C. Goh, D. Milburn, and M. Gerstein, Conformational changes associated with protein???protein interactions, Current Opinion in Structural Biology, vol.14, issue.1, pp.104-109, 2004.
DOI : 10.1016/j.sbi.2004.01.005

R. Grünberg, J. Leckner, and M. Nilges, Complementarity of Structure Ensembles in Protein-Protein Binding, Structure, vol.12, issue.12, pp.2125-2136, 2004.
DOI : 10.1016/j.str.2004.09.014

M. Lensink and R. Méndez, Recognition-induced Conformational Changes in Protein-Protein Docking, Current Pharmaceutical Biotechnology, vol.9, issue.2, pp.77-86, 2008.
DOI : 10.2174/138920108783955173

J. Chan, D. Flatters, D. Rodrigues-lima, J. Yan, K. Thalassinos et al., Comparative analysis of interactions of RASSF1-10, Advances in Biological Regulation, vol.53, issue.2, pp.190-201, 2013.
DOI : 10.1016/j.jbior.2012.12.001

J. Dairou, D. Flatters, A. Chaffotte, B. Pluvinage, E. Sim et al., -acetyltransferase 2 (MLNAT2): A biochemical and computational study, FEBS Letters, vol.14, issue.7, pp.1780-1788, 2006.
DOI : 10.1110/ps.041163505

URL : https://hal.archives-ouvertes.fr/halshs-00459575

H. Berman, T. Battistuz, T. Bhat, W. Bluhm, P. Bourne et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

A. Altschul, T. Madden, A. Schäffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

J. Thompson, D. Higgins, and T. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

C. Yanover, N. Vanetik, M. Levitt, R. Kolodny, and C. Keasar, Redundancy-weighting for better inference of protein structural features, Bioinformatics, vol.30, issue.16, pp.2295-2301, 2014.
DOI : 10.1093/bioinformatics/btu242

M. Kosloff and R. Kolodny, Sequence-similar, structure-dissimilar protein pairs in the PDB, Proteins: Structure, Function, and Bioinformatics, vol.32, issue.Database issue, pp.891-902, 2008.
DOI : 10.1002/prot.21770

A. Armon, D. Graur, and N. Ben-tal, ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information, Journal of Molecular Biology, vol.307, issue.1, pp.447-463, 2001.
DOI : 10.1006/jmbi.2000.4474

J. Gorodkin, H. Staerfeldt, O. Lund, and S. Brunak, MatrixPlot: visualizing sequence constraints, Bioinformatics, vol.15, issue.9, pp.769-770, 1999.
DOI : 10.1093/bioinformatics/15.9.769

URL : https://academic.oup.com/bioinformatics/article-pdf/15/9/769/9732080/150769.pdf

A. Konagurthu, J. Whisstock, P. Stuckey, and A. Lesk, MUSTANG: A multiple structural alignment algorithm, Proteins: Structure, Function, and Bioinformatics, vol.365, issue.3, pp.559-574, 2006.
DOI : 10.1042/bj20011631

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.63.9541

S. Léonard, A. Joseph, N. Srinivasan, J. Gelly, and A. De-brevern, mulPBA: an efficient multiple protein structure alignment method based on a structural alphabet, Journal of Biomolecular Structure and Dynamics, vol.48, issue.4, pp.661-668, 2014.
DOI : 10.1021/ci800178a

P. Burra, Y. Zhang, A. Godzik, and B. Stec, Global distribution of conformational states derived from redundant models in the PDB points to non-uniqueness of the protein structure, Proceedings of the National Academy of Sciences, vol.104, issue.20, pp.10505-10510, 2009.
DOI : 10.1073/pnas.0700329104

A. Monzon, C. Rohr, M. Fornasari, and G. Parisi, CoDNaS 2.0: a comprehensive database of protein conformational diversity in the native state, Database, vol.2016, p.38, 2016.
DOI : 10.1093/database/baw038

W. Scott and S. Straus, Determining and visualizing flexibility in protein structures, Proteins: Structure, Function, and Bioinformatics, vol.398, issue.Suppl 2, pp.820-826, 2015.
DOI : 10.1038/17969

A. Monzon, E. Juritz, M. Fornasari, and G. Parisi, CoDNaS: a database of conformational diversity in the native state of proteins, Bioinformatics, vol.29, issue.19, pp.2512-2514, 2013.
DOI : 10.1093/bioinformatics/btt405

T. Gaillard, B. Schwarz, Y. Chebaro, R. Stote, and A. Dejaegere, Protein Structural Statistics with PSS, Journal of Chemical Information and Modeling, vol.53, issue.9, pp.2471-2482, 2013.
DOI : 10.1021/ci400233j

URL : https://hal.archives-ouvertes.fr/hal-00868690

T. Gaillard, R. Stote, and A. Dejaegere, PSSweb: protein structural statistics web server, Nucleic Acids Research, vol.44, issue.W1, pp.401-405, 2016.
DOI : 10.1093/nar/gkw332

URL : https://hal.archives-ouvertes.fr/hal-01445474

R. Unger, D. Harel, S. Wherland, and J. Sussman, A 3D building blocks approach to analyzing and predicting structure of proteins, Proteins: Structure, Function, and Genetics, vol.5, issue.4, pp.355-373, 1989.
DOI : 10.1080/07391102.1988.10506425

A. Camproux, P. Tuffery, J. Chevrolat, J. Boisvieux, and S. Hazout, Hidden Markov model approach for identifying the modular framework of the protein backbone, Protein Engineering, Design and Selection, vol.12, issue.12, pp.1063-1073, 1999.
DOI : 10.1093/protein/12.12.1063

A. Pandini, A. Fornili, F. Fraternali, and J. Kleinjung, GSATools: analysis of allosteric communication and functional local motions using a structural alphabet, Bioinformatics, vol.29, issue.16, pp.2053-2055, 2013.
DOI : 10.1093/bioinformatics/btt326

A. Camproux, R. Gautier, and P. Tuffery, A hidden markov model derivated structural alphabet for proteins, J Mol Biol, vol.339, pp.561-605, 2004.

A. De-brevern, C. Etchebest, and S. Hazout, Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks, Proteins: Structure, Function, and Genetics, vol.7, issue.3, pp.271-287, 2000.
DOI : 10.1007/BF02337561

URL : https://hal.archives-ouvertes.fr/inserm-00132821

A. De-brevern, A. Bornot, P. Craveur, C. Etchebest, and J. Gelly, PredyFlexy: flexibility and local structure prediction from sequence, Nucleic Acids Research, vol.40, issue.W1, pp.317-322, 2012.
DOI : 10.1093/nar/gks482

URL : https://hal.archives-ouvertes.fr/inserm-00750270

R. Gautier, A. Camproux, and P. Tufféry, SCit: web tools for protein side chain conformation analysis, Nucleic Acids Research, vol.32, issue.Web Server, pp.508-511, 2004.
DOI : 10.1093/nar/gkh388

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC441526

F. Guyon, A. Camproux, J. Hochez, and P. Tufféry, SA-Search: a web tool for protein structure mining based on a Structural Alphabet, Nucleic Acids Research, vol.32, issue.Web Server, pp.545-548, 2004.
DOI : 10.1093/nar/gkh467

A. Pandini, L. Bonati, F. Fraternali, and J. Kleinjung, MinSet: a general approach to derive maximally representative database subsets by using fragment dictionaries and its application to the SCOP database, Bioinformatics, vol.23, issue.4, pp.515-516, 2007.
DOI : 10.1093/bioinformatics/btl637

P. Deschavanne and P. Tufféry, Enhanced protein fold recognition using a structural alphabet, Proteins: Structure, Function, and Bioinformatics, vol.32, issue.Web Server issu, pp.129-137, 2009.
DOI : 10.1093/oxfordjournals.molbev.a026048

P. Craveur, A. Joseph, J. Esque, T. Narwani, F. Noël et al., Protein flexibility in the light of structural alphabets, Frontiers in Molecular Biosciences, vol.48, issue.10, pp.20-26075209, 2015.
DOI : 10.1021/ci800178a

Q. Dong, K. Wang, B. Liu, and X. Liu, Characterization and Prediction of Protein Flexibility Based on Structural Alphabets, BioMed Research International, vol.5, issue.3, pp.4628025-27660756, 2016.
DOI : 10.1002/prot.20815

A. Pandini and A. Fornili, Using Local States To Drive the Sampling of Global Conformations in Proteins, Journal of Chemical Theory and Computation, vol.12, issue.3, pp.1368-1379, 2016.
DOI : 10.1021/acs.jctc.5b00992

S. Mahajan, A. De-brevern, B. Offmann, and N. Srinivasan, Correlation between local structural dynamics of proteins inferred from NMR ensembles and evolutionary dynamics of homologues of known structure, Journal of Biomolecular Structure and Dynamics, vol.113, issue.5, pp.751-758, 2014.
DOI : 10.1021/jp810659u

URL : https://hal.archives-ouvertes.fr/inserm-00926204

L. Regad, F. Guyon, J. Maupetit, P. Tuffery, and A. Camproux, A Hidden Markov Model applied to the protein 3D structure analysis, Computational Statistics & Data Analysis, vol.52, issue.6, pp.3198-3207, 2008.
DOI : 10.1016/j.csda.2007.09.010

A. Camproux and P. Tuffery, Hidden Markov Model-derived structural alphabet for proteins: The learning of protein local shapes captures sequence specificity, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1724, issue.3, pp.394-403, 2005.
DOI : 10.1016/j.bbagen.2005.05.019

L. Regad, J. Martin, and A. Camproux, Identification of non random motifs in loops using a structural alphabet, 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, pp.28-29, 2006.
DOI : 10.1109/CIBCB.2006.331017

L. Regad, J. Martin, G. Nuel, and A. Camproux, Mining protein loops using a structural alphabet and statistical exceptionality, BMC Bioinformatics, vol.11, issue.1, p.75, 2010.
DOI : 10.1186/1471-2105-11-75

URL : https://hal.archives-ouvertes.fr/inserm-00656194

J. Martin, L. Regad, H. Lecornet, and A. Camproux, Structural deformation upon protein-protein interaction: A structural alphabet approach, BMC Structural Biology, vol.8, issue.1, pp.12-18307769, 2008.
DOI : 10.1186/1472-6807-8-12

URL : http://doi.org/10.1186/1472-6807-8-12

J. Baussand and A. Camproux, Deciphering the shape and deformation of secondary structures through local conformation analysis, BMC Structural Biology, vol.11, issue.1, p.21284872, 2011.
DOI : 10.1186/1472-6807-11-9

A. Lamiable, P. Thevenet, and P. Tufféry, A critical assessment of hidden markov model sub-optimal sampling strategies applied to the generation of peptide 3D models, Journal of Computational Chemistry, vol.30, issue.2, pp.2006-2016, 2016.
DOI : 10.1093/bioinformatics/btt618

A. Lamiable, P. Thévenet, J. Rey, M. Vavrusa, P. Derreumaux et al., structure prediction for linear peptides in solution and in complex, Nucleic Acids Research, vol.44, issue.W1, pp.449-454, 2016.
DOI : 10.1093/nar/gkw329

URL : https://hal.archives-ouvertes.fr/hal-01497974

P. Choong and A. Nadesapillai, Urokinase Plasminogen Activator System, Clinical Orthopaedics and Related Research, vol.415, pp.46-58, 2013.
DOI : 10.1097/01.blo0000093845.72468.bd

U. Reuning, V. Magdolen, O. Wilhelm, K. Fischer, V. Lutz et al., Multifunctional potential of the plasminogen activation system in tumor invasion and metastasis (review)., International Journal of Oncology, vol.13, pp.893-1799, 1998.
DOI : 10.3892/ijo.13.5.893

R. Shapiro, J. Duquette, D. Roses, I. Nunes, M. Harris et al., Induction of primary cutaneous melanocytic neoplasms in urokinase-type plasminogen activator (uPA)-deficient and wild-type mice: cellular blue nevi invade but do not progress to malignant melanoma in uPA-deficient animals, Cancer Research, vol.56, pp.3597-3604, 1996.

A. Hussein, H. Borrel, A. Geneix, C. Petitjean, M. Regad et al., PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins, Nucleic Acids Research, vol.43, issue.W1, pp.436-442, 2015.
DOI : 10.1093/nar/gkv462

URL : http://doi.org/10.1093/nar/gkv462

Y. Cho, S. Gorina, P. Jeffrey, and N. Pavletich, Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations, Science, vol.265, issue.5170, pp.346-355, 1994.
DOI : 10.1126/science.8023157

K. Iwabuchi, B. Li, H. Massa, B. Trask, T. Date et al., Stimulation of p53-mediated Transcriptional Activation by the p53-binding Proteins, 53BP1 and 53BP2, Journal of Biological Chemistry, vol.16, issue.40, pp.26061-26068, 1998.
DOI : 10.1016/S0092-8674(00)80521-8

D. Derbyshire, B. Basu, L. Serpell, W. Joo, T. Date et al., Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor, The EMBO Journal, vol.21, issue.14, pp.3863-3872, 2002.
DOI : 10.1093/emboj/cdf383

N. Basse, J. Kaar, G. Settani, A. Joerger, T. Rutherford et al., Toward the Rational Design of p53-Stabilizing Drugs: Probing the Surface of the Oncogenic Y220C Mutant, Chemistry & Biology, vol.17, issue.1, pp.46-56, 2010.
DOI : 10.1016/j.chembiol.2009.12.011

A. Sali and T. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

M. Larkin, G. Blackshields, N. Brown, R. Chenna, P. Mcgettigan et al., Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, issue.21, pp.2947-2948, 2007.
DOI : 10.1093/bioinformatics/btm404

URL : https://hal.archives-ouvertes.fr/hal-00206210

C. Notredame, D. Higgins, J. Heringa, and . T-coffee, T-coffee: a novel method for fast and accurate multiple sequence alignment 1 1Edited by J. Thornton, Journal of Molecular Biology, vol.302, issue.1, pp.205-217, 2000.
DOI : 10.1006/jmbi.2000.4042

T. Lassmann and E. Sonnhammer, Quality assessment of multiple alignment programs, FEBS Letters, vol.39, issue.1, pp.126-130, 2002.
DOI : 10.1016/S0065-227X(99)80007-0

URL : http://onlinelibrary.wiley.com/doi/10.1016/S0014-5793(02)03189-7/pdf

C. Grasso and C. Lee, Combining partial order alignment and progressive multiple sequence alignment increases alignment speed and scalability to very large alignment problems, Bioinformatics, vol.20, issue.10, pp.1546-1556, 2004.
DOI : 10.1093/bioinformatics/bth126

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.547.7407

D. Frishman and P. Argos, Knowledge-based protein secondary structure assignment, Proteins: Structure, Function, and Genetics, vol.206, issue.4, pp.566-579, 1995.
DOI : 10.1107/S0108768191012363

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.9420

L. Regad, J. Martin, and A. Camproux, Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs, BMC Bioinformatics, vol.12, issue.1, p.247, 2011.
DOI : 10.1093/nar/gkq478

URL : https://hal.archives-ouvertes.fr/inserm-00615939

L. Regad, A. Saladin, J. Maupetit, C. Geneix, and A. Camproux, SA-Mot: a web server for the identification of motifs of interest extracted from protein loops, Nucleic Acids Research, vol.39, issue.suppl_2, pp.203-209, 2011.
DOI : 10.1093/nar/gkr410

J. Martin, L. Regad, C. Etchebest, and A. Camproux, Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes, Proteins: Structure, Function, and Bioinformatics, vol.8, issue.6 Part 1, pp.672-689, 2008.
DOI : 10.1016/j.bbagen.2005.05.019

P. Cock, T. Antao, J. Chang, B. Chapman, C. Cox et al., Biopython: freely available Python tools for computational molecular biology and bioinformatics, Bioinformatics, vol.25, issue.11, pp.1422-1423, 2009.
DOI : 10.1093/bioinformatics/btp163

URL : https://academic.oup.com/bioinformatics/article-pdf/25/11/1422/944180/btp163.pdf

R. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2012.

S. Calhoun and V. Daggett, Structural Effects of the L145Q, V157F, and R282W Cancer-Associated Mutations in the p53 DNA-Binding Core Domain, Biochemistry, vol.50, issue.23, pp.5345-5353, 2011.
DOI : 10.1021/bi200192j

A. Bullock, J. Henckel, B. Dedecker, C. Johnson, P. Nikolova et al., Thermodynamic stability of wild-type and mutant p53 core domain, Proceedings of the National Academy of Sciences, vol.24, issue.1, pp.4338-4380, 1994.
DOI : 10.1107/S0021889891004399

URL : http://www.pnas.org/content/94/26/14338.full.pdf

S. Lukman, D. Lane, and C. Verma, Mapping the Structural and Dynamical Features of Multiple p53 DNA Binding Domains: Insights into Loop 1 Intrinsic Dynamics, PLoS ONE, vol.38, issue.11, pp.80221-24324553, 2013.
DOI : 10.1371/journal.pone.0080221.s019

M. Basse, S. Betzi, R. Bourgeas, S. Bouzidi, B. Chetrit et al., 2P2Idb: a structural database dedicated to orthosteric modulation of protein-protein interactions, Nucleic Acids Research, vol.41, issue.D1, pp.824-827, 2013.
DOI : 10.1093/nar/gks1002

URL : https://hal.archives-ouvertes.fr/hal-01307114

A. Joerger, M. Allen, and A. Fersht, Crystal Structure of a Superstable Mutant of Human p53 Core Domain, Journal of Biological Chemistry, vol.13, issue.2, pp.1291-1296, 2004.
DOI : 10.1006/jmbi.1999.3102

K. Khoo, A. Joerger, S. Freund, and A. Fersht, Stabilising the DNA-binding domain of p53 by rational design of its hydrophobic core, Protein Engineering Design and Selection, vol.22, issue.7, pp.421-430, 2009.
DOI : 10.1093/protein/gzp018

V. Hornak, A. Okur, R. Rizzo, and C. Simmerling, HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations, Proceedings of the National Academy of Sciences, vol.21, issue.11, pp.915-920, 2006.
DOI : 10.1002/(SICI)1096-987X(200003)21:4<295::AID-JCC5>3.0.CO;2-8

URL : http://www.pnas.org/content/103/4/915.full.pdf

S. Sadiq, D. Fabritiis, and G. , Explicit solvent dynamics and energetics of HIV-1 protease flap opening and closing, Proteins: Structure, Function, and Bioinformatics, vol.76, issue.14, pp.2873-2885, 2010.
DOI : 10.1002/prot.22806

M. Andrec, A. Snyder, Z. Zhou, J. Young, G. Montelione et al., A large data set comparison of protein structures determined by crystallography and NMR: Statistical test for structural differences and the effect of crystal packing, Proteins: Structure, Function, and Bioinformatics, vol.13, issue.3, pp.449-465, 2007.
DOI : 10.1002/ijch.199400022

M. Tiberti, E. Papaleo, T. Bengtsen, W. Boomsma, and K. Lindorff-larsen, ENCORE: Software for Quantitative Ensemble Comparison, PLOS Computational Biology, vol.10, issue.10, p.26505632, 2015.
DOI : 10.1371/journal.pcbi.1004415.s001

URL : http://doi.org/10.1371/journal.pcbi.1004415

R. Best, K. Lindorff-larsen, M. Depristo, and M. Vendruscolo, Relation between native ensembles and experimental structures of proteins, Proceedings of the National Academy of Sciences, vol.4, issue.9, pp.10901-10906, 2006.
DOI : 10.1002/jcc.540040211

URL : http://www.pnas.org/content/103/29/10901.full.pdf

H. Berendsen, D. Van-der-spoel, R. Van-drunen, and . Gromacs, GROMACS: A message-passing parallel molecular dynamics implementation, Computer Physics Communications, vol.91, issue.1-3, pp.43-56, 1995.
DOI : 10.1016/0010-4655(95)00042-E

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.3928

B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan et al., CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, Journal of Computational Chemistry, vol.I, issue.2, pp.187-217, 1983.
DOI : 10.1145/321796.321811

J. Vertrees, P. Barritt, S. Whitten, and V. Hilser, COREX/BEST server: a web browser-based program that calculates regional stability variations within protein structures, Bioinformatics, vol.21, issue.15, pp.3318-3319, 2005.
DOI : 10.1093/bioinformatics/bti520

J. Drenth, Principles of protein X-ray crystallography, Acta Cryst, 1995.
DOI : 10.1007/978-1-4757-2335-9

D. Tronrud, Knowledge-Based B-Factor Restraints for the Refinement of Proteins, Journal of Applied Crystallography, vol.29, issue.2, pp.100-104, 1996.
DOI : 10.1107/S002188989501421X

A. Schlessinger and B. Rost, Protein flexibility and rigidity predicted from sequence, Proteins: Structure, Function, and Bioinformatics, vol.6, issue.Suppl 6, pp.115-141, 2005.
DOI : 10.1007/978-1-4757-3092-0

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.567.9405