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Exposure to agricultural pesticide 
impairs visual lateralization in a 
larval coral reef fish
Marc Besson  1,2, Camille Gache1,3, Frédéric Bertucci  1,4, Rohan M. Brooker5, Natacha 
Roux1,2, Hugo Jacob1,6, Cécile Berthe1,3, Valeria Anna Sovrano7, Danielle L. Dixson5 & David 
Lecchini1,3

Lateralization, i.e. the preferential use of one side of the body, may convey fitness benefits for 
organisms within rapidly-changing environments, by optimizing separate and parallel processing of 
different information between the two brain hemispheres. In coral reef-fishes, the movement of larvae 
from planktonic to reef environments (recruitment) represents a major life-history transition. This 
transition requires larvae to rapidly identify and respond to sensory cues to select a suitable habitat that 
facilitates survival and growth. This ‘recruitment’ is critical for population persistence and resilience. In 
aquarium experiments, larval Acanthurus triostegus preferentially used their right-eye to investigate 
a variety of visual stimuli. Despite this, when held in in situ cages with predators, those larvae that 
previously favored their left-eye exhibited higher survival. These results support the “brain’s right-
hemisphere” theory, which predicts that the right-eye (i.e. left-hemisphere) is used to categorize stimuli 
while the left-eye (i.e. right-hemisphere) is used to inspect novel items and initiate rapid behavioral-
responses. While these experiments confirm that being highly lateralized is ecologically advantageous, 
exposure to chlorpyrifos, a pesticide often inadvertently added to coral-reef waters, impaired visual-
lateralization. This suggests that chemical pollutants could impair the brain function of larval fishes 
during a critical life-history transition, potentially impacting recruitment success.

Brain asymmetry and the preference to use one side of the body over the other to accomplish actions (termed 
lateralization), has been identified in a variety of vertebrate and invertebrate species1–5. Lateralization processes 
have been characterized in adult organisms but also in early-life-stages, such as fish larvae6, 7, fish juveniles8, 9, 
chicks10 (but see refs 11–13 for reviews on embryonic and post-embryonic development of lateralized organs and 
acquisition of lateralized behaviors in several vertebrate and invertebrate species). Processes of lateralization can 
therefore be expected along the whole ontogeny of an animal organism. Brain lateralization is thought to increase 
cognitive abilities, in particular for decision making when facing novel multi-sensory signals, by enabling indi-
viduals to cope with divided attention and to partition, and optimize, the parallel processing of different types of 
information into the two separate brain hemispheres1, 14–18. With regards to habitat exploration and response to 
sensory cues, there are two main theories concerning brain lateralization in animals. The “brain’s right hemi-
sphere theory” assumes that the right hemisphere is predominantly used to process information regarding novel 
items and/or items requiring a rapid behavioral response, while the left hemisphere is used for categorizing stim-
uli and/or processing information that requires consideration of alternatives19, 20. Alternatively, the “valence the-
ory” proposes that the right hemisphere is preferentially used to process information regarding negative stimuli, 
while the left hemisphere is used for the processing of information regarding positive stimuli21–23. While empirical 
evidence supports both theories, previous studies have generally only considered lateralized responses to social 
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sensory stimuli under normal environmental conditions, and only in a few species of amphibians, birds, fresh-
water fishes, and mammals10, 21, 24–29. Therefore, we still lack a comprehensive understanding of the ecological 
importance of sensory lateralization in marine fishes, as well as in the context of rapidly changing environments.

Among the most rapidly changing environments globally are coral reefs, one of the most biologically diverse, 
productive, and economically important ecosystems worldwide30–32. Over the past three decades, coral reefs have 
faced increasingly frequent and severe natural (e.g., cyclones, Acanthaster planci outbreaks) and anthropogenic 
perturbations (e.g., pollution from agricultural runoff, rising sea-water temperatures, overfishing) leading to 
global declines in habitat quality, biodiversity and associated ecosystem services31, 33–37. In the context of these 
rapidly changing conditions, reef fishes often play an important role in maintaining habitat structure, preserving 
associated biodiversity, and increasing ecosystem resilience (e.g., through the regulation of coral-algal interac-
tions or by maintaining trophic chain sustainability)38–40. However, these species are often highly vulnerable to 
changing conditions, with individual health and population persistence impaired by both localized and global 
impacts34. The majority of reef fishes have a bipartite life cycle, consisting of a pelagic larval stage that facilitates 
dispersal followed by a largely sedentary reef-associated juvenile and adult stage41. At the conclusion of the larval 
phase, the transition from the planktonic to reef environments is referred to as settlement41. During this tran-
sition, reef-naïve larvae metamorphose into benthic dwelling juveniles and must rapidly identify and respond 
appropriately to a host of novel multi-sensory signals in order to select a suitable habitat that will facilitate their 
survival and growth42–49. The selection of, and persistence in, an appropriate habitat is termed recruitment41. 
Continued and consistent recruitment is essential to maintain reef fish populations and assist with the resilience 
and recovery of degraded reef fish communities50. The ability to identify visual cues that indicate the identity 
and location of predators has shown to increase survival rates during recruitment in a number of coral reef fish 
species45, 46, 51–53.

The relationship between brain morphology, lateralization, social interactions, and anti-predator behaviors 
in early-life-stage coral reef fishes remains largely unknown8, 45, 46, 51, 54–56, with the role of behavioral lateraliza-
tion during recruitment only initially assessed55, 56. These recent experiments have primarily used detour tests, 
which examine potential turning bias of individuals in a context of vigilance, and revealed that such lateralized 
behaviors can be associated with anti-predator response phenotypes and survival benefits55–57. However, these 
studies were conducted on captive-bred larvae, larvae caught in light traps (which may selectively attract certain 
behavioral phenotypes), or wild caught post-settlement stage juveniles. Experimental use of individuals that have 
been reared, are from mixed larval, pre-settlement, and post-settlement stages, or are non-naïve and have past 
reef experience potentially adds biases to these findings. This prevents a complete understanding of the ecological 
importance of coral reef fish lateralization at the critical time of recruitment. In addition, current research has yet 
to examine the contribution of either brain hemisphere in accomplishing a specific task.

Short-term exposure to environmental stressors, such as high predation risk or elevated CO2 levels, has been 
shown to alter lateralized anti-predator behaviors, which can lead to greater mortality rates55, 57. These findings 
highlight the critical role of lateralization during the recruitment in coral reef fishes, and point towards poten-
tial population or ecosystem-level impacts when an environmental stressor is applied56–59. In particular, anthro-
pogenic impacts on reefs, such as the worldwide increasing influx of chemical pollution (e.g., from pesticides) 
resulting from coastal agriculture and river runoff60–69, are known to severely impact reef biodiversity and the 
biology and ecology of coastal marine organisms53, 62. Among these sources of pollution, the Chlorpyrifos (CPF), 
an organophosphate insecticide widely used on tropical coastal crops (e.g., sugar-cane and rice crops in Australia 
and south-east Asia respectively64, 70, 71), is one of the most common waterborne chemical pollutant encountered 
in coral reefs70, 71. While several studies have demonstrated its neurotoxicity and endocrine disruption charac-
teristics71–74, the negative impact on coral reef larval fish sensory abilities has also recently been acknowledged71. 
Moreover, pesticides belonging to the same family have been discovered in important amounts in several fish and 
crustacean species in French Polynesia68, 75. However, whether this pollutions affect or not behavioral lateralized 
processes remains unknown71.

Here, we examined visual lateralization in the larvae of a common coral reef fish species, the convict surgeon-
fish Acanthurus triostegus76, during its recruitment phase. If settlement-stage larvae preferentially use their right 
eye to examine and categorize positive stimuli (e.g., conspecifics, such as in Myrispristis pralinia, a coral reef fish8, 
or in freshwater fishes17, 24, 25, 77) and their left eye for negative stimuli or to inspect novel items and execute rapid 
responses (e.g., potential predators, such as in freshwater fishes17, 24, 25, 77), this would be good evidence for both 
the “brain’s right hemisphere” and the “valence” theories. Using a range of aquarium based (Fig. 1) and in situ 
experiments we tested whether larvae exhibit a naïve preference for their left or right eye when inspecting both 
positive (mirror self-image, conspecific) or negative (predator) stimuli (Exp. 1) and whether visual lateralization 
increased or decreased vulnerability to predation (Exp. 2). Lastly, to examine the potential for coastal develop-
ment to affect this mechanism we determined whether exposure to CPF, at ecologically relevant concentration64, 

71, 78, would alter the degree of lateralization larvae exhibit (Exp. 3).

Results
For each individual within each experiment, a lateralization index (LI), reflecting the degree of preferential eye 
use, was calculated as: [(frequency of right eye use)/(frequency of right eye use + frequency of left eye use)] × 100. 
Values significantly higher than 50% indicate preference for right eye use while values significantly lower than 
50% indicate preference for left eye use. Subsequent statistical tests were conducted using these values.

Exp. 1 tested whether larvae exhibit a naïve eye preference when inspecting visual cues from positive (con-
specific) or negative (predator) stimuli. In the absence of any visual stimulus, A. triostegus larvae exhibited no eye 
preference (LI = 41.8 ± 4.6%, Mann-Whitney U test, U = 32, n = 14, p-value = 0.364) (Fig. 2). However, larvae 
showed a significant preference when inspecting test stimuli (Kruskal-Wallis rank sum test, x2 = 14.173, df = 3, 
p-value = 0.003), with LI values significantly higher when examining both conspecifics (Nemenyi post-hoc test 
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with Tukey-Dist approximation, p-value = 0.006) or predator cues (p-value = 0.006). With regards to the eye 
preferred, larvae displayed a significant preference for their right eye when inspecting themselves in a mirror 
(LI = 57.3 ± 2.4%, Mann-Whitney U test, U = 93, n = 14, p-value = 0.009), when examining a group of five adult 
conspecifics (LI = 62.5 ± 5.5%, U = 85, n = 14, p-value = 0.042), or when examining a predator (LI = 62.2 ± 3.6%, 
U = 83, n = 13, p-value = tested whether visual lateralization increased 0.006) (Fig. 2).

Exp. 2 or decreased vulnerability to predation. Individual larvae from Exp. 1 were classified and grouped 
as either ‘no eye dominant’, ‘right-eye dominant’, or ‘left-eye dominant’ based on the behavior displayed 
when exposed to the predator in Exp. 1. All three groups experienced significantly different survival rates 
(Kruskal-Wallis rank sum test, x2 = 7.064, df = 2, p-value = 0.029) with ‘left-eye dominant’ larvae having a 
higher survival rate than both ‘right-eye dominant’ (Nemenyi post-hoc test with Tukey-Dist approximation, 
p-value = 0.01) and ‘no eye dominant’ larvae (p-value = 0.03) (Fig. 3).

Exp. 3 utilized the same protocol as in Exp. 1 and tested whether exposure to a waterborne organophosphate 
pesticide often encountered in coral reefs: chlorpyrifos (CPF), would alter the degree of lateralization larvae 
exhibit. Larvae exposed to CPF at 1 µg.l−1 (black bars in Fig. 4) and larvae only exposed to the CPF solvent (grey 
bars in Fig. 4) again showed no eye preference in the absence of visual stimuli (respectively LI = 52.5 ± 6.1% 
and 52.3 ± 2.7%, Mann-Whitney U test with respectively U = 33 and 35, n = 10 and 11, p-value = 0.625 and 
0.476) (Fig. 4). However, a preference was seen when these larvae inspected a mirror (Wilcoxon rank sum test, 
W = 106, n = 10, p-value < 0.001), conspecifics (W = 87, n = 10, p-value = 0.004) or a predator (W = 85, n = 10, 
p-value = 0.009). Similar to the trends seen in Exp. 1 (Fig. 2), solvent control larvae preferentially used their 
right eye when inspecting a mirror (LI = 59.2 ± 2.9%, Mann-Whitney U test, U = 61.5, n = 11, p-value = 0.013), 
conspecifics (LI = 58.9 ± 2.1%, U = 54, n = 10, p-value = 0.004) or a predator (LI = 58.8 ± 2.4%, U = 45, n = 10, 
p-value = 0.009) (Fig. 4). However, when exposed to CPF at 1 µg.l−1 for five days, larvae no longer exhibited any 
eye preference when inspecting either the conspecifics or predator (respectively LI = 49.0 ± 1.9% and 44.9 ± 3.7%, 
U = 25 and 16, n = 10 and 10, p-value = 0.846 and 0.262). In addition, when inspecting themselves in a mirror, 

Figure 1. Schematic representation of the test apparatus for eye lateralization determination. The three dark 
gray walls represent the opaque wall of the aquarium, while the light blue wall corresponds to the transparent 
wall where the visual stimuli are presented. No eye preference was recorded when the fish was perpendicular to 
the transparent wall (i.e. binocular stimulation) or when it formed an angle larger than 180° with respect to the 
transparent wall (i.e. fish looking in the opposite direction).

Figure 2. Left-right eye preference of A. triostegus larvae during the inspection of visual stimuli in an adjacent 
aquarium. Figure represents LI mean (±SE) values. Asterisks indicate significant differences (Mann-Whitney U 
tests, *p < 0.05; **p < 0.01) between Laterality Index (LI) values and the theoretical 50% value (dotted line). 13 
to 14 replicates (one fish per replicate) were conducted for each visual stimulus.
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CPF treated larvae now preferentially used of their left eye (LI = 43.3 ± 2.2%, U = 1, n = 10, p-value = 0.004) 
(Fig. 4).

Discussion
This study identified a strong preference for the right eye when inspecting stimuli from either a mirror, conspecif-
ics, or a predator. While a preference for the using the right eye, or the left hemisphere of the brain, to categorize 
familiar stimuli (e.g. same size conspecifics) has also been seen in another coral reef fish: Myrispristis pralinia8, our 
results suggest that this preference also extends to unfamiliar stimuli. Larvae used in this experiment were naïve 
without any prior experience of non-larval reef fishes, therefore adult conspecifics and predators are considered 
unfamiliar stimuli while mirror-images are considered as the image of a familiar conspecific (e.g. larva from the 
same larval cohort)27. The preference for the right eye is intriguing since it is opposite to the preference for the 
left eye generally observed during the inspection of mirror self-images in freshwater fishes and amphibians, and 
which conforms with the key role the right telencephalon hemisphere plays in social cognition10, 21, 24–29, 77, 79–81. 
The difference suggests that patterns of laterality could be associated with habitat preference (e.g. freshwater vs. sea 
water) or evolutionary history, and thus driven by ecological pressures or phylogenetic constraints. For instance, 
the preferential use of the right eye could reflect a greater need for settlement-stage A. triostegus to initially cate-
gorize new sensory cues upon recruitment rather than establishing social interactions and aggregations82.

We also observed that larvae that displayed a left-eye preference when inspecting a predator held in an adja-
cent aquarium in Exp. 1, experienced higher survival when exposed to predation risk (Exp. 2). This result could be 
attributed to a learning process, with right-brain lateralized individuals able to recognize previously-experienced 
threats faster than left-brain lateralized individuals when this has been examined in other fishes83. Left-eye domi-
nant larvae could potentially escape predation more efficiently. Even if it is unknown if the right or left eye domi-
nated in Exp. 2 itself, it has been shown that an eye preference displayed during the first observation of a predator 
(as in Exp. 1) can influence behavioral responses (e.g. subsequent eye preference, turning rates) when facing for 
a second time that same, no longer unknown, stimulus84, 85. Therefore, after the Exp. 1 conditioning, the left-eye 

∗

Figure 3. Ecological importance of brain lateralization in larval survival facing direct predation. Survival index 
(SI) was calculated as follows: survival rate of the group minus the overall survival rate in the in situ cage. Figure 
represents SI mean ( ± SE) values. The asterisk indicates a significant difference in survival index among the 
three groups (Kruskal-Wallis test, x2 = 7.064, df = 2, p-value = 0.029) with ‘left-eye dominant’ experiencing 
higher survival than both ‘right-eye dominant’ (Nemenyi post-hoc test with Tukey-Dist approximation, 
p-value = 0.01) and ‘no eye dominant’ larvae (Nemenyi post-hoc test with Tukey-Dist approximation, 
p-value = 0.03). Six replicates were conducted. In each replicate, each group was made up with the same amount 
(four to six) of fish.

**

Figure 4. Effect of pesticides on the visual preference of A. triostegus larvae. Figure represents LI mean (±SE) 
values. Asterisks indicate significant differences (Mann-Whitney U tests, *p < 0.05; **p < 0.01) between 
Laterality Index (LI) values and the theoretical 50% value (dotted line). Black asterisks above bars indicate a 
significant right-eye preference, while white asterisks below bars indicate a significant left-eye preference. 10 to 
11 replicates (one fish per replicate) were conducted for each visual stimulus in both the pesticide exposition 
experiment (black bars) and the solvent-control exposition experiment (grey bars).



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 9165  | DOI:10.1038/s41598-017-09381-0

users may adopt a behavioral response to predation that differs from the majority of their right-eye user and 
not-lateralized conspecifics and that could favor their survival (e.g. by disorienting predators or by moving differ-
ently within their environment such as seen in mosquitofish86). Overall, our results strongly support the “brain’s 
right hemisphere” theory that predicts that the right-eye (i.e. left-hemisphere) is predominantly used to categorize 
stimuli, while the left-eye (i.e. right hemisphere) is dedicated to attending to events that require rapid behavioral 
responses, such as predation19, 20. In the context of larval settlement, where individuals face a variety of novel 
sensory cues and constantly high predation risk, our study suggests that there is a survival advantage to being 
lateralized, with the ability to optimize survival overcoming the obvious disadvantages of displaying predictable 
asymmetric behaviors. Future experiments brain lateralization in coral reef fishes should include juveniles that 
have been allowed to contact with older conspecifics, or that are no longer predator naïve, in comparison to others 
held in solitary confinement, to better understand how asymmetric behavioral patterns are adopted by a popula-
tion and the importance of learning and selection in lateralization processes.

Our results show that the presence of chlorpyrifos (CPF), one of the most common waterborne pesticides 
encountered in coral reefs71, can completely diminish or reverse critical lateralization patterns (Fig. 4). Oceanic 
levels of chlorpyrifos contamination have only been assessed, to our knowledge, in the Southern Ocean, revealing 
levels up to 0.54 pg.l−1 87. This is much lower than the levels observed in Australian reef surface waters, where con-
tamination have been shown to reach 1 µg.l−1 78, or than in certain Australian and Malaysian river mouths, where 
contamination levels can reach up to 26 µg.l−1 64, 78. The concentration of 1 µg.l−1 is therefore ecologically relevant 
and reflects appropriately the change of pesticide concentration larval fishes can face when settling, from the open 
ocean, in coral reef coastal areas64, 71, 78, 87. This loss and reversal of lateralization in fish exposed to chlorpyrifos 
may further increase larval mortality and impact the subsequent recruitment and maintenance of reef ichthy-
ologic diversity, as evidenced in Exp. 2 (Fig. 3). Similar findings have been documented in the coral reef fish 
Pomacentrus wardi when juveniles were exposed to future ocean acidification conditions59. In addition, a turning 
bias, shifting from the right to the left, was observed in P. wardi populations exposed to elevated-CO2 concentra-
tions (930 µatm)58. Lastly, the same study also revealed how increased temperatures (+3 °C higher than ambient 
temperatures) can have a dampening effect on lateralization processes58. In the context of global degradation of 
coral reefs, it is striking to observe that pesticide pollution, oceanic acidification, and elevated water temperatures 
could have similar and potentially interactive effects in impairing lateralized behaviors of marine organisms and 
subsequent survival to predation, particularly in early developmental stages. With this study, we demonstrate 
how the worldwide increasing influx of pesticide onto coral reefs, due to expanding coastal agriculture, as well 
as changing patterns of land use upstream60, 61, 63–69, may lead to a loss or reversal of visual lateralization during a 
critical step of coral reef fish life cycle. This may potentially lead to greater larval mortality rates and reduce sub-
sequent recruitment success. In addition, any potential reduction in the abundance of major herbivorous fishes in 
coastal marine ecosystems, such as A. triostegus in coral reefs76, due to chemical pollution from organophosphate 
components88, could impair the ability of reefs to cope with increasing macro-algal abundance and impact eco-
systems recovery and resilience40, 89.

While coral reefs are experiencing increasing perturbations34, persistence of species in degraded areas rely on 
the ‘rescue’ effect of recruitment50. The potential for a population to be supplemented by recruits depends largely 
on pelagic larvae detecting an appropriate habitat, towards which they orientate in order to settle and persist50. 
Successful recruitment of individuals could be partly jeopardized by the alteration of lateralized cognitive abilities 
of larvae caused by local stressors such as pesticides. An understanding of the underlying mechanisms of these 
physiological and behavioural disturbances requires further investigations.

Material and Methods
Sampling and study site. Fish larvae were collected nightly from January to June 2016 using a crest net set 
on the north-east coast of Moorea Island, French Polynesia (17°29′52.19″S, 149°45′13.55″W). This crest net had a 
mesh size of 1 mm and was equipped with a rectangular mouth (width: 2 m, height: 1 m) oriented perpendicular 
to the water flow. Crest nets retain all settlement-stage larvae at the site as they move over the reef crest90–93. This 
sampling technique ensures a non-selective capture (as opposed to light-traps) of wild larval fishes, precisely at 
the settlement stage, with no prior reef experience (as opposed to the capture of post-settlement juveniles within 
reefs using light traps or nets)94. While this method also permits the study of wild individuals caught in situ (as 
opposed to aquarium reared larval fish), it however does not ensure that the oceanic experience was the same for 
all larvae. As larval fish primarily recruit to reefs at night41, the net was set up at 7 p.m. and larvae were collected 
at 6 a.m. the following day.

The convict surgeonfish, Acanthurus triostegus (Linnaeus, 1758) has a pelagic larval duration of 53 ± 8 days, 
after which larvae metamorphose and recruit in shoals on shallow sandy and rubble reef areas48, 76, 95. This species 
was chosen as our model due to the high number of larvae collected in the crest net (n = 278 larvae, size: 23 ± 2 
mm). After removal from the crest net, larvae were transferred to CRIOBE research station where they were 
maintained in individual aquaria filled with UV-sterilized and filtered (10 µm filter) seawater before being tested. 
Water temperature was maintained at 28.5 °C, under 12:12 LD cycle (06:00, onset – 18:00, offset). For Exp. 1 and 
Exp. 2, tests were conducted immediately following collection (within 12 hours). Exp. 3 tests were conducted on 
the fifth day post-collection. Throughout their entire time in captivity fish were fed a commercial dry food twice 
daily.

Exp. 1: Do A. triostegus larvae exhibit a left-right visual preference when inspecting either neg-
ative (predator or positive (mirror self image, conspecific) stimuli?. Preferences for using the left 
or right eye to inspect visual stimuli was assessed using a protocol adapted from studies of brain lateralization in 
freshwater fishes24, 25, 27, 77. The experimental aquarium was a rectangular glass tank (20 L × 11 W × 15 cm H) with 
all sides covered with white opaque screen except one of the long sides where stimuli were presented. The tank 
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was lighted with a neon lamp (45 W) and filled with UV-sterilized, filtered (10 µm filter) seawater to 15 cm depth. 
A video camera was mounted above the experimental tank to record the fish position.

Four types of visual stimuli were presented to A. triostegus larvae:

 (i). Control: a white opaque screen was displayed on the transparent wall, so that all walls of the experimental 
tank were covered with white opaque screens. This control was conducted to account for any effect of the 
experimental procedure on fish behavior.

 (ii). Mirror: a mirror was placed along the transparent wall, presenting larvae with a visual stimulus of their 
own reflection.

 (iii). Conspecific: an aquarium (30 × 20 × 20 cm) containing juvenile conspecifics (n = 5, size: 80 ± 4 mm) was 
placed against the transparent wall. The conspecifics were collected with hand nets in shallow sandy areas 
surrounded by corals at Moorea Island.

 (iv). Predator: similarly to (iii), a common reef predator of A. triostegus (Besson pers. obs.), Lutjanus fulvus, 
(n = 1, size: 162 mm) was presented in an aquarium placed against the transparent wall of the experimental 
aquarium.

For each stimulus, 14 biological replicates were conducted (one larva per replicate). Between each replicate, all 
water in the experimental tank was replaced. For each replicate, the use of the right or left monocular visual field 
(i.e. eye use) was assessed every two seconds for a total of 10 min. Discrimination between the use of the right 
or the left eye was determined by examining the angle between larva’s body orientation and the transparent wall 
(where the visual stimulus was presented, Fig. 1), following the method established by Sovrano et al.24 and used in 
various eye lateralization studies since17, 25, 27, 77, 79. If the fish was perpendicular to the transparent wall (i.e. binoc-
ular stimulation), or if its body orientation to the transparent wall formed an angle larger than 180° with respect 
to the transparent wall (i.e. fish looking in the opposite direction), no eye preference was recorded25, 79 (Fig. 1). 
In this study, binocular stimulation never occurred (in all three experiments). Moreover, when a visual stimulus 
was presented, the times when an eye use preference could not be established (because of the fish looking in the 
opposite direction of the stimulus) only represented 24.01 ± 2.25% of the observations in Exp. 1, 23.78 ± 5.82% 
of the observations in Exp. 2, and 24.20 ± 2.02% in Exp. 3. Therefore, when examining a visual stimulus, fishes 
spent 75% of the time examining this visual stimulus with either their left or their right eye, and the rest of the 
time looking in the opposite direction, but never examining the stimulus with both eyes. Observations of the 
left-eye or right-eye use (Fig. 1) resulted in a lateralization index (LI), reflecting relative eye use: LI = [(frequency 
of right eye use)/(frequency of right eye use + frequency of left eye use)] × 100 for each stimulus tested24. Values 
significantly higher than 50% indicate a preference for the right eye, whereas values significantly lower than 50% 
indicate a preference for the left eye. For each stimulus, the difference between the measured LI and a ‘no eye 
preference’ case (LI = 50%) was tested using a two-tailed Mann-Whitney U test, in order to identify any poten-
tial eye preference. Further statistical analyses to compare LI values between each stimulus were carried out by 
non-parametric analysis of variance (Wilcoxon rank sum test and Kruskall-Wallis test). For all stimuli, no sig-
nificant difference was observed between the first 5 min of the trial and the last 5 min of the trial (Kruskal-Wallis 
test, x2 = 92.8, df = 91, p-value = 0.42). To verify that our modified protocol (one single transparent window) did 
not introduce any behavioral bias compared to the more commonly used protocol (two transparent windows 
equipped with two mirrors), we performed an additional two-mirror stimulus where an aquarium was equipped 
with two transparent walls and two mirrors24, 25, 27. No significant difference was found when comparing LI values 
obtained in this two-mirror protocol and the values obtained with the use of the one-mirror protocol (respec-
tively LI = 59.8% and 57.3%, Wilcoxon rank sum test, W = 105, n = 14, p-value = 0.769), therefore we assume 
that our adapted method provides results comparable to conventional methods. All statistical analyses were con-
ducted using the R-Cran software (R-3.3.1).

Exp. 2: Ecological importance of brain lateralization in larvae facing predation. Using a simi-
lar protocol as Exp. 1, larvae were tested individually to determine if they preferentially used the right eye, left 
eye, or displayed no lateralization when presented with a predator. Larvae were then classified and pooled into 
three groups according to their visual preference: ‘left-eye dominant’, ‘right-eye dominant’ and ‘no eye dominant’ 
individuals. Each group was tagged with a different color, using visible implant fluorescent filament (Northwest 
Marine Technology), at least one hour before being released simultaneously into a caged patch reef (1 × 1 × 1 m), 
built from rubble and live coral, and located in an open sandy area at 2 m depth. After a one hour habituation 
period, three predators, Lutjanus fulvus (n = 3, size: 165 ± 14 mm), were introduced into the cage. Prior to their 
introduction, the predators were held for 48 h in aquaria without food to ensure that they were motivated to feed. 
The experiment was stopped after two hours, predators were removed and the remaining larvae were counted 
and identified according to their color tag. The overall survival rate was recorded, as well as a survival rate for 
each group. For each group, a survival index (SI) was calculated: SI = survival rate of the group – overall survival 
rate in the cage. SI values allowed a comparison between the survivals of each replicate, regardless of the relative 
predation rate in each technical replicate. This experiment was replicated 6 times, and each time a different tag 
color was attributed to the groups to account for any potential predation bias towards one color. For each rep-
licate, all larval groups contained the same number of fish (between 4 and 6 larvae per group depending on the 
replicate). Statistical analyses to compare SI values were conducted by using non-parametric analysis of variance 
(Wilcoxon rank sum test and Krukall-Wallis test, followed by Nemenyi post-hoc test should a significant differ-
ence be detected).
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Exp. 3: Effect of chemical pollution on the visual lateralization of A. triostegus larvae.  
Preliminary experiments were conducted on three groups of n = 10 fish maintained in 30 L × 20 W × 20 cm H 
aquaria, which were exposed, after collection in the crest net, to chlorpyrifos (CPF) at 1, 30 and 100 µg.l−1, as pre-
viously done in the literature in another coral reef fish71. After 10 days of exposure, larvae at 30 µg.l−1 presented an 
irregular swimming behavior and most larvae at 100 µg.l−1 died after only one day of exposure. Larvae exposed 
to the 1 µg.l−1 concentration exhibited no behavioral abnormality and no mortality. Consequently, we tested the 
effect of a CPF pollution on larvae visual lateralization through two experimental conditions: (A) solvent control 
(9 liters of UV-sterilized and filtered −10 µm filter – seawater + 9 µl of acetone) and (B) 1 µg.l−1 of CPF (9 liters of 
UV-sterilized and filtered − 10 µm filter – seawater + 9 µg of CPF diluted in 9 µl of acetone).

For each condition, larvae were tested for their eye preference as in Exp. 1, when presented with the same 
visual stimuli as in Exp. 1 (control, mirror, conspecifics and predator), after a five day exposure (to CPF or to 
the solvent). Consequently, we performed n = 8 (2*4) experiments (control, mirror, conspecifics and preda-
tor visual stimulus with fish exposed to solvent vs. fish exposed to CPF at 1 µg.l−1). For each of those 8 exper-
iments, A. triostegus larvae were maintained, after collection in the crest net, in groups of n = 5 to 6 fish in 
30 L × 20 W × 20 cm H aquaria. Each aquarium was equipped with an air stone. All water was replaced every 
day, ensuring the maintenance of water quality as well as a continuous concentration of the pesticide or solvent. 
A second technical replicate for these 8 experiments, with significantly similar results as in the first replicate, 
was performed. Consequently n = 10 to 11 biological replicates were conducted for each of these 8 experiments. 
Statistical tests for LI values analyses were performed as described in Exp. 1.

Ethical approval. All the experiments were approved by the CRIOBE-IRCP animal ethics committee and 
performed in accordance with the guidelines of the French Polynesia committee for publication and animal 
ethics.
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