 (ξ N/2,ω (c)) where ξ N/2,ω (c 0 , c 1 , . . . , c N/2-1 ) = (c 0 , c 1 ω, . . . , c N/2-1 ω N/2-1 ). Therefore the polynomial c recovered at the first line of Alg. 4 is nothing but ξ N/2,ω (c). The second line of the algorithm is just the computation of ξ N/2,ω -1 (c ) to recover c from c . Once c recovered we just need to compute and return NTT N/2,ω 2 (c) which is precisely the final step of the algorithm.

A.4 Proof of Lemma 4

Let a and b two elements of R-{0}. They naturally embed in Z

We can write ab ∞ ≤ n a ∞ b ∞ . As the product ab has degree at most 2n -2 with coefficients in Z, it belongs to Q 2n-2 [X]. Since F m is a linear map between two vector spaces of finite dimension it is continuous, then we obtain