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Neuroprotective effect of kinin 
B1 receptor activation in acute 
cerebral ischemia in diabetic mice
Dorinne Desposito1,2,3, Georges Zadigue1, Christopher Taveau1,2,3, Clovis Adam4, François 
Alhenc-Gelas1,2,3, Nadine Bouby1,2,3 & Ronan Roussel1,5,6

Activation of the kallikrein-kinin system enhances cardiac and renal tolerance to ischemia. Here 
we investigated the effects of selective agonists of kinin B1 or B2 receptor (R) in brain ischemia-
reperfusion in diabetic and non-diabetic mice. The role of endogenous kinins was assessed in tissue 
kallikrein deficient mice (TK−/−). Mice underwent 60min-middle cerebral artery occlusion (MCAO), 
eight weeks after type 1-diabetes induction. Treatment with B1R-, B2R-agonist or saline was started 
at reperfusion. Neurological deficit (ND), infarct size (IS), brain water content (BWC) were measured 
at day 0, 1 and 2 after injury. MCAO induced exaggerated ND, mortality and IS in diabetic mice. B2R-
agonist increased ND and mortality to 60% and 80% in non-diabetic and diabetic mice respectively, by 
mechanisms involving hemodynamic failure and renal insufficiency. TK−/− mice displayed reduced ND 
and IS compared to wild-type littermate, consistent with suppression of B2R activity. B1R mRNA level 
increased in ischemic brain but B1R-agonist had no effect on ND, mortality or IS in non-diabetic mice. In 
contrast, in diabetic mice, B1R-agonist tested at two doses significantly reduced ND by 42–52% and IS 
by 66–71%, without effect on BWC or renal function. This suggests potential therapeutic interest of B1R 
agonism for cerebral protection in diabetes.

Acute brain ischemia secondary to cerebral artery occlusion is a major cause of mortality or permanent disability. 
Risk of ischemic stroke is increased in diabetic patients and prognosis is poorer1, 2. Cerebral artery occlusion 
causes acute (minutes to hours) and delayed (hours to days or weeks) injury cascades, both implicating mul-
tiple pathogenic factors like thrombosis, neuron stunning or necrosis, brain oedema and inflammation3, 4. The 
complexity of mechanisms involved in brain damage explains in part that there is still no clinically effective 
neuroprotective treatment besides revascularization. The kallikrein-kinin system (KKS) is implicated in physio-
logical vasodilatation, exerts antithrombotic and profibrinolytic actions and reduces oxidative stress in different 
organs5–8. KKS protects against cardiac and renal damage in the setting of acute ischemia secondary to arterial 
occlusion. Inhibition of KKS aggravates cardiac and renal ischemic lesions while activation of kinin receptors 
enhances cardiac tolerance to ischemia and reperfusion9–12. Kinins are generated by proteolytic cleavage of pro-
tein precursors, kininogens, by tissue kallikrein (TK) and are mainly inactivated in the circulation by the angio-
tensin I-converting enzyme (ACE/kininase II)5. Kinins, activate two receptor subtypes: B1 (B1R) and B2 (B2R). 
All components of KKS have been identified in brain tissue from rodents and humans3, 13–18. B1R gene expression 
is low in the brain under normal condition, but it is upregulated by inflammation and ischemia19, 20. By contrast, 
B2R is constitutively present in different brain structures and in cerebral arteries and microvessels18, 21.

Role of kinins in brain ischemia has been addressed so far by performing pharmacological blockade of B1R or 
B2R in rodents or studying mice genetically deficient in either B1 or B2 receptor. However, these studies have pro-
duced conflicting results3. Some studies have shown that B2R blockade reduced infarct size and neuronal damage 
after transient middle cerebral artery occlusion (MCAO)19, 22–24 but other suggested that inactivation of this recep-
tor has no effect or even aggravates ischemic brain damage20, 25–27. It has also been reported that pharmacological 
blockade or genetic inactivation of B1R confer neuroprotection in mice20. Single receptor inactivation however 
is well known to result in induction, coupling and activation of the remaining alternate receptor that can explain, 
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at least in part, the effects observed making data interpretation ambiguous8, 9, 28, 29. Moreover, the effect of kinins 
and their receptors may depend in part on the stage of infarct development27. Therefore, the role of kinins, B1R 
and B2R in brain ischemia and the potential therapeutic interest of pharmacological manipulation of KKS need 
to be further documented by using new experimental approaches. Involvement of KKS in cerebral ischemia in the 
setting of diabetes has not been studied, except for a very recent report in the rat based on receptor inhibition30.

The aim of the present study was to address the role of KKS in cerebral ischemia in non-diabetic (NonDiab) 
and diabetic (Diab) mice, by using gain and loss of function approaches. We firstly probed the role of each recep-
tor by performing pharmacological activation using potent, peptidase resistant synthetic agonists, selective B1R 
(B1R-ag) or B2R (B2R-ag) in a model of transient MCAO. We then addressed the role of endogenously produced 
kinins acting through both receptors by studying a genetic mouse model of TK and kinin deficiency.

The study shows that a) MCAO induced bradycardia, mild hypotension, neurological deficit, and resulted 
in partial brain infarction. Neurological deficit, mortality and infarct size were all increased in diabetic mice 
compared to non-diabetic mice; b) B2R activation increased neurological deficit and mortality; c) B1R activation 
had no effect in non-diabetic mice but in diabetic mice a B1R agonist, tested at two different dosages, reduced 
neurological deficit and infarct size; d) TK deficiency reduced neurological deficit and infarct size in non-diabetic 
mice but had no effect in diabetic mice. The data are consistent with a deleterious role of kinins, through B2R 
activation in cerebral ischemia. They however show that in diabetic condition B1R signalling is neuroprotective.

Results
Effects of B1R or B2R agonists (ag) on cerebral ischemia were investigated, in both non-diabetic (NonDiab) and 
diabetic (Diab) mice. Diabetic mice were studied 8 weeks after streptozotocin injections. Focal cerebral ischemia 
(Isch) was induced via a transient intraluminal filament middle cerebral artery occlusion method. Non-ischemic 
(NonIsch) mice underwent sham operation. Chronic treatment with B1R-, B2R-agonist or saline was started at 
reperfusion, using osmotic minipumps implanted s.c. and lasted two days.

Effect of ischemia on B1R and B2R mRNA levels. B1R and B2R mRNAs were both detected in affected 
brain tissue. B2R mRNA level was not influenced by transient MCAO and did not change at day 1, 3 and 7 after 
ischemia in our model (Fig. 1). By contrast B1R mRNA level increased 2.35 fold (p < 0.05) 24 h after transient 
MCAO before returning to basal values (Fig. 1). B1R and B2R mRNA levels were not influenced by diabetes (data 
not shown).

Effect of transient cerebral ischemia on neurological score and infarct size. Transient MCAO did 
not affect body weight, glycaemia and plasma creatinine in either NonDiab or Diab mice (data not shown). In 
NonDiab mice, transient MCAO induced bradycardia (Isch: 382 ± 15 bpm vs NonIsch: 655 ± 14 bpm, p < 0.01) 
and a tendency to hypotension (Isch: 101 ± 2 mmHg vs NonIsch: 113 ± 2 mmHg, p = 0.055), measured at 24 h. At 
24 and 48 h after transient MCAO, the neurological score reflected severe impairment of sensorimotor function in 
Isch mice versus NonIsch mice (p < 0.01) (Fig. 2a). Infarction was observed in cerebral cortex and striatum (TTC 
staining: 24.1 ± 2.0%, p < 0.01 vs NonIsch). Mortality remained low (Fig. 2b).

Diabetes increased neurological deficits (p < 0.01) at 48 h when compared to NonDiab mice (Fig. 2a,b). Infarct 
size was increased by 55% in Diab mice compared to NonDiab mice (TTC staining: 37.2 ± 2.7 vs 24.0 ± 2.8%, 
p < 0.01, Fig. 2c).

Effect of B2R agonist treatment after transient cerebral ischemia. B2R-ag treatment significantly 
increased mortality to 60% in NonDiab mice and 80% in Diab mice 48 h after ischemia (both p < 0.05 compared 
to saline, Fig. 3). Mortality occurred mainly after 24 h. This did not allow gathering enough data concerning neu-
rological deficits and histological lesions at two days for these groups.

In NonDiab ischemic mice, B2R-ag treatment did not influence bradychardia (Isch: 382 ± 15 bpm, 
Isch + B2R-ag 720 nmol/kg.day−1: 460 ± 17 bpm, Isch + B2R-ag 240 nmol/kg.day−1: 404 ± 20 bpm, both NS) 
and aggravated hypotension at the two different dosages used (Isch: 101 ± 2 mmHg, Isch + B2R-ag 720 nmol/

Figure 1. B1R mRNA level in brain increased 24 h after transient MCAO. Kinin receptor mRNA levels in 
NonDiab mice brain measured at day 0 (D0), 1 (D1), 3 (D3) and 7 (D7) after transient MCAO, by RT-qPCR. 
Data were normalized to 18 S rRNA. Values are mean ± SEM, n = 5/group.
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kg.day−1: 87 ± 2 mmHg, Isch + B2R-ag 240 nmol/kg.day−1: 82 ± 6 mmHg, both p < 0.01 vs NonIsch), measured 
at day 1 after MCAO. The treatment severely increased plasma creatinine, in surviving animals at day 2 (Isch: 
17.5 ± 4.2 μmol/l vs Isch + B2R-ag 720 nmol/kg.day−1: 72.8 ± 19.1μmol/l, p < 0.05). B2R-ag treatment did not 
affect body weight and glycaemia at the two dosages (data not shown). In NonIsch mice, B2R-ag treatment did 
not influence blood pressure (NonIsch + B2R-ag: 102 ± 2 mmHg, NS), heart rate (667 ± 23 bpm, NS) or plasma 
creatinine (NonIsch + B2R-ag: 15.4 ± 0.5 μmol/l, NS).

Effect of B1R agonist treatment in mice after transient cerebral ischemia. Neurological defi-
cit and mortality was not influenced by B1R-ag treatment (720 nmol/kg.day−1) in NonDiab mice (Fig. 4a,b). 
Treatment had no effect on body weight, glycaemia, plasma creatinine, blood pressure and heart rate when 

Figure 2. Diabetes increased neurological impairment, mortality and infarct size 48 h after transient MCAO. 
(a) Neurological score (0–30) measured in NonDiab and Diab mice at day 0, 1 and 2 after transient MCAO or 
sham-operation. (b) Survival curve of NonDiab and Diab mice after transient MCAO. Numbers in parentheses 
refer to surviving/operated animals. (c) Ischemic area measured at 48 h after transient MCAO or sham-
operation using TTC staining. Values are mean ± SEM, n = 8–14/group. **p < 0.01 vs corresponding non 
ischemic group, other statistics shown on figure.
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compared to saline (data not shown). B1R-ag treatment had no effect on infarct volume and histological score at 
day 2 after transient MCAO (Fig. 4c).

By contrast, in Diab mice, B1R-ag tested at two different dosages (240 or 720 nmol/kg.day−1) improved neu-
rological score compared to saline treated Diab-Isch group (Fig. 5a,b). The clinical beneficial effect of B1R-ag was 
associated with a decrease of infarct size by 71 and 66% at the two dosages respectively (both p < 0.01) (Fig. 5c). 
These results were confirmed by the histological score (Fig. 5d). B1R-ag did not induce mortality (Fig. 5b) and 
did not increase plasma creatinine (Diab-Isch: 17.3 ± 0.3 μmol/l vs Diab-Isch + B1R-ag: 16.7 ± 1.1 μmol/l, NS). 
Moreover, B1R-ag at 720 nmol/kg.day−1 did not affect BWC 24 h after cerebral ischemia-reperfusion compared to 
saline-treated Diab-Isch group (Diab-Isch: 83.2 ± 0.82% vs Diab-Isch + B1R-ag: 82.3 ± 0.27%, NS).

Effect of TK deficiency on transient cerebral ischemia. In NonDiab condition, TK−/− mice displayed 
better post MCAO outcome compared to TK+/+ and TK+/− mice. Indeed, TK deficiency improved neurological 
score and significantly decreased infarct size at 48 hours after transient MCAO (Fig. 6a–c). In Diab mice however, 
TK deficiency had no effect on cerebral ischemia-reperfusion outcome (Fig. 6d–f).

Discussion
In the present study, we evaluated effect of kinin signalling in mice submitted to transient focal cerebral ischemia. 
We studied both diabetic and non-diabetic mice because of the deleterious effect of diabetes on outcome of 
cerebral ischemia in man and also of diabetes effect on cellular signalling pathways2, 11. We considered the two 
kinin receptor subtypes, B1 or B2 and probed their effects by selectively activating these receptors, pharmacolog-
ically. We then addressed the role of endogenously produced kinins by studying mice deficient in TK, the main 
kinin-forming enzyme. We show that B2R activation increases mortality after transient MCAO in non-diabetic 
or diabetic mice, by mechanisms that may involve peripheral hemodynamic failure. B1R signalling on the other 
hand is not detrimental and its effect is strongly influenced by diabetes. While B1R activation has no effect in 
non-diabetic mice it reduces brain infarction and improves MCAO outcome in diabetic mice. Data obtained in 
TK deficient mice are consistent with disappearance of B1 and B2 receptors activity and suggest a role of endog-
enously produced kinins in cerebral tolerance to ischemia. Finding that treatment with a selective B1R agonist, 
at different dosages, reduces brain infarct volume and improve neurological deficit in diabetic mice may have 
therapeutic implication.

Previous studies indicated that B1R and B2R are present in the brain from various species including man3, 13, 14, 16–18.  
We show that genes for both receptors are expressed in murine brain and their expression level is not altered 
by diabetes. Whereas B2R mRNA was not influenced by ischemia, B1R mRNA level increased in the ischemic 

Figure 3. B2R-ag treatment was associated with increased mortality after transient MCAO. (a) Survival curve 
of NonDiab mice treated with B2R-ag (720 or 240 nmol/kg.day−1) or non-treated (Isch). (b) Survival curve 
of Diab mice treated with B2R-ag (720 nmol/kg.day−1) or non-treated (Diab-Isch). Numbers in parentheses 
refer to surviving/operated animals. Values are mean ± SEM, n = 8–14/group. p < 0.05 refers to corresponding 
ischemic group.



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 9410  | DOI:10.1038/s41598-017-09721-0

hemisphere after transient MCAO. This is consistent with previous studies19, 20 and extends to the brain observa-
tion of induction of B1R gene expression by ischemia made in the heart and kidney9, 10, 31. Increase in B1R mRNA 
in the ischemic brain was transient, peaking at 24 h and then subsiding, despite brain infarction. This is similar to 
what has been observed in the ischemic heart suggesting that acute phase secretion of proinflammatory cytokines 
acting through MAP-kinases and NFkappaB activation but not post-necrosis tissue remodelling and fibrosis 
development is involved in B1R induction in the ischemic brain31, 32.

Transient MCAO resulted in downstream brain infarction and, clinically, severe neurological impairment. 
Bradychardia is believed to result from reflex activation of baroreflex loop33 and may contribute to hemody-
namic instability with mild decrease in blood pressure. Activation of B2R signalling pathways during reperfusion 

Figure 4. B1R-ag had no effect on neurological impairment, mortality and infarct size 48 h after transient 
MCAO in NonDiab mice. (a) Neurological score (0–30) measured in NonDiab mice, treated with B1R-ag (720 
nmol/kg.day−1) (grey bars) or saline (black bars), at day 0, 1 and 2 after transient MCAO or sham-operation. 
(b) Survival curve of NonDiab mice treated with B1R-ag or non-treated after transient MCAO. Numbers in 
parentheses refer to surviving/operated animals. (c) Ischemic area measured at 48 h after transient MCAO using 
TTC staining. Values are mean ± SEM, n = 9–14/group. **p < 0.01 vs non ischemic group.
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induced mortality. While transient MCAO did not result in significant mortality, more than 50% of B2R agonist 
treated mice died within two days, mainly after one day. Analysis of the brain in surviving animals did not show 
larger brain infarction or evidence for aggravated cerebral oedema, despite known effects of kinins on cerebral 
oedema19, 34, compared to saline treated animals (data not shown). However, these observations are difficult inter-
preting in term of causality, or lack of it, between B2R activity and brain damage and no conclusion can be made 
in absence of data concerning brains of deceased animals. Data obtained in TK deficient mice however indirectly 
suggest that B2R activity may aggravate brain infarction (see below). The cause of death of B2R agonist treated 
animals remains undocumented but may be related, at least in part to peripheral hemodynamic failure. These 
animals indeed displayed aggravated hypotension when compared to saline treated animals and had severe renal 
insufficiency. These two effects were not observed during B2R agonist treatment at the same dosage and by the 
same route in mice non-submitted to cerebral ischemia or in other experimental settings, including in diabetes, 
ruling out renal toxicity of the B2R agonist12, 35 (unreported data). Thus the effect of B2R activation on blood 
pressure, renal function and mortality in cerebral ischemia-reperfusion is peculiar to this experimental setting. 
One can speculate that in presence of inappropriate baroreflex activation triggered by brain ischemia B2R agonist 
administration induces hypotension that may, if becoming severe, even transiently, result in renal failure and 
death. This phenomenon would likely not occur in man where sympathetic activation raising blood pressure is a 
major effect of acute brain ischemia36.

B1R activation had no effect on mortality and brain infarction in non-diabetic animals. Interestingly, TK defi-
ciency reduced infarct size and improved neurological defects in the non-diabetic animals. This result suggests 
that endogenously produced kinins are involved in brain damage during ischemia-reperfusion. Data obtained 
with subtype selective pharmacological receptor agonists suggest that effect of endogenous kinins can be ascer-
tained to B2R but not B1R activation.

Diabetes increased infarct size and enhanced neurological impairment, consistent with clinical studies. The 
effect of the kallikrein-kinins system in brain ischemia in the setting of diabetes has not been studied until now. 
Like in non-diabetic animals B2R activation enhances mortality. But interestingly, a B1R agonist, when admin-
istered at time of reperfusion, improves neurological deficit and decreases brain infarct size by more than 60% 
in diabetic mice submitted to transient focal cerebral ischemia. No adverse effect on mortality or renal function 

Figure 5. B1R-ag, at two different dosages (720 or 240 nmol/kg.day−1), reduced neurological score and infarct 
size at 48 h in Diab mice. (a) Neurological score (0–30) measured in Diab mice treated with B1R-ag, 720 nmol/
kg.day (grey bars) or 240 nmol/kg.day−1 (hatched bars) or with saline (white bars), at day 0, 1 and 2 after 
transient MCAO. (b) Survival curve of Diab mice after transient MCAO. Numbers in parentheses refer to 
surviving/operated animals. (c) Ischemic area measured at 48 h after transient MCAO using TTC staining. (d) 
Histological score (0–3) measured at 48 h after transient MCAO using haematoxylin and eosin (H&E) staining. 
Values are mean ± SEM, n = 6–13/group. *p < 0.05, **p < 0.01 vs non ischemic group. Other statistics shown 
on figure.
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was observed during B1R agonist treatment. Thus, in diabetic mice B1R activation has neuroprotective effect 
in cerebral ischemia. Mechanisms remain unclear but may be related to endothelial activation with release of 
anticlotting, profibrinolytic and vasodilatory agents37–39. Vasodilatation of collateral arteries could improve cer-
ebral blood supply. Also, kinins are known to modulate mitochondrial permeability transition pore opening 
and trigger production of reactive oxygen species, which afford organ protection7, 40, 41. These mechanisms are 
believed to be operative in the ischemic heart or kidney10, 11. The lack of effect of B1R agonist on brain infarc-
tion in non-diabetic animals may appear surprising but the situation is similar to the ischemic heart where B1R 
activation had no effect in non-diabetic mice while it dramatically reduced infract size in diabetic animals11. 
Hypothesis put forward for the heart and kidney and based on the well documented balance between B1R and 
B2R activity8, 9, 28 may also be valid for the brain: when B2R is functional in non-diabetic animals B1R remains 
uncoupled. However, in the ischemic heart and tentatively brain of diabetic animals, B2R signalling is impaired 

Figure 6. TK deficiency decreased neurological impairment and infarct size 48 h after transient MCAO in 
NonDiab mice but had no effect in Diab mice. (a,d) Neurological score (0–30) measured in TK-deficient mice at 
day 0, 1 and 2 after transient MCAO. (b,e) Survival curve of TK-deficient mice after transient MCAO. Numbers 
in parentheses refer to surviving/operated animals. (c,f) Ischemic area measured at 48 h after transient MCAO 
using TTC staining. a, b and c: NonDiab mice; d, e and f: Diab mice. TK+/+: white bars, TK+/−: grey bars, TK−/−: 
black bars. Data are mean ± SEM, n = 8–10/group. **p < 0.01 vs non ischemic group. Other statistics shown on 
figure.
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and B1R coupling is activated11. Effect of B2R on mortality in diabetic animals may be due to peripheral rather 
than cerebral action, as discussed above. A recent report by Sang et al.30 suggests that acute administration of a 
B1R antagonist in type 2 diabetic rats submitted to MCAO reduces brain infarction. Our data may not appear 
consistent with this observation. However, result of the Sang et al. study is difficult interpreting given that the 
compound used as B1R antagonist is an analog of human rather than rat kinins42–45 and can behave as a partial 
agonist instead, depending on kinin level.

TK deficiency in diabetic mice did not influence MCAO outcome suggesting that TK is not involved in kinin 
production in brain of diabetic animals. An alternate explanation is that the lack of effect of TK deficiency results 
from disappearance of both the beneficial effect of B1R activation and the deleterious effect of B2R activation.

Our study clarifies to some extent the controversial issue of role of kinin and their receptors in cerebral 
ischemia-reperfusion. The study show that B2R activation is detrimental in this experimental setting but B1R 
activation can be beneficial. Documentation of neuroprotective effect of a pharmacological B1R agonist in brain 
ischemia in diabetic mice can have therapeutic implication. Together with previous studies documenting cardio-
protective effect of the B1R agonist in the diabetic and ischemic mouse heart11 and proangiogenic effect in periph-
eral ischemia in diabetic mice12, the present observations argue for clinical development of kinin B1R agonist for 
cardiovascular and cerebral protection in diabetes.

Materials and Methods
Animals. Experiments were performed in male C57/BL6 mice (JanvierLabs, France or in house strain). TK 
deficient mice were generated in our laboratory by disruption of the TK gene as previously described46. Littermate 
wild type, homozygous and heterozygous TK deficient mice were obtained by heterozygous crossing46, 47. All mice 
were housed with a 12 h light/dark cycle and had free access to standard mice chow and water. All experimental 
procedures were performed in accordance with the Directive 2010/63/eu of the European Union. The study has 
received approval from the Ethical Committee Charles Darwin (CEEACD/N°5). Reporting of this work complies 
with ARRIVE guidelines.

Murine model of type 1 diabetes. Diabetes (Diab) was induced in ten weeks-old mice by 5 daily i.p. injec-
tions of streptozotocin (STZ) (Sigma-Aldrich, France) (50 mg/kg body weight in 0.05 mol/L sodium citrate, pH 
4.5)12. After 8 weeks of established diabetes (fasting blood glucose >250 mg/dl), transient focal cerebral ischemia 
was induced as described below.

Transient focal cerebral ischemia. Transient focal cerebral ischemia was induced by MCAO using the 
intraluminal filament technique previously described48. Briefly, mice were anesthetised with 3.5% isoflurane in an 
anaesthetic chamber and maintained during surgery at 2% isoflurane using a rodent mask. Body temperature was 
maintained at 37 ± 0.5 °C with a heating blanket throughout the entire experimental procedure. MCAO was car-
ried out for 60 min by inserting a calibrated monofilament (Doccol Corporation, USA) according to body weight 
via the right external carotid artery into the internal carotid artery to block the origin of the MCA. Sham-operated 
controls (NonIsch) were treated similarly to the ischemic (Isch) mice, but the filament was not inserted. After sur-
gery and before being returned to cages, animals were placed for 4 hours in a heating incubator at 37 °C.

B1R or B2R agonist treatments. Chronic treatment with the selective B1R agonist SarLys[Hyp3, Igl5, 
DPhe8]desArg9-bradykinin (B1R-ag) or the selective B2R agonist [Hyp(3),Thi(5),(N)Chg(7),Thi(8)]-bradykinin 
(B2R-ag)49, 50 was started at reperfusion, using osmotic minipumps implanted s.c. (Alzet 1007D, Charles River 
Laboratories, France). These compounds are resistant to kininase hydrolysis. Two different dosages chosen from 
previous studies based on therapeutic efficiency and lack of hypotensive effect, 720 nmol/kg.day and 240 nmol/
kg.day were used12, 35. Control mice received saline infusion.

Experimental groups. Several sets of experiments were performed to analyse the effects of kinin receptor 
agonist treatments on mortality, neurological deficit and infarction volume (n = 8–14/group). All mice were ≈18 
week-old at the time of MCAO. Animals were sacrificed after two days, unless otherwise indicated. Series 1 was 
dedicated at comparing effect of ischemia-reperfusion in NonDiab and Diab mice. Series 2 and 3 were dedicated 
at testing effect of B2R agonist at two dosages in NonDiab and Diab mice, respectively. Series 4 and 5 were dedi-
cated at testing effect of B1R agonist at two dosages in NonDiab and Diab mice, respectively. The effect of B1R-ag 
(720 nmol/kg.day−1) on cerebral oedema in Diab mice 24 h after transient MCAO was tested in a separate series 
(n = 5–6/group).

Additional groups of NonDiab mice were dedicated at studying effect of B2R-ag (240 nmol/kg.day−1 or 720 
nmol/kg.day−1) on blood pressure. Mice were treated for 24 h after transient MCAO. Neurological score was 
determined, blood pressure and heart rate was recorded, and animals were sacrificed (n = 5–6/group).

Other groups of mice rendered or not diabetic and submitted to MCAO occlusion or sham operation were 
used for studying time related effect of brain ischemia-reperfusion on receptor gene expression. Animals were 
sacrificed at 1, 3 or 7 days after surgery, brain was sampled and kept at −80% until processed for measurement of 
receptor mRNAs by RT-PCR (n = 5 per group and time point).

The effect of TK deficiency on neurological deficit and ischemic volume was tested in NonDiab mice at 48 h 
after transient MCAO, in TK+/+, TK+/− and TK−/− mice (n = 8–10/group). Same protocol was performed in 
series dedicated at testing effect of TK deficiency in Diab mice (Diab-TK+/+, Diab- TK−/−, n = 8–9/group).

Measurement of blood pressure. Blood pressure was measured by tail-cuff plethysmography (BP-2000 
Series II, BIOSEB Instruments, France) in trained animals as previously described51.
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Measurement of plasma creatinine. Plasma creatinine was assessed in blood samples taken at sacrifice 
using a colorimetric enzymatic assay (automatic analyser Konelab 201, France) (n = 4–5/group).

Evaluation of neurological deficits. Neurological deficit was assessed in each animal on a numerical scale 
of 0–30 before ischemia and at day 1 and/or 2 after ischemia, depending on protocol. The score was obtained by 
using a series of behavioural tests including grip test, scotch test, tail suspension test, beam test, wire hang test, 
circles tests and by assessing comportment into home cage as previously described52–54. Higher score indicate 
greater functional impairment. Mice were studied in random order in each series and blindly with regard to 
treatment.

Determination of infarct volume. Two days after reperfusion and after neurological score evaluation 
mice were sacrificed. Brains were rapidly removed and sectioned into six coronal sections, 2 mm thick, using 
a mice brain matrix. Coronal brain sections were stained by incubation in a 0.5% 2,3,5-triphenyltetrazolium 
chloride (TTC, Sigma-Aldrich, France) solution for 30 min at 37 °C in the dark55 and fixed in 10% formalin 
(Sigma-Aldrich, France) for two hours prior to analysis. Photographs of the sections were obtained using digital 
camera attached to microscope (Nikon SMZ800, Italy). The infarction area, outlined in white, and the entire 
section area were measured under microscope (Nikon SMZ800, Italy) on the anterior surface of each section in a 
blinded manner with regard to protocol and treatment, using Image Analyzer Software (ImageJ, NIH). For each 
section, infarction area was normalized to the whole section area. For each animal, results for six sections were 
averaged.

Cerebral infarction was also evaluated by using Haematoxylin and eosin staining on the same sections of 
the brain for confirmation56. Brain sections were fixed in 10% formalin during 24 h, embedded in paraffin, 
cut into 6-μm section and stained with haematoxylin and eosin according to the manufacturer’s instructions 
(Sigma-Aldrich, France). Photomicrographs were obtained using digital camera attached to light microscope 
(Leica DM 4000B and LAS v3.8 software). Histological lesions were assessed in a blinded manner regarding 
protocol and treatment using a numerical scale of 0–3 for each animal57. Higher score indicate more severe his-
tological lesions.

Evaluation of brain oedema by measurement of brain water content (BWC). Procedure was per-
formed as previously described58, 59. Briefly, mice were killed by decapitation and brains were removed. Ischemic 
hemisphere was weighed before (wet weight) and after being dried at 110 °C for 24 h (dry weight). BWC was 
calculated and expressed as follows: BWC (%) = (wet weight − dry weight)/wet weight ×100.

Quantification of B1R and B2R mRNA by real-time PCR. Total RNA was isolated from the whole 
ipsilateral hemisphere, in occluded or sham operated mice (day 0, 1, 3 and 7), using TRIzol (Invitrogen, France) 
and reverse transcribed with superscript II reverse transcriptase. The cDNAs were amplified and quantified 
using TaqMan Universal Master Mix and Assays-on-Demand Gene Expression Probes for gene of B1R and B2R 
(Applied Biosystems, France) in an ABI PRISM-7000 Sequence Detection System (Applied Biosystems, France), 
as previously described60. Each sample was tested in triplicate. Data were normalized to 18 S rRNA. Changes in 
the target gene were calculated by the 2−∆∆CT comparative method for each sample61.

Data expression and statistical analysis. Data are expressed as mean ± SEM. Effects of surgical pro-
cedure, diabetes and treatments on mortality and infarct size were evaluated by chi2 test or one-way ANOVA. 
For repeated measurements of neurological score two-way ANOVA was used. ANOVA was followed by Tukey 
multiple comparison tests. For comparison of mRNA level, data were analysed by Mann-Whitney test. Statistical 
significance was accepted at p-value less than 0.05.

Data availability statement. The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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