
HAL Id: hal-01585516
https://hal.sorbonne-universite.fr/hal-01585516v1

Submitted on 11 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient reductions in cyclotomic rings - Application to
Ring-LWE based FHE schemes

Jean-Claude Bajard, Julien Eynard, Anwar Hasan, Paulo Martins, Leonel
Sousa, Vincent Zucca

To cite this version:
Jean-Claude Bajard, Julien Eynard, Anwar Hasan, Paulo Martins, Leonel Sousa, et al.. Efficient
reductions in cyclotomic rings - Application to Ring-LWE based FHE schemes. Selected Areas of
Cryptography 2017, Aug 2017, Ottawa, Canada. �10.1007/978-3-319-72565-9_8�. �hal-01585516�

https://hal.sorbonne-universite.fr/hal-01585516v1
https://hal.archives-ouvertes.fr

Efficient reductions in cyclotomic rings -
Application to Ring-LWE based FHE schemes

Jean-Claude Bajard1, Julien Eynard2, Anwar Hasan2

Paulo Martins3, Leonel Sousa3, Vincent Zucca1

1 Sorbonne Universités, UPMC, CNRS, LIP6, Paris, France
Email: jean-claude.bajard@lip6.fr; vincent.zucca@lip6.fr

2Department of Electrical and Computer Engineering, University of Waterloo
Email: jeynard@uwaterloo.ca; ahasan@uwaterloo.ca

3INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
Email: paulo.sergio@netcabo.pt; las@inesc-id.pt

Abstract. With Fully Homomorphic Encryption (FHE), it is possible
to process encrypted data without access to the private-key. This has a
wide range of applications, most notably the offloading of sensitive data
processing. Most research on FHE has focused on the improvement of
its efficiency, namely by introducing of schemes based on Ring-Learning
With Errors (RLWE), and techniques such as batching, which allows
for the encryption of multiple messages in the same ciphertext. Much of
the related research has focused on RLWE relying on power-of-two cy-
clotomic polynomials. While it is possible to achieve efficient arithmetic
with such polynomials, one cannot exploit batching. Herein, the efficiency
of ring arithmetic underpinned by non-power-of-two cyclomotic polyno-
mials is analyzed and improved. Two methods for polynomial reduction
are proposed, one based on the Barrett reduction and the other on a
Montgomery representation. Speed-ups of up to 2.66 are obtained for the
reduction operation using an i7-5960X processor when compared with a
straightforward implementation of the Barrett reduction. Moreover, the
proposed methods are exploited to enhance homomorphic multiplication
of Fan-Vercauteren (FV) and Brakerski-Gentry-Vaikuntantahan (BGV)
encryption schemes, producing experimental speed-ups of up to 1.37.

Keywords: Polynomial Reduction, Number Theoretic Transform, Residue
Number Systems, Ring-Learning With Errors, Homomorphic Encryption

1 Introduction

There is an increasing conflict between the convenience provided by cloud ser-
vices and privacy concerns. Privacy can be achieved by encrypting data before
uploading it to the cloud. However, with traditional cryptosystems, one is not
able to process encrypted data [15], nullifying the benefits of cloud computing.
A solution to this problem is the application of FHE, which allows for the cre-
ation of malleable cryptograms [15]. Homomorphic operations can afterwards be

applied to these cryptograms. Despite its wide range of applicability, FHE has
seldom been applied in practice due to its low computational performance.

Most recent research on FHE has focused on improving its efficiency [23].
LWE [27] and its ring-variant RLWE [22] has been suggested in this context
as a framework for improving the complexity of FHE. The benefits brought
forth by RLWE are twofold. First, operations are executed in a cyclotomic ring,
and therefore benefit from its algebraic structure. Second, the plaintext space
is isomorphic to the Cartesian product of multiple smaller spaces, designated
batching slots, allowing for multiple messages to be encrypted and processed
in a single ciphertext in parallel. Most of the related research has focused on
cyclotomic rings of the form Z[X]/(XN + 1), for N a power of two, due to the
simple arithmetic associated with the resulting ring. However, they only allow
for a single batching slot. While RLWE modulo other cyclotomic polynomials,
providing for a large number of batching slots has been previously considered
[13, 28], it remains not used much because of its less efficient arithmetic. In [22],
Lyubashevsky et al. proposed algorithms using a multivariate/tensored represen-
tation of the elements of cyclotomic rings resulting in a more efficient arithmetic
in the general case than those using the classical univariate representation. The
implementations of their work [9, 24] are, at the best of our knowledges, the only
publicly available implementations optimized for general cyclotomic rings.

In this work we analyse and improve the arithmetic associated with the
univariate representation in general cyclotomic rings with efficient reduction al-
gorithms of same asymptotic complexities than those of [22]. Barrett reduction,
which is a generic technique to perform polynomial reduction, had been consid-
ered in [10] to perform such reductions. However, the algorithms used in [10] do
not take into account the characteristics of cyclotomic polynomials, and hence
are sub-optimal. Herein, the degree of the polynomials is reduced using cyclo-
tomic properties before applying Barrett’s algorithm, decreasing the complexity
of the reduction and leading to theoretical speed-ups of up to 2.06. We also
show that a Montgomery representation leads to more efficient reductions than
generic Barrett algorithms, leading to theoretical speed-ups of up to 2.63.

These gains have been confirmed in practice, with experimental speed-ups of
up to 1.95 and 2.55 for the improved Barrett and Montgomery reductions, respec-
tively, when compared with a straightforward Barrett algorithm in an i7-5960X
processor. Moreover we have tested the applicability of our algorithms to two of
the most currently used homomorphic encryption schemes, BGV [8] developed
in HELib [17] and FV [11] developped in SEAL 2.0 [20] resulting in speed-up
of up to 1.37 for homomorphic multiplication. These results should reduce the
performance differences between the univiate/multivariate representations and
therefore bring more flexibility to future implementations.

2 Background

Throughout the paper, φm(X) ∈ Z[X] will denote the m-th cyclotomic polyno-
mial of degree n = ϕ(m), where ϕ is Euler’s totient function. The ring R =

Z[X]/(φm(X)) is the main structure of R-LWE-based schemes such as FV and
BGV. An element of R can be thought of as a polynomial with integer coefficients
and a degree strictly smaller than n. Unless mentioned otherwise, polynomials
are represented in the power-basis {1, X, . . . Xn−1}. For a =

∑n−1
i=0 aiX i ∈ Z[X], we

denote ‖a‖∞ = max{|ai |, 0 6 i < n}. Finally, the underlying space for ciphertexts
is Rq = R/qR = Zq[X]/φm(X), which is composed of elements of R with coeffi-
cients reduced modulo q. The notation | · |q is used to denote the classical residue
modulo q in [0, q), while the centered residue in [−q/2, q/2) is denoted by [·]q.
Moreover b·c denotes flooring while b·e denotes rounding to the nearest integer.

2.1 Residue Number System (RNS)

In practice, the value of q underpinning Rq is chosen to be the product of
small different prime numbers q = q1 · · · qk . Therefore, thanks to the Chinese
Remainder Theorem (CRT), Rq splits into a cartesian product of smaller rings
through the following isomorphism:

RNSq=q1...qk :
�����
Rq → Rq1

× . . . × Rqk

a 7→ (a mod q1, . . . , a mod qk) (1)

The RNS exploits (1) to transfer the arithmetic modulo q of the coefficients to
k smaller arithmetics modulo each qi. Thus, better performance is achieved due
to smaller arithmetics and parallel computations over each Rqi .

2.2 Product of elements in Rq

Since the degree n of the polynomials is large in practice, the polynomial product
is a major bottleneck for the efficiency of R-LWE based schemes. However, when
n is close or equal to a power of two, it can be performed efficiently thanks to
the Number Theoretic Transform (NTT). Let N2 be the function defined over
N such that for any n ∈ N N2(n) is the smallest power of two greater than or
equal to n. In our context the products have a degree strictly smaller than 2n,
therefore we denote N = N2(2n). For a prime q, a primitive Nth-root of unity
ω ∈ Zq exists if and only if q ≡ 1 mod N . For a Zq equipped with ω, the following
ring isomorphism is verified:

NTTq,N,ω :
�����
Zq[X]/(XN − 1) → Zq[X]/(X − 1) × · · · × Zq[X]/(X − ωN−1)

a 7→ â =
(
a(1), a(ω), . . . , a(ωN−1)

) (2)

Once (2) is applied to obtain the NTT representation of polynomials, their prod-
uct can be performed coordinate-wise. The time-complexity of arithmetic be-
comes linear in N and the bottleneck changes to the evaluation of (2), as well
as of its inverse whose evaluation require O(N log(N)) multiplications in Zq by
state-of-the-art algorithms ([18], [21]). When the context is clear, we will denote
an NTT transformation of degree N by NTTN instead of NTTq,N,ω.

In order to efficiently compute the product of elements a and b of Rq, seen
as polynomials over Zq[X] of degree at most n− 1, one has to compute the NTT
representation of c = a × b of degree 2n − 2 through:

NTTN (c) = NTTN (a) � NTTN (b) (3)

where � denotes the component-wise multiplication in Zq. To obtain the value
of c = a × b ∈ Rq, a second step is needed, which consists of reducing the result
of (3) modulo φm(X). Notice that when m is a power of two (φm(X) = Xm/2+1),
one can use a negatively-wrapped convolution for the evaluation of the NTT and
its inverse [21]. This allows us to use an NTT of size N2(n) instead of N2(2n)
for the evaluation of (3) and also to recover the polynomial reduced modulo
Xm/2 + 1 at the end of (3) just with an inverse NTT of size N2(n). However, for
other values of m this method cannot be applied and a more complex reduction
has to be carried out after applying (3).

Barrett’s strategy for modular reduction over the integers [5] can be adapted
to polynomial modular arithmetic to reduce a polynomial c of degree n+α by φm

of degree n. The quotient of the Euclidean division bc/φmc is computed through
multiplications by precomputed constants and shifts. We present this strategy
in Algorithm 1. The performance of the algorithm is directly related to the size
of the polynomial to be reduced: the algorithm is more efficient when α is small.
By denoting ñ = N2(n) and A = N2(2α + 1) the cost of the algorithm is:

CNTT(N) + 2CNTT(ñ) + 2CNTT(A) + (ñ + A)MMultq

where CNTT(x) denotes the cost for evaluating (2) (or its inverse) of size x and
MMultq the cost of a modular multiplication modulo q. One may also notice that
Barrett’s reduction used in [10] uses NTT of size N = N2(2n) to perform the
second product while in fact it only requires NTT of size N2(n). For the sake of
completeness a proof of the correctness of Alg. 1 is given in Appendix A.1.

Algorithm 1 NTTBarr(P,Zq,φm): NTT based Barrett reduction in Zq[X], for a
prime q ≡ 1 mod N
Require: cNTT = NTTN (c) ∈ ZNq with deg(c) = n + α < 2n with q prime,

n = deg(φm), ñ = N2(n), A = N2(2α + 1); precomputed NTTñ(φm) and
NTTA(bXn+α/φmc).

Ensure: c mod (q,φm) in power-basis.
1: c ← NTT−1N (cNTT)
2: f ← bc/Xnc

3: r ← NTT−1A (NTTA(f) � NTTA(bXn+α/φmc))
4: r ′ ← br/Xαc

5: d ← NTT−1ñ (NTTñ(r ′) � NTTñ(φm))
6: c′ ← c mod X ñ − 1
7: return c′ − d

2.3 RNS variant of the FV and BGV Encryption Schemes

Fan and Vercauteren [11] have adapted Brakerski’s scale invariant FHE scheme
[7] to the RLWE framework. More recently, Bajard et al. have provided a full
RNS variant of FV [3]. We briefly recall how this RNS variant works.

We first need to introduce the two functions ξq : Rq → Rq1
× · · · × Rqk

and PRNS,q : Rq → Rk
q such that for any a ∈ Rq, ξq (a) = (|a · qi/q |qi)i∈[1,k]

and PRNS,q (a) = (|a · q/qi |q)i∈[1,k]. It is straightforward to notice that for any

(a, b) ∈ R2
q,

〈
ξq (a),PRNS,q (b)

〉
≡ ab mod q. This scalar product occurs in Rq,

and so it is composed of polynomial products.
In the context of the FV scheme, the secret-key s ∈ R is defined as a “small”

polynomial drawn from a distribution χkey. An encryption of m ∈ Rt corresponds
to a pair of polynomials ct = (c0, c1) ∈ R2 satisfying:

[c0 + c1 s]q = [bq/tc · [m]t + v]q (4)

where v is a noise term that is originally introduced during encryption (which
is related to a distribution χerr) and that grows as homomorphic operations
are applied. Decryption works correctly so long as this noise is below a certain
bound, which limits the amount of operations one can perform.

The homomorphic addition of two ciphertexts corresponds to the pairwise
addition of the ciphertexts’ polynomials. Regarding homomorphic multiplica-
tion, it is useful to see ciphertexts as polynomials of degree 1 with coefficients in
R. In this context, homomorphic multiplication takes place in two steps. First,

ct′
mult

←

([⌊
t
q c

1
0 c

2
0

⌉]
q
,

[⌊
t
q (c10 c

2
1 + c11 c

2
0)

⌉]
q
,

[⌊
t
q c

1
1 c

2
1

⌉]
q

)
is computed with a

Karatsuba like algorithm. During this procedure, the RNS representations of
the input polynomials are extended to bases with larger dynamic ranges so as to
compute the products over R instead of over Rq. Moreover, the division operation
is achievable using [3, Section 4.4]. Finally, one has to convert the three-element
ciphertext back to a two-element ciphertext, through a process called relineariza-
tion. This is done by multiplying ξq (ct′

mult
) by pseudo-encryptions of PRNS,q (s2)

(designated
−−→
rlk), and adding the result to the other two elements:

ctrelin ←

([
c0 +

〈
ξq (c2),

−−→
rlk0

〉]

q
,

[
c1 + 〈ξq (c2),

−−→
rlk1〉

]

q

)
∈ R2

q . (5)

The scheme introduced by Brakerski, Gentry and Vainkuntanathan [8] shares
many features of FV, and can be similarly adapted to the techniques in [3]. A
secret-key is also defined to be a “small” polynomial s ∈ Rq, and ciphertexts
correspond to pairs (c0, c1) ∈ R2, but messages are encrypted in the Least Sig-
nificant Bits (LSBs) of (6):

[c0 + c1 s]q = [[m]t + tv]q (6)

The change in the positioning of the message bits leads to simpler homo-
morphic multiplications. First, we compute the degree 2 ciphertext ct′

mult
←

([
c10 c

2
0

]
q
,

[
(c10 c

2
1 + c11 c

2
0)

]
q
,

[
c11 c

2
1

]
q

)
. Since operations are performed modulo q,

no RNS base extension is required. Afterwards, an operation similar to (5) is ap-
plied, so as to convert the three-element ciphertext to a classical two-element ci-
phertext. Finally, a noise management technique is applied to reduce the growth
rate of the norm of v in (6). This technique consists of scaling the ciphertext to
a smaller ring Rq′ with an appropriate rounding, and is performed in two steps:

δi ← t · [−ct/t]q/q′ for i = 0, 1
ct← ([q′/q · (c̃0 + δ0)]q′ , [q

′/q · (c̃1 + δ1)]q′)

In certain steps of the aforementioned schemes, one needs to add the result of
multiple polynomial products. In this case, it is possible to combine the modular
reduction of all products involved in the same sum, reducing the overall com-
putational complexity. First, (3) is computed for all products. Then, the NTT
representations of the products are added. Finally, a single polynomial reduction
method can be applied to the result.

2.4 Batching

A common way to improve the efficiency of RLWE schemes is to encrypt sev-
eral plaintexts in a single ciphertext, through a technique called batching [28].
Under some conditions, φm splits modulo t into ` distinct irreducible polynomi-
als f1, . . . , f` of degree n/`. This leads to the following ring isomorphism of the
plaintext space Rt : Rt � Zt [X]/(f1)×· · ·×Zt [X]/(f`). In this manner, ` plaintexts
m1, . . . ,m` can be compactly represented as a single polynomial m ∈ Rt . After-
wards m is encrypted and homomorphic operations applied to this ciphertext
operate on each slot individually. This technique is mostly used when evaluating
Boolean circuits, i.e. with t = 2, to pack `-bits in a single ciphertext. However,
since Xm/2 + 1 ≡ (X + 1)m/2 mod 2, this technique cannot be used when m is a
power of two. Thus the efficient arithmetic associated with power-of-two cyclo-
tomic polynomials has limited applicability.

3 Improving polynomial reduction modulo φm

In this section, we propose two efficient methods to compute polynomial re-
ductions. The first method takes advantage of the properties of the cyclotomic
polynomials to improve the efficiency of the Barrett algorithm. The second re-
duction rests on an adaptation of the Montgomery modular reduction [25] and
can be adapted for other polynomials besides cyclotomics.

3.1 Improving Barrett’s reduction for cyclotomic polynomials

As explained in section 2, the performance of Barrett’s algorithm is sensitive
to the difference between the degree of the polynomial to be reduced and that
of the polynomial we want to reduce by. The smaller the difference, the more

efficient the algorithm will be. Hence, herein we propose an efficient method to
reduce this difference.

Polynomials to be reduced modulo φm have a degree of at most 2n− 2. Let c
be such a polynomial. If c were reduced by a polynomial Qsp of degree n+α+1,
the difference between the degree of the polynomial and the degree of φm would
be reduced to α. However, in order to obtain the correct value of c mod φm in
the end, φm has to divide Qsp. For this reduction to be efficient, Qsp should
be sparse enough so that its reduction can be efficiently handled through few
operations in Zq. Thanks to the cyclotomic property

∏
d/m φd (X) = Xm − 1,

Qsp can be taken as the product of φm and some φd for d dividing m. Good
candidates can be found by recursively using the fact that if p is a prime not
dividing m′ then φm′ ·p (X) · φm′ (X) = φm′ (X p). If the polynomial Qsp is found in
this way with less than 2 recursions it has coefficients in {−1, 0, 1} since it will
correspond to a cyclotomic with at most two distinct odd prime factors. In this
case, the reduction modulo Qsp only requires shifts and additions in Zq and can
be done very efficiently.

In addition, when m < 2n − 2, c can initially be reduced by Xm − 1 with
2n − m − 1 additions in Zq. Since φm(X) |Qsp (X) |Xm − 1 the strategy remains
correct, and the complexity of the reduction by Qsp (X) is further reduced. Let
HW(Qsp) be the Hamming weight of Qsp. The cost of the reduction of c by
Qsp is (HW(Qsp) − 1)(m − deg(Qsp)) additions in Zq. At this point, we obtain
c′ = c mod Qsp (with deg(c′) ≤ n + α) and c′ ≡ c mod φm.

The final algorithm is depicted in Algorithm 2. It starts by recovering c in
power basis from the NTT representation outputted by (3). Then it consecutively
reduces c of degree 2n−2 by Xm−1 and the sparse polynomial Qsp. This allows to
recover c′ = c mod Qsp of degree n + α very efficiently. Afterwards, a procedure
identical to the one described in steps 2 to 7 in Alg. 1 is applied to c′ to get
c′′ = c mod φm.

Algorithm 2 modBtφm : NTT-based Barrett reduction in Zq[X], for q = q1 . . . qk ,
with prime integers qi, qi ≡ 1 mod N , N = N2(2n), ñ = N2(n) and A = N2(2α+1).
Require: cNTT = NTTN (c) with deg(c) 6 2n − 2
Ensure: c′′ = c mod φm in power-basis.
1: c ← NTT−1N (cNTT)
2: if m < 2n − 2 then
3: c ← c mod Xm − 1
4: c′ ← c mod Qsp . Reduction by Qsp of degree n + α + 1
5: f ← bc/Xnc

6: r ← NTT−1A (NTTA(f) � NTTA(bXn+α/φmc))
7: r ′ ← br/Xαc

8: d ← NTT−1ñ (NTTñ(r ′) � NTTñ(φm))
9: c′ ← c mod X ñ − 1

10: return c′ − d

The impact of this sparse reduction is illustrated in Table 1, where polyno-
mials Qsp are presented for different cyclotomic polynomials. Cyclotomics have
been chosen with a degree n = ϕ(m) close or equal to a power of two. The number
of batching slots ` associated with each cyclotomic is also presented. The degree
of Qsp is n+α+1 thus NTTs of size A = N2(2α+1) are required to compute the
first polynomial product in Alg. 2. This is in contrast with N = N2(2n) which
would have been the size required for the Barrett algorithm without using the
sparse reduction. In order to highlight the sparsity of Qsp we give HW(Qsp) which
is the number of non-zero coefficients of Qsp.

Complexity Since the complexity of computing multiplications in Zq is much
higher than additions, the cost of the reduction by the sparse polynomial can be
neglected. Moreover, with the RNS, each multiplication in Rq, with q = q1 . . . qk
can be decomposed into k independent and smaller multiplications. Therefore
the cost to reduce the polynomial c outputted by (3) is essentially k times the
cost of Alg. 1:

k (N log2(N) + 2A log2(A) + 2ñ log2(ñ) + A + ñ)

While the cost of the method by using directly Barrett’s algorithm, i.e. without
performing the reduction by the sparse polynomial, is:

k (3N log2(N) + 2ñ log2(ñ) + N + ñ)

Based on this analysis we also provide in Table 1 the theoretical speed-up
obtained with the use of the sparse reduction.

m n ` Qsp deg(Qsp) α HW(Qsp) A N Speed-up

3855 2048 128 φ3·5(X257) 2056 7 7 24 212 2.06
4369 4096 256 φ17(X257) 4112 15 17 25 213 2.05
13107 8192 512 φ3(X17·257) 8738 545 3 211 214 1.86
21845 16384 1024 φ5(X17·257) 17476 1091 5 212 215 1.86
32767 27000 1800 φ7(X31·151) 28086 1085 7 212 216 1.95
65535 32768 2048 φ3·5(X17·257) 34952 2183 7 213 216 1.85

Table 1. Sparse polynomials used for partial reduction with their related parameters.

3.2 NTT-based Montgomery’s reduction

We propose a Montgomery like reduction of a polynomial given in NTT repre-
sentation inspired by [4]. The bottleneck of our optimized Barrett algorithm is
the computation of the inverse NTT of size N of (3). Our Montgomery reduction
takes advantage of the presence of the NTT basis of size N/2 (seen as an RNS

basis in [4]) in the basis of size N allowing then to perform all the computations,
in particular the inverse NTT evaluation, in the basis of size N/2 instead of N .

The NTT representation of a polynomial of size N was defined in (2) as the
tuple of values {c mod X − ω j |0 ≤ j < N }. This representation can be seen as
a polynomial-RNS representation of c mod XN − 1 since XN − 1 =

∏
0≤ j<N (X −

ω j) mod q, with respect to the NTT-basis:

Bω,N = {|X − 1|q, |X − ω |q, . . . , |X − ωN−1 |q }

As XN − 1 splits in (XN/2 − 1)(XN/2 + 1) when N is even, half of the NTTN

representation of c corresponds to its NTTN/2 representation. Hence, the basis
Bω,N is split along even and odd powers of ω. We can then define two sub-bases
defining two polynomials:

B
(e)
ω,N = {[X − ω

2j |q, 1 ≤ j ≤ N/2} ; Ψ(e) = |
N/2∏
j=1

(X − ω2j) |q

B
(o)
ω,N = {|X − ω

2j+1 |q, 0 ≤ j ≤ N/2 − 1} ; Ψ(o) = |
N/2−1∏
j=0

(X − ω2j+1) |q
(7)

It is straightforward to notice that Ψ(e) ≡ XN/2 − 1 mod q and Ψ(o) ≡ XN/2 +

1 mod q. We also note that since N is a power of two, one has Ψ(o) ≡ φN mod q.
Thanks to Lemma 1, whose first point is a direct consequence of Lemma 2 in
[12], we can choose XN/2 + 1 as the Montgomery factor.

Lemma 1. Let φm be the m-th cyclotomic polynomial of degree n and N be the
smallest power of two greater than or equal to 2n. If m is not a power of two
then:

– there exists (U,V) ∈ Z[X]2 such that U (X)φm(X) + V (X)φN (X) = 1.
– for any prime p, φm is coprime with XN −1 in Zp. In particular φm is a unit

in Zp[X]/(φN).

One can extract from the coordinates of c in Bω,N the representation ĉ (e)

of c in B (e)
ω,N (resp. ĉ (o) in B (o)

ω,N). So, given ĉ (o) and ĉ (e), we can use the NTT
operator to get:

NTT−1N/2(ĉ (e)) = c mod (q, XN/2 − 1)

Definition 1. We define the following function, which takes in as input the
residues of the polynomial c (deg(c) < N) modulo a prime p:

modMongφm,Ψ
(o),p (c) =

c + φm × | − c/φm |Ψ(o)

Ψ(o) mod p. (8)

The modMongφm,Ψ
(o),p function defined in (8) is a classical Montgomery reduction

with factor Ψ(o) consisting in an exact polynomial division. It always outputs a
polynomial congruent to |c/Ψ(o) |φm but when deg(c) 6 N/2 + n − 1 the output
is exactly |c/Ψ(o) |φm .

Lemma 2. If deg(c) 6 N/2+n−1, then modMgφm,Ψ
(o),p (ĉ) = c/Ψ(o) mod (p,φm).

First the degree of the numerator in (8) is bounded max(deg(c), deg(φm) +
deg(Ψ(o))−1) 6 n+N/2−1. Thus, the degree of the resulting quotient is bounded
by n − 1 < N/2. Therefore, the output is |c/Ψ(o) |φm and the computation of (8)
can be made modulo XN/2 − 1, i.e. in an NTT representation of size N/2 when
using primes qi ≡ 1 mod N .

Algorithm 3 details the computation of (8). The following precomputations
are used therein:

Ŵ (o) : (−1/φm) mod (q,Ψ(o)) in base B (o)
ω,N

Ŷ (e) : (1/Ψ(o)) mod (q,Ψ(e)) in base B (e)
ω,N

Ẑ (e) : (φm/Ψ
(o)) mod (q,Ψ(e)) in base B (e)

ω,N

Algorithm 3 modMgφm,Ψ
(o) : NTT-based Montgomery reduction in Zq[X], for

q = q1 . . . qk , with prime integers qi, and qi ≡ 1 mod N2(2n)

Require: ĉ = NTTq,N (c) (ie c in base B (o)
ω,N ∪ B

(e)
ω,N), with N = N2(2n) and

deg(c) 6 2n − 2 < N/2 + n − 1.
Ensure: R = (c/Ψ(o)) mod (q,φm) in power-basis.
1: (ĉ (e), ĉ (o)) ← Split(ĉ) . Split the NTT coeff. wrt parity of indexes
2: Q̂(o) ← ĉ (o) � Ŵ (o)

3: Q̂(e) ← BaseConv(Q̂(o)) . base conversion from B (o)
ω,N to B (e)

ω,N

4: T̂ (e) ← ĉ (e) � Ŷ (e) + Q̂(e) � Ẑ (e)

5: R ← NTT−1N/2(T̂ (e))
6: return R

In line 4 of Alg. 3, we require an operator which takes in as input a vector
of coefficients in base B (o)

ω,N . This vector defines a unique polynomial c with
deg(c) < N/2. Then the operator must output the vector of coefficients of c in
base B (e)

ω,N . More precisely, the function BaseConv works as follows, for any c
with deg(c) < N/2:

BaseConv : (c(ω), c(ω3), . . . , c(ωN−1)) 7→ (c(1), c(ω2), . . . , c(ωN−2)) (modq).
(9)

In [4], (9) is computed with a classical Lagrange interpolation. Our context is
more specific, because the points in which polynomials are evaluated are powers
of a Nth root of unity ω. With this purpose, Alg. 4 implements such base con-
version by only using NTTs of degree N/2, with ω2 as a primitive N/2th root of
unity. The proof of correctness of Alg. 4 is given in Appendix A.3.

Complexity The total cost of Alg. 3 in terms of modular multiplications is:

k
(
3N2(n) log2(N2(n)) + 4N2(n)

)
One can find in Table 2 the predicted speed-up of the proposed Montgomery
reduction. Despite its better complexity, the Montgomery algorithm suffers from

Algorithm 4 BaseConv

Require: (c(ω), c(ω3), . . . , c(ωN−1)) mod qi, for deg(c) < N/2, N a power of 2
and ω a primitive Nth root of unity in Zq.

Ensure: (c(1), c(ω2), . . . , c(ωN−2)) mod q.
1: (c′0, c

′
1, . . . , c

′
N/2−1) ← NTT−1

N/2,ω2 (c(ω), c(ω3), . . . , c(ωN−1))
2: (p0, p1, . . . , pN/2−1) ← (c′0, c

′
1, . . . , c

′
N/2−1) � (1, ω−1, ω−2, . . . , ω−(N/2−1))

3: (r0, r1, . . . , rN/2−1) ← NTTN/2,ω2 (p0, p1, . . . , pN/2−1)
4: return (r0, r1, . . . , rN/2−1)

one main drawback which is the presence of the Montgomery factor in the output.
In the following section, modifications to the BGV and FV cryptosystems are
proposed to handle this factor.

m 3855 4369 13107 21845 32767 65535
n 2048 4096 8192 16384 27000 32768

Speed-up 2.62 2.62 2.63 2.63 2.63 2.63
Table 2. Theoretical speed-up of Alg. 3 when compared with Alg. 1

4 Adaptation of FV and BGV to the Montgomery
representation

In this section we show how the Montgomery representation impacts the BGV
and FV schemes, and propose modifications to handle these changes. For sim-
plicity, we denote by M the Montgomery factor XN/2 + 1 mod φm. Thanks to
Lemma 1 we also know that M−1 exists in R. We assume that ciphertexts c̃t are
given in Montgomery representation such that c̃t = (c0M, c1M). The conver-
sion to the Montgomery domain can be integrated in the encryption procedure
for increased efficiency, and the M factor can be removed during decryption
by applying a Montgomery reduction to [c̃0 + c̃1 s]q. The Montgomery reduc-
tion only impacts procedures involving multiplications in Rq by multiplying the
product by M−1. Therefore the Montgomery representation is stable with re-
spect to multiplication. Homomorphic additions are not affected by the change
in representation. Thus the only impact one has to consider is on homomorphic
multiplication. Moreover, we recall that the expansion factor of the ring R is the
quantity defined by δR = sup{‖ab‖∞/‖a‖∞‖b‖∞ (a, b) ∈ R − {0}}.

4.1 Impact of the Montgomery representation in FV

We note that the first step of the FV homomorphic multiplication corresponds to
an extension of the polynomials of the ciphertexts to a larger RNS basis, so that

multiplications are computed over R instead of Rq. In order to improve efficiency,
an approximate extension is used [3] and thus the norm of the polynomials is
bounded by q

2 (1 + ρ) for a parameter ρ > 0 [3]. A bound on the noise growth

of c̃tmult ←

([⌊
t
q Mc10 c

2
0

⌉]
q
,

[⌊
t
q M (c10 c

2
1 + c11 c

2
0)

⌉]
q
,

[⌊
t
q Mc11 c

2
1

⌉]
q

)
is given in

Proposition 1 whose proof can directly be derivated from the one of [3].

Proposition 1. Let (c̃0, c̃1, c̃2) = c̃tmult , r∞ =
1+ρ
2 (1+δR ‖ s‖∞)+δR ‖M ‖∞ and vi

be the inherent noise of cti. Then (c̃0+c̃1 s+c̃2 s2)M−1 ≡ ∆ [m1m2]t+ṽmult [q] with:

‖ ṽmult ‖∞ < δR t(δR ‖M−1‖∞r∞ + 1
2)(‖v1‖∞ + ‖v2‖∞) + δ

2 min ‖vi ‖∞ + δt |q |t (r∞ + 1)

+
δR ‖M

−1 ‖∞
2 (1 + δR ‖ s‖∞(1 + δR ‖ s‖∞)) + |q |t2 + 1. (10)

Now, we assume that we need to relinearize the ciphertext c̃tmult = (c̃0, c̃1, c̃2).
Before, the following dot products were computed over Rq: 〈ξq (c2), rlki〉, where

evk0 = [PRNS,q (s2) + −→a s + −→e]q and evk1 = [−−→a]q. The goal of relinearisation is
to obtain 〈ξq (c2),PRNS,q (s2)〉 ≡ c2 s

2 mod q with a limited increase of the noise.
Indeed, modulo q we can write:{

〈ξq (c2), evk0〉 ≡ c2 s
2 + 〈ξq (c2),−→a 〉s + 〈ξq (c2),−→e 〉 ≡ c2 s

2 + a′s + e′

〈ξq (c2), evk1〉 ≡ −〈ξq (c2),−→a 〉 ≡ −a′
(11)

Now, we need to obtain the Montgomery representation of the output of this
relinearization, i.e. a cryptogram like ((c2 s2 + a′s + e′)M,−Ma′).

When the Montgomery representation is used, c̃2 replaces c2 in (11). Hence,
the relinerization key has to be modified as follows:

evkM0 = [M2(PRNS,q (s2/M) + −→a s + −→e)]q, evkM1 = [−M2−→a]q

In the following equations, we simulate the effect of the Montgomery reduction by
introducing a factor M−1(modφm). Then, we can easily establish the following
equalities:

〈ξq (c̃2), evkM0〉M−1 =
(
c̃2 s

2M + 〈ξq (c̃2),−→a 〉sM2 + 〈ξq (c̃2),−→e 〉M2
)
M−1

= c̃2 s
2 + (a′′s + e′′)M

= (c2 s2 + a′′s + e′′)M

Similarly, we get 〈ξq (c̃2), evkM1〉M−1 = −a′′M. Hence, we have obtained the
Montgomery representation of the output of the relinearization step at no extra
cost - both computationally and in terms of noise growth.

4.2 Impact of the Montgomery representation in BGV

For the first step of the BGV homomorphic multiplication, no scaling opera-
tion is required, and hence noise is not affected by a change in representation.
Next, relinearization is applied. An analysis similar to the one in Section 4.1 can
be performed, with minor adaptations to the relinearization key. Similarly, one

concludes that the Montgomery reduction introduces no cost neither in terms of
computation nor in noise growth.

Finally, one needs to apply scaling so as to manage noise growth. We consider
the ciphertext (c̃0, c̃1) in Montgomery representation encrypting m. Let q′ | q
and δi = [−c̃i/t]q/q′ × t. Then the BGV-scaling function applied to c̃i outputs

ĉi = (c̃i + δi) ×
q′

q .

Lemma 3. If ‖[c0+c1 ·s]q ‖∞ <
q
2−δR ‖M

−1‖∞
q
q′

t
2 (1+δR ·‖ s‖∞) and q = q′ mod t,

then

[(ĉ0 + ĉ1 · s)M−1]q′ = [c0 + c1 · s]q mod t (12)

‖[(ĉ0 + ĉ1 · s)M−1]q′ ‖∞ 6
q′

q
‖[c0 + c1 · s]q ‖∞ + δR ‖M

−1‖∞
t
2

(1 + δR ‖ s‖∞)(13)

Proof. The proof is similar to the proof of lemma 4 of BGV original paper.
By definition of c̃i, we have:

[(c̃0 + c̃1 · s)M−1]q = [c0 + c1 · s]q = c0 + c1 · s − qu.

By definition of ĉi, we can write:

(ĉ0 + ĉ1 · s)M−1 = q′

q (c̃0 + c̃1 · s + δ0 + δ1 · s)M−1

=
q′

q (c0 + c1 · s) + q′

q (δ0 + δ1 · s)M−1

=
q′

q [c0 + c1 · s]q + q′u + q′

q (δ0 + δ1 · s)M−1.

(14)

Moreover, since ‖δi ‖∞ 6
qt
2q′ , we get the following bound ‖(δ0 + δ1 · s)M−1‖∞ 6

δR
qt
2q′ ‖M

−1‖∞(1+ δR ‖ s‖∞). Thus, from the above and the hypothesis on ‖[(c̃0 +
c̃1 · s)M−1]q ‖∞ = ‖[c0 + c1 · s]q ‖∞, we deduce that

‖(ĉ0 + ĉ1 · s)M−1 − q′u‖∞ < q′/2

and then that

(ĉ0 + ĉ1 · s)M−1 − q′u = [(ĉ0 + ĉ1 · s)M−1]q′

Hence, from this previous equality and by bounding the norm of last member of
(14), we obtain (13).

Finally, we get (12) by:

[(ĉ0 + ĉ1 · s)M−1]q′ = (ĉ0 + ĉ1 · s)M−1 − q′u
= (c̃0 + c̃1 · s)/M − qu mod t (ĉi = c̃i mod t; q = q′ mod t)
= c0 + c1 · s − qu mod t (def. of c̃)
= [c0 + c1 · s]q mod t

From this lemma, we can see that the Montgomery representation of the
ciphertext impacts the scaling by adding an extra factor δR ‖M

−1‖∞ to the last
term on the bound of the hypothesis and of (13).

4.3 Overall impact on noise growth

For both BGV and FV, the norms ‖M ‖∞, ‖M−1‖∞ and the expansion factor
δR are involved in the noise growth due to the scaling steps performed with
the Montgomery reduction. When m is a power of two, δR is equal to n. How-
ever, for other m it can be larger than that. Let us consider Fm : Q2n−2[X] →
Q[X]/(φm(X)), so that Fm(a) = a mod φm for every a ∈ Q[X] of degree lesser
than or equal to 2n − 2.

Lemma 4. Let m be a positive integer and let R = Z[X]/(φm(X)), with deg(φm) =
n. If δR denotes the expansion factor of the ring R, then δR ≤ n · ‖Fm‖∞ .

These three parameters are given in Table 3 for the different cyclotomic
polynomials considered in this paper. Assuming that distributions χkey and χerr
output elements whose infinite norms are bounded by Bkey and Berr = 6σerr ,
we analyse which depth can be reached in a multiplicative tree.

FV : The initial noise of a ciphertext is at most Vinit = Berr (1 + 2δBkey) [11].

We recall that r∞ =
1+ρ
2 (1 + δRBkey) + δR ‖M ‖∞, the output of a tree of depth L

has a noise bounded by CL
1 V + LCL−1

1 C2 (cf. [6], Lem. 9) with:

C1 = 2δR t(δR ‖M−1‖∞r∞ + 1
2) + δR

2

C2 = δRt |q |t (r∞ + 1) + δR ‖M−1‖∞
1+δRBkey (1+δBkey)

2 +
|q |t
2 + 1

+k (1 + δRBkey (1 + δRBkey)) + δR kBerr2ν+1

We denote by Lmax = max{L ∈ N | CL
1 V + LCL−1

1 C2 6 Bdec } the depth allowed
by the homomorphic multiplication where Bdec corresponds to the decryption
bound given by the full RNS version of FV [3].

BGV : As long as a ciphertext satisfies the condition on Lemma 3, one can
perform a scaling operation and thus an homomorphic multiplication. Initially
‖c0+c1 s‖∞ 6 Vinit = t/2+tBerr (2δRBkey+1). By assuming that after each scaling,
the size of q is reduced by ω bits and let lω,q = dlogω qe, then the growth of the
size of c0 + c1 s, denoted V , after one multiplication can be expressed with:

q′

q (δRV2 + Brelin) + δR ‖M−1‖∞t 1+δRBkey

2

where Brelin =
δR
2 `ω,qωBerr Bkey represents the noise caused by the relinearisa-

tion step.
In Table 3 we present the maximal theoretical depths for BGV and FV with

or without the use of the Montgomery reduction. For these computations we
have taken parameters Bkey = 1, σerr = 2

√
n and a number k of 62-bits moduli

to get the largest size for q ensuring at least 80-bits of security according to [2].
We notice that the depths of BGV are almost unchanged with the usage of

the Montgomery reduction. However for FV the depths are far smaller with a
Montgomery representation. This behavior has been confirmed in practice.

m n k ‖M ‖∞ ‖M
−1‖∞ δR LBGV LM

BGV
LFV LM

FV
4369 4096 2 1 1 35n 1(1) 1(1) 1(4) 1(3)
13107 8192 5 2 1 205n 4(4) 4(4) 6(17) 4(10)
21845 16384 11 2 1 739n 10(10) 6(10) 13(40) 8(22)
32767 27000 18 1 9 2621n 8(17) 7(17) 19(66) 12(39)
65535 32768 22 4 1 9886n 7(21) 7(21) 22(80) 14(45)

Table 3. Theoretical depths with and without Montgomery reduction. Values in paren-
thesis are the depths observed in practice.

4.4 Mixing Optimized Barrett and Montgomery reductions

Considering the non-negligible impact of the Montgomery representation on the
multiplicative depth of FV, a more robust strategy for this cryptosystem corre-
sponds to a mixed Barrett/Montgomery approach. Alg. 2 is used during the first
stage of homomorphic multiplication, with ciphertexts not exploiting a Mont-
gomery representation. This avoids the noise growth caused by the Montgomery
factor. Nonetheless, the Montgomery reduction can still be used during the re-
linearization stage, since we have seen that this does not cause a larger noise
growth. To obtain a valid result, the relinearisation key needs to be modified,
by replacing the factor M2 of the Montgomery approach by M.

5 Experimental Results

The proposed methods for polynomial reduction were implemented using C++,
and compiled with gcc using the optimization flag -O3. All the experimental
results presented herein were measured on an i7-5960X, running at 3.0 GHz
with 32 GB of main memory. No parallelism was exploited.

In Figure 1, one can find the execution timings of polynomial reduction, using
NFL for power-of-two cyclotomics [1]; the unoptimized and optimized Barrett
reductions and the Montgomery reduction for non-power-of-two cyclotomics. In
order to highlight the gain brought by our algorithms compare to generic ones we
also compare with NTL’s reduction using preconditioning [16]. All timings were
normalized based on the number of batching slots `, and executed for a single
moduli of 62-bits. One find the straightforward application of Barrett reduction,
to be more efficient than the preconditioned methods employed in the NTL li-
brary. Moreover, speed-ups of up to 1.95 and 2.55 were achieved for the optimized
Barrett and Montgomery algorithms when compared with the unoptimized Bar-
rett reduction. The figure suggests that using power-of-two cyclotomics is not
scalable with respect to the throughput. In contrast, the remaining approaches
present very little variation when considering the execution timing per batching
slot for the different m given in Table 3. It should be noted that using larger
values of m enables FHE parameters with a larger multiplicative depth.

The aforementioned reduction methods were used to implement the homo-
morphic multiplication operations of the FV and BGV schemes. One can find in

0 1 2 3 4 5 6 7

·104

100

101

102

103

m

T
/`

[µ
s]

NTL
Unoptimized Barrett
Optimized Barrett

Montgomery
NFL

Fig. 1. Execution time per batching slot T/`[µs] for multiple reduction strategies and
mth cyclotomic polynomials. The y-axis is in logarithmic scale

Figures 2 and 3 the execution times of the homomorphic multiplication of two
freshly encrypted ciphertexts for FV and BGV, respectively with parameters
given in Table 3. The experimental results for NFL are omitted due to its low
performance with respect to the timing per batching slot.

Unlike with Figure 1, the execution time of homomorphic multiplication in-
creases significantly with increasing m. This trend is explained by the relineariza-
tion procedure, which requires a number of NTTs that increases quadratically
with log2 q. Nevertheless, the employed reduction procedure plays a preponder-
ant role in the efficiency of the homomorphic multiplication. Indeed, one achieves
speed-ups of up to 1.37 and 1.24 when comparing the homomorphic multipli-
cation exploiting the optimized Barrett reduction with the one exploiting the
unoptimized Barrett method for the FV and BGV schemes, respectively. Since
with the mixed Barrett/Montgomery approach, required by the FV scheme, one
is not able to fully take advantage of the gains brought forth by the Montgomery
representation, one achieves speed-ups similar to those of the optimized Barrett
reduction. In contrast, for BGV, one can exploit the Montgomery representation
throughout the whole procedure, leading to speed-ups of up to 1.32.

The speed-up of the proposed methods decreases as the degree n of the cy-
clotomic, and thus log2 q, get larger due to the increasing complexity of the
relinearization procedure. This suggests that they are most beneficial when one
needs to homomorphically evaluate small circuits. Since most of practical appli-
cations of FHE [14, 19, 26] have circuits with small depth, the proposed methods
have a wide range of applicability.

Conclusion

In this paper, the arithmetic of non-power-of-two cyclotomics has been consid-
ered and improved. Two methods for polynomial reduction have been proposed:

0 1 2 3 4 5 6 7

·104

0

500

1,000

1,500

2,000

lo
g
2
(q

)
=

12
4

lo
g
2
(q

)
=

31
0

lo
g
2
(q

)
=

68
2

lo
g
2
(q

)
=

11
16

lo
g
2
(q

)
=

13
6
4

m

T
/`

[µ
s]

Unoptimized Barrett
Optimized Barrett

Barrett/Montgomery

Fig. 2. Execution time per batching slot
T/`[µs] for the homomorphic multiplica-
tion operation of FV with several reduc-
tion strategies and mth cyclotomic poly-
nomials.

0 1 2 3 4 5 6 7

·104

0

200

400

600

800

1,000

1,200

lo
g
2
(q

)
=

1
24

lo
g
2
(q

)
=

31
0

lo
g
2
(q

)
=

68
2

lo
g
2
(q

)
=

1
11

6

lo
g
2
(q

)
=

1
3
64

m

T
/`

[µ
s]

Unoptimized Barrett
Optimized Barrett

Montgomery

Fig. 3. Execution time per batching slot
T/`[µs] for the homomorphic multiplica-
tion operation of BGV with several reduc-
tion strategies and mth cyclotomic poly-
nomials.

one based on the Barrett reduction and the other on a Montgomery represen-
tation. The optimized Barrett algorithm does not offer a better computational
complexity than the Montgomery reduction. However, since it does not require
changes in the representation of ciphertexts, it provides for a slower noise growth,
making it more amenable to application in the FV homomorphic scheme than
the Montgomery approach. In contrast, the Montgomery approach is more suit-
able for the BGV scheme. Moreover, since the Montgomery reduction does not
rely on the properties of cyclomic polynomials, it can be used on schemes relying
on other kinds of polynomials. Experimental results have shown the proposed
methods to be more efficient than those employed in the NTL library. Further-
more, speed-ups of up to 1.95 and 2.55 have been obtained in an i7-5960X when
comparing the optimized Barrett and Montgomery reductions with the unopti-
mized Barrett reduction, respectively. Finally, the polynomial reductions have
been incorporated into the homomorphic multiplication procedures of FV and
BGV, producing speed-ups of up to 1.37.

References

1. Carlos Aguilar-Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-Olivier
Killijian, and Tancrède Lepoint. Topics in Cryptology - CT-RSA 2016: The Cryp-
tographers’ Track at the RSA Conference 2016, San Francisco, CA, USA, February
29 - March 4, 2016, Proceedings, chapter NFLlib: NTT-Based Fast Lattice Library,
pages 341–356. Springer International Publishing, Cham, 2016.

2. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
Learning with Errors. Journal of Mathematical Cryptology, 9:169–203, October
2015.

3. Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca. A Full
RNS Variant of FV like Somewhat Homomorphic Encryption Schemes. Selected
Areas in Cryptography - SAC, 2016.

4. Jean-Claude Bajard, Laurent Imbert, and Christophe Negre. Arithmetic Opera-
tions in Finite Fields of Medium Prime Characteristic Using the Lagrange Repre-
sentation. IEEE Transactions on Computers, 55:1167–1177, 2006.

5. P. Barrett. Implementing the Rivest Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor. In Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of
Lecture Notes in Computer Science, pages 311–323. Springer, 1986.

6. JoppeW. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved Security
for a Ring-Based Fully Homomorphic Encryption Scheme. In Martijn Stam, editor,
Cryptography and Coding, volume 8308 of Lecture Notes in Computer Science,
pages 45–64. Springer Berlin Heidelberg, 2013.

7. Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In In Advances in Cryptology - Crypto 2012, volume 7417 of
Lecture, 2012.

8. Zvika Brakerski, Vinod Vaikuntanathan, and Craig Gentry. Fully homomorphic
encryption without bootstrapping. In In Innovations in Theoretical Computer
Science, 2012.

9. Eric Crockett and Chris Peikert. λ◦λ: Functional lattice cryptography. Cryptology
ePrint Archive, Report 2015/1134, 2015. http://eprint.iacr.org/2015/1134.

10. Wei Dai and Berk Sunar. cuHE: A Homomorphic Encryption Accelerator Library,
pages 169–186. Springer International Publishing, Cham, 2016.

11. Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic
Encryption. IACR Cryptology ePrint Archive, 2012.

12. Michael Filaseta. On coverings of the integers associated with an irreducibility
theorem of A. Schinzel. Number theory for the millennium, II (Urbana, IL, 2000),
A K Peters, Natick, MA, 2002, 1-24.

13. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic Evaluation of the
AES Circuit, pages 850–867. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

14. Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In ICML, volume 48 of JMLR Workshop
and Conference Proceedings, pages 201–210. JMLR.org, 2016.

15. Sigrun Goluch. The development of homomorphic cryptography. Master’s thesis,
Vienna University of Technology, Austria, 2011.

16. Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-Davidowitz. Imple-
menting bp-obfuscation using graph-induced encoding. Cryptology ePrint Archive,
Report 2017/104, 2017. http://eprint.iacr.org/2017/104.

17. Shai Halevi and Victor Shoup. Algorithms in helib. In CRYPTO, pages 554–571.
Springer, 2014.

18. David Harvey. Faster arithmetic for number-theoretic transforms. CoRR,
abs/1205.2926, 2012.

19. Alhassan Khedr, P. Glenn Gulak, and Vinod Vaikuntanathan. SHIELD: scal-
able homomorphic implementation of encrypted data-classifiers. IACR Cryptology
ePrint Archive, 2014:838, 2014.

20. Kim Laine and Rachel Player. Simple encrypted arithmetic library - seal (v2.0).
Technical report, September 2016.

21. Patrick Longa and Michael Naehrig. Speeding up the Number Theoretic Transform
for Faster Ideal Lattice-Based Cryptography, pages 124–139. Springer International
Publishing, Cham, 2016.

22. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learn-
ing with Errors over Rings, pages 1–23. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2010.

23. Paulo Martins and Leonel Sousa. Enhancing Data Parallelism of Fully Homomor-
phic Encryption, pages 194–207. Springer International Publishing, Cham, 2017.

24. Christoph M. Mayer. Implementing a toolkit for ring-lwe based cryptography in
arbitrary cyclotomic number fields. Cryptology ePrint Archive, Report 2016/049,
2016. http://eprint.iacr.org/2016/049.

25. Peter L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44:519–521, 1985.

26. Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? In Proceedings of the 3rd ACM Workshop on Cloud Com-
puting Security Workshop, CCSW ’11, pages 113–124, New York, NY, USA, 2011.
ACM.

27. Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory
of Computing, STOC ’05, pages 84–93, New York, NY, USA, 2005. ACM.

28. N. P. Smart and F. Vercauteren. Fully homomorphic simd operations. Designs,
Codes and Cryptography, 71(1):57–81, 2014.

A Proofs

A.1 Correctness of Alg. 1

Since ring Fq[X] is Euclidean, we can write Euclidean division of c by Φm, with
a unique remainder r of degree at most n−1: c = bc/ΦmcΦm + r . Let a, b > 0 be
integers. From the previous equation we get the following equivalent equations
over the field of rational fractions of Fq[X]:

Xn+a

Φm
· c
Xn−b =

(⌊
c
Φm

⌋
+ r
Φm

)
· Xa+b

⇔ (
⌊
Xn+a

Φm

⌋
+ r1
Φm

) · (
⌊

c
Xn−b

⌋
+

r2
Xn−b) = (

⌊
c
Φm

⌋
+ r
Φm

) · Xa+b

⇔
⌊
Xn+a

Φm

⌋
·

⌊
c

Xn−b

⌋
+ ra + rα+b + r ′ = (

⌊
c
Φm

⌋
+ r
Φm

) · Xa+b

⇔

⌊
bXn+a/Φmc ·bc/Xn−bc

Xa+b

⌋
Xa+b + r ′′ + ra + rα+b + r ′ = (

⌊
c
Φm

⌋
+ r
Φm

) · Xa+b

⇔

⌊
bXn+a/Φmc ·bc/Xn−bc

Xa+b

⌋
+

r ′′+ra+rα+b+r
′

Xa+b =
⌊

c
Φm

⌋
+ r
Φm

.

Furthermore, deg(r1), deg(r2) < n, deg(ra) < a, deg(Rα+b) < α + b, deg(R′) < 0,
and deg(R′′) < a+b. By choosing b > 0 and a > α, the right term of left member
of last equation above have a degree smaller than 0. In this case, we obtain an
equality between the two floored polynomials. So, we take b = 0 and a = α,
and we get that b c

Φm
c is equal to the flooring of the left part of last equation,

which is precisely what Alg. 1 computes. As the product bXn+α/Φmc · bc/Xnc

is of degree strictly smaller than 2α + 1, the computation can be done with an
NTT of size A = N2(2α + 1).

To finish, we notice that the result of the computation of r = c−bc/Φmc×Φm

has a degree strictly smaller than n. Moreover, the polynomial c′ at line 5 is
nothing but bc/Φmc ×Φm mod X ñ − 1. Indeed, the reduction modulo X ñ − 1 is a
consequence of the NTT based polynomial product in dimension ñ. Thus, at the
end we have that c′ − d = (c − bc/Φmc ×Φm) mod (X ñ − 1) = c mod Φm. The
last equality holds precisely because the degree of c mod Φm is strictly smaller
than ñ.

A.2 Proof of Lemma 1

The first point is a direct consequence from Lemma 2 in [12]. Since m is not a
power of two, m cannot divide N . By denoting m = 2rm′ with m′ > 1 an odd
integer we have n = 2r−1ϕ(m′), thus 2n = 2rϕ(m′) and then if N divides m,
N2(ϕ(m′)) = 1 which is not possible since m′ > 3. Therefore N and m do not
divide each others and we can apply Lemma 2 from [12].

Let α be a root of φm in the algebraic closure of Zp. If α is also a root of XN−1
then αN = 1, since α is of order m by definition of φm it implies that m divide N
which is impossible since N is a power of two and m is not. So, φm and XN −1 are
coprime on the algebraic closure of Zp thus in Zp. The second point comes from
Bezout equality in Zp and from the fact that XN−1 ≡ (XN/2−1)(XN/2+1) mod p.

A.3 Correctess of Alg. 4

First we notice that since c is a polynomial of degree smaller than N/2 we have
(c(ω), . . . , c(ωN−1)) = NTTN/2,ω2 (ξN/2,ω (c)) where ξN/2,ω (c0, c1, . . . , cN/2−1) =
(c0, c1ω, . . . , cN/2−1ωN/2−1). Therefore the polynomial c′ recovered at the first
line of Alg. 4 is nothing but ξN/2,ω (c). The second line of the algorithm is just
the computation of ξN/2,ω−1 (c′) to recover c from c′. Once c recovered we just
need to compute and return NTTN/2,ω2 (c) which is precisely the final step of the
algorithm.

A.4 Proof of Lemma 4

Let a and b two elements of R−{0}. They naturally embed in Zn−1[X] ⊂ Q2n−2[X].
We can write ‖ab‖∞ ≤ n‖a‖∞‖b‖∞. As the product ab has degree at most
2n − 2 with coefficients in Z, it belongs to Q2n−2[X]. Since Fm is a linear map
between two vector spaces of finite dimension it is continuous, then we obtain
‖Fm(ab)‖∞ ≤ ‖Fm‖∞ · ‖ab‖∞ ≤ n · ‖Fm‖∞ · ‖a‖∞‖b‖∞ .

