
HAL Id: hal-01585880
https://hal.sorbonne-universite.fr/hal-01585880v1

Submitted on 12 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoupling Translation Lookaside Buffer Coherence
from Cache Coherence

Hao Liu, Quentin L. Meunier, Alain Greiner

To cite this version:
Hao Liu, Quentin L. Meunier, Alain Greiner. Decoupling Translation Lookaside Buffer Coherence
from Cache Coherence. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2017), Jul
2017, Bochum, Germany. pp.92 - 97, �10.1109/ISVLSI.2017.25�. �hal-01585880�

https://hal.sorbonne-universite.fr/hal-01585880v1
https://hal.archives-ouvertes.fr

Decoupling Translation Lookaside Buffer Coherence from Cache Coherence

Hao Liu, Quentin L. Meunier and Alain Greiner
Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu 75005 Paris.

Emails: {hao.liu,quentin.meunier,alain.greiner}@lip6.fr

Abstract—Many multicore and manycore architectures support
hardware cache coherence. However, most of them rely on soft-
ware techniques to maintain Translation Lookaside Buffer (TLB)
coherence, namely the TLB shootdown routine, which is a costly
procedure, known to be hardly scalable.

The TSAR architecture is a manycore architecture including
hardware TLB coherence, but in which the TLB coherence mech-
anism is tightly coupled to the cache coherence protocol, resulting
in useless TLB invalidations. We propose to improve this existing
TLB coherence scheme by adding a hardware module which
allows separating data from metadata for cache lines containing
address translation. This allows to eliminate the need to invalidate
TLB entries when a line containing a translation is evicted from
the L1 cache.

Our solution does not modify the cache coherence protocol,
does not increase the critical path in the L1 cache, and even
results in little memory savings. Performance results show that
our solution allows to eliminate from 90% to 95% of TLB scans
operations, and from 50% to 80% of TLB flushes. This in turn
results in an overall performance improvement of 5% to 20% of
execution times on a 16-core architecture.

Index Terms—Translation Lookaside Buffer; Hardware TLB Co-
herence; TLB Shootdown; TLB Flush; Manycore; Scalability;

1. Introduction

Thanks to technology advances, we can put an ever growing
number of cores in one single chip [1], leading to so called
multi- and manycore chips [2]. If the question of coherence is
not definitely answered for these architectures, it is now rather
widely accepted that hardware supported on-chip coherence
will be part of future architectures [3], to the detriment of
software coherence.

However, most manycore architectures [4], [5], [6] still
rely on the operating system to maintain TLB coherence. TLB
coherence refers to the fact that when there is a modification of
a piece of data which is a page table entry, namely an address
translation, it is necessary to invalidate or update the copies
of this translation in all the TLBs (both instruction and data).
If not done properly, the other threads of the process with
outdated page table entries in their TLB can access invalid
pages.

The most common approach for dealing with TLB co-
herence is to use the TLB shootdown approach [7]. In this

approach, the operating system is in charge of sending an in-
validation interrupt to all the processors owning the translation.
However, this approach is not convenient when TLB misses
are handled in hardware: since the operating system has no
knowledge of the location of the copies to invalidate, it must
use a broadcast policy and interrupt all the threads. As shown
in [8], this approach is both inefficient and hardly scalable,
suggesting that hardware TLB coherence will emerge as a
standard solution in future chips, following the same evolution
as cache coherence.

In this article, we do not try to demonstrate that hardware
TLB coherence is better than software coherence, but instead
focus on the link between cache coherence and TLB coherence:
we show that a decoupled coherence scheme is beneficial for
performances compared to a unified cache and TLB coherence
scheme. Section 2 describes the problematic of maintaining
TLB coherence in hardware and presents related works; sec-
tion 3 details our proposed solution; section 4 describes our
experimental results, while section 5 concludes.

2. Hardware TLB Coherence

There have been a various number of techniques proposed
for maintaining TLB coherence in hardware in a multiprocessor
system. [9] presents a technique for maintaining TLB coher-
ence in an I/O bridge. The coherence protocol guarantees an
exclusive access to the page table containing the entry placed
into the TLB, thus forbidding the sharing of the page with
other I/O bridges (or processors). As such, this solution is
not applicable when there are many threads to run in parallel,
all sharing the same page table, what can be expected on a
manycore architecture.

In [10], a mechanism is introduced for maintaining TLB
coherence based on specific messages which are broadcast on
every TLB miss, TLB eviction or translation modification. Not
many details are given about the protocol or the architecture
itself, but the systematic broadcast strategy is not sustainable
for manycore architectures; besides, a particular protocol has
to be defined for specific TLB communication.

[11] uses a poison bit associated with each memory block,
which is set when the virtual to physical translation for this
block is modified. An exception is then generated as a response
to a query related to this translation. We find that the main
drawback of this approach is the way the poison bit has to
be reset, which requires flushing the TLBs and timestamping
these flushes, what is very costly.

978-1-5090-6762-6/17/$31.00 c©2017 IEEE

[12] uses a L2 directory for TLB, keeping a bitmap for
all entries. When the OS sends a shootdown, this directory
is accessed to only sends invalidations to the corresponding
TBLs. This approach does not fit our hypotheses: (a) it uses
a bitmap which does not scale for a manycore architecture;
and (b) it does not eliminate the intervention of the operating
system.

The TSAR architecture [13], [14], used as a baseline for
this work, follows the same principles as the approach pre-
sented in [8]. In this approach, TLB coherence is plugged to
the cache coherence protocol, and both the protocol between
L1 and L2 caches and the L2 caches themselves remain un-
modified.

The rest of the section presents the baseline scheme for
maintaining TLB coherence. We assume an architecture with
32-bit virtual addresses and 40-bit physical addresses, main-
taining coherence between L1 and L2 caches in hardware.
Each L1 cache is split between instruction and data, and there
is one TLB for each part, composed of 8 ways and 8 sets.
The coherence protocol uses a write-through strategy, but the
solution for TLB coherence could be applied for any type of
cache coherence protocol.

In case of a TLB miss, a hardware automaton (called Table-
Walk) is in charge of accessing the page table located in mem-
ory and updating the TLB accordingly. The TLB coherence
in our baseline system is maintained in hardware, using the
following rules:
• Page tables are cacheable;
• In case of TLB miss, the Table-Walk automaton must com-

pute the Page Table Descriptor (PTD) address, and then the
Page Table Entry (PTE) address;

• The Table-Walk automaton does not directly send requests
to the memory but transmits them to the local data cache;

• If the local L1 cache contains the page table line containing
the missing translation, it gives it to the TLB which is
updated. Otherwise, the data cache controller gets it from
the L2 cache;

• Since a coherence protocol is maintaining coherence between
L1 and L2 caches, any modification of the page table will
be propagated in the L1 caches owning a copy;

• L1 caches maintain for each directory entry a is_ppn bit
indicating whether the line belongs to a second level page
table, and thus may contain Physical Page Numbers (PPNs)
which have been copied into TLBs;

• Similarly, L1 caches contain for each directory entry a
is_ptn bit indicating that the line belongs to a first level
page table, and thus may contain PTDs which have been
used to compute PPNs stored into TLBs;

• Every TLB entry contains a nline field, which is the cache
line number of the line containing the virtual to physical
translation.

• If the L1 cache evicts a line line having the is_ppn bit
set, it performs an associative search in both the ITLB and
DTLB to invalidate the entries contained in the line line
(operation Scan-TLB);

• If the L1 cache controller evicts a line having the is_ptn
bit set, it performs an invalidation of all entries in both TLBs

(operation Flush-TLB), since any translation could be in the
second level page table of the modified first table entry.

For the last two items, the line eviction can be caused by
two distinct reasons: either the L1 cache needs to free some
space in order to store the result of a miss (local eviction), or
it has received a coherence request on the considered line.

Although a prototype ASIC version of the TSAR architec-
ture is currently built with this baseline scheme, the latter has a
drawback since it imposes the strong inclusivity of both TLBs
in the L1 cache, in order to guaranty that future coherence
requests will be forwarded. Indeed, updates or invalidations
targeting a line containing one or several translations can be
made only if the L2 cache is aware that these translations exist.
This implies that any eviction from the L1 cache of a line
marked either is_ppn or is_ptn (later referenced as in_tlb)
requires to invalidate all corresponding TLBs entries: if not
done, it is possible that a page table update will not be seen
by this cache, resulting in an invalid access, for example after
a page unmap.

0

20

40

60

80

100

FFT LU Ocean Radix Convol.Pe
rc

en
ta

ge
 o

f S
ca

n-
T

L
B

 a
nd

 R
es

et
-T

L
B

 o
pe

ra
tio

ns

Scan-TLB

Reset-TLB

Figure 1: Percentage of Scan-TLB and Flush-TLB operations
caused by local evictions

The TLB operations resulting from local evictions harm
performance, since local evictions are responsible for approxi-
mately 50% of Flush-TLB and 95% of Scan-TLB operations, as
shown in figure 1. The contribution of this article is to propose
a new hardware TLB coherence scheme, which releases this in-
clusivity constraint, thus allowing a TLB translation to remain
valid when the corresponding cache line is locally evicted.

One idea could be to promote the lines marked in_tlb
when a local eviction happens. However, it is not possible
to update the LRU information depending on the translations
accessed, since it would require to access the cache twice for
each instruction or data access: a first time for the effective
instruction or data, and then after the translation and retrieval
of the line containing this translation, a second time to update
the LRU information of that line. Thus, such a policy implies
having a fixed higher priority for lines marked in_tlb, with
the risk of polluting the cache endlessly with useless transla-
tions.

Instead, our solution consists in decoupling metadata asso-
ciated to lines containing translations from their presence in
the L1 cache.

3. Proposed Solution

3.1. Principles

When a page table entry is modified by the OS, the write-
through strategy of the coherence protocol is used: the line is
first updated in the local L1 cache if it is present; then the
write is propagated to the L2 cache which sends invalidations
or updates to caches containing copies. When such a request
arrives at a L1 cache, the corresponding TLB entries are
invalidated as before via a Scan-TLB or Flush-TLB operation.

In order to maintain coherence, a L1 cache needs to
continue to receive coherence requests for evicted lines cor-
responding to translations which are still present in a TLB.
This means that for evicting such a line, the eviction must be
silent and not notified to the L2 cache. This is done by storing
information associated to these lines outside from the cache,
in order to treat properly coherence requests.

For this, our proposed solution introduces a hardware struc-
ture, called PT3, for Persistent TLB Translation Table, which
allows to decouple metadata associated to lines containing
translations from their presence in the L1 cache. Upon recep-
tion of coherence requests, the PT3 is accessed along with the
cache to check if the target line contains translations.

Our solution integrates into the existing coherence protocol,
as is the case in [8]; however, the latter solution must access
a content addressable memory for every write, which costs
several cycles, and could potentially block the processor in
case of several consecutive writes. On the contrary, our solution
first tests if a write targets a TLB entry with no additional cost,
and then performs the associated operations in the subsequent
cycles, but only when the test returned true.

3.2. Structure of the PT3

The PT3 is essentially a metadata set-associative cache for
lines marked in_tlb, storing for each of its line, the number
of corresponding entries contained in the ITLB and DTLB. It
contains 8 sets of 8 ways each.

The structure of a PT3 entry is described in table 1. When
a cache line X marked in_tlb is locally evicted from the L1
cache, the entry bit in_cache is reset, and the associated TLB
entries remain valid. The L1 cache controller does not send a
cleanup request to the L2 cache. In case of a TLB miss, the L1
cache is searched to obtain the PPN and the PT3 is accessed
to know whether it already contains an entry for this line X .
Four cases are possible:
• If the line is both valid in the cache and in the PT3, the
count field in the PT3 is incremented (count ← count +
1).

• If the line is valid in the cache but not in the PT3, a new entry
for this line is added in the PT3 (count ← 1, in_cache ←
1).

TABLE 1: Structure of a PT3 entry

Field name Size Description

nline 31 bits TAG of the physical address of the

line in the PT3

valid 1 bit Valid bit

lru 1 bit LRU bit for victim selection

count 5 bits Number of TLB entries matching

the line (max. 16 entries per line)

in_cache 1 bit Set if the matching line is present

in the data cache

kernel 1 bit Set if the line contains entries of

the kernel page table

ptd 1 bit Set if the matching line contains at

least one entry with the is_ptn

bit set

• If the line is absent from both the L1 cache and the PT3, a
read request is sent to the L2 cache, and upon response a
new entry is created in the PT3 (count ← 1, in_cache ←
1).

• If the line is invalid in the cache but valid in the PT3, this
means that the line has been evicted from the L1 cache but
that the L2 cache has not been informed of this eviction. An
uncached read request is sent to the L2 cache, which does
not modify the line state in the L2 cache directory. The L1
cache and the PT3 entry are updated (count ← count + 1,
in_cache ← 1).

When the L1 cache receives an update, receives an in-
validate, or emits a write request for a line marked in_tlb,
the operation Scan-TLB or Flush-TLB is performed only if the
count field value is not 0.

In case of a context switch, all the TLBs entries need to
be invalidated, except the entries corresponding to operating
system pages, since these pages are replicated in all processes;
these entries are identified with a kernel bit in the TLBs.
Similarly, the entries in the PT3 with the kernel bit set are
kept valid, while the others are reinitialized (count = 0) but not
invalidated. Indeed, if the bit in_cache is 0, the invalidation
of the entry requires the sending of a cleanup request. To avoid
the sending of potentially many cleanup requests, the entries
with count = 0 will instead be lazily replaced when necessary.

The whole cache structure, including the TLB and the PT3,
is shown in figure 2.

3.3. Hardware Cost Comparison

The number of bits memorized in the PT3 is 64 lines × 41
bits per line, i.e. a total of 2,624 bits.

However, since the PT3 contains all the information relative
to TLB coherence, some fields in both L1 caches and TLB can

Cache TAG (28) Index (6) Offset (6)

PPN Page offset

TAG + Valid DATA

=

Cache hit

Hit way

Data

TAG TLB Flags + PPN

TAG TLB (17) Ind. TLB (3) Offset (12)

VPN Page offset

= Hit way

PPN

TLB hit

TAG PT3 Flags

= Hit way
TAG PT3

in_tlb hitTLB operation
required

TLB PT3 Cache

Mips

Virtual address (32 bits) Physical address (40 bits)

TAG PT3 (31) Ind.
PT3

(3)

Virtual address

Physical address

Hit information

Data

Figure 2: L1 Cache Structure with the PT3

be removed. In particular, the two bits is_ppn and is_ptn
from each directory entry are now useless, resulting in 256 ×
2 = 512 bits saved; in the TLB, the 34-bit wide nline field
can be replaced with a 6-bit PT3 offset, resulting in 2 × 64 ×
(34 - 6) = 3,584 bits saved compared to the baseline solution.
Overall, the number of bits saved thanks to this solution is
1,472.

Of course, additional logic is necessary in the L1 cache, but
this overhead is expected to be almost negligible compared to
the whole L1 cache controller.

3.4. Victim Selection

The small size of the PT3 implies that a valid entry can be
evicted to add a new entry instead. The victim selection process
aims at minimizing the cost of an eviction; more precisely, lines
are searched in the following order, by increasing cost:
• An invalid entry;
• An unused entry (count = 0) such that in_cache = 1. The

cost of this eviction is null;
• An unused entry (count = 0) such that in_cache = 0. A

cleanup request must be sent to the L2 cache;
• An entry containing no PTD (ptd = 0). A Scan-TLB oper-

ation is required to invalidate all TLB entries matching the
selected line;

• An entry containing a PTD (ptd = 1). A Flush-TLB operation
is required on both TLBs.

3.5. Critical Path Delay Analysis

The PT3 does not increase the L1 cache critical path. In
the L1 controller, the critical path consists in accessing the
data part of the data cache (in SRAM) and responding to a
processor request before the end of the cycle, as illustrated in
figure 3. The TLB (in registers) can be accessed at the same

Mips

DIR

DATA

TLB

PT3

Mips

DIR

DATA

=

=
Vaddr

Word selection Way selection

TAG

Paddr

Hit

Data

Hit in_tlb

Vaddr

TLB
operation
required

critical path

Figure 3: Critical Path in the L1 Cache

time as the L1 cache since the number of bits to address the
cache (12) is equal to the number of bits for the page offset.
Accessing the PT3 can also be made in parallel with the other
accesses since the bits used to index it are contained in the
page offset, and its structure is very similar to the TLB. This
access is required for every write to detect if a subsequent TLB
operation is necessary.

3.6. Working Example

Table 2 presents a scenario example showing the evolution
of information inside the TLB, PT3 and L1 cache to better
understand the interactions between these components.

The events occurring are:

TABLE 2: Working Example for the PT3

TLB PT3 L1 Cache

Event
Number of

valid count in_cache valid
entries

a 0 0 0 0 0

b 0 0 0 0 1

c 1 1 1 1 1

d 2 1 2 1 1

e 2 1 2 0 0

f 3 1 3 1 1

g 0 0 0 0 0

h 1 1 1 1 1

i 0 1 0 1 1

j 0 0 0 0 0

(a) At startup, no component contains any information on line
L.

(b) Line L is accessed by the operating system to build the
page table. It is copied in the L1 cache.

(c) A TLB miss happens, for which the Table-Walk automa-
ton finds the PPN in line L. The PT3 stores information
about line L in a new entry (count = 1, in_cache =
1). The missing PPN is stored in the TLB along with the
corresponding index in the PT3.

(d) Another TLB miss happens which has its translation in
line L. The entry for line L in the PT3 is updated: count
= 2. The missing PPN is stored in the TLB, along with
the index in the PT3.

(e) Line L is evicted from the L1 to free some space. The
field in_cache is decreased to 0 in the PT3. The L1 cache
does not send a cleanup request to the L2.

(f) A third TLB miss happens. Line L is fetched again in the
L1 cache. The missing PPN is stored in the TLB with the
PT3 index. The TLB now has 3 valid entries for line L.
In the PT3, count = 3 and in_cache = 1.

(g) The L1 cache controller receives an invalidate request
for line L. It performs a Scan-TLB operation in order to
invalidate all 3 entries corresponding to L in both TLBs.
It invalidates line L in the L1 cache and sends a cleanup
request to the L2.

(h) After a new TLB miss, the 3 components are in the same
state as step (c).

(i) The TLB evicts the entry included in line L to replace it.
In the PT3, the count field for this line is set to 0, but
this line is still present in the L1 cache.

(j) The L1 cache controller receives an invalidate request.
This time, the controller invalidates line L in the cache
and sends a cleanup request to the L2, but does not send
a Scan-TLB operation since the count field for this line
is 0.

4. Experimental Results

We implemented our solution in the cycle-accurate Sys-
temC model of the TSAR architecture [13], extending the
SoCLib library [15]. We compare both solutions on the fol-
lowing metrics: total execution time, number of TLB misses
and number of cache misses caused by a TLB miss. We
also checked that the PT3 allowed to make the number of
TLB operations fitting results shown in figure 1: since all
operations related to local evictions are removed, we checked
that TLB operations related to writes or coherence request did
not increase, thus resulting in a drop of 90% to 95% of Scan-
TLB operations and of 50% to 80% of Flush-TLB operations.

The architecture and application parameters are described
in table 3. Applications are taken from Splash-2 [16], except for
Convolution, which is a convolution filter applied to an image.
We selected these applications w.r.t. their reasonable simulation
time and present all the results we obtained. Note that these
applications do not particularly map or unmap a lot of pages,
as the effect we want to measure, cache and TLB coherence
coupling, can be visible even with no TLB modification. The
OS we used is NetBSD, with a manual placement of threads
on cores.

TABLE 3: Simulation Parameters

(a) Architecture Parameters

Processor type Mips-32

Mesh Size (1 core/node) 4×4

L1 Cache Sets (I & D) 64

L1 Cache Ways (I & D) 4

L1 Cache Words (I & D) 16

L2 Cache Sets 256

L2 Cache Ways 16

L2 Cache Words 16

TLB Sets (I & D) 8

TLB Ways (I & D) 8

PT3 Sets (I & D) 8

PT3 Ways (I & D) 8

(b) Applications Parameters

Benchmark Input Data

FFT 210 points

Radix 262,144 keys

LU 512×512 elements

Ocean 258×258 elements

Convol. 1024×1024 image

Results are presented in figure 4, and are normalized w.r.t.

0

20

40

60

80

100

FFT LU Ocean Radix Convol.

T
L

B
 M

is
se

s
N

or
m

al
iz

ed
 w

.r.
t.

th
e

B
as

el
in

e
Sy

st
em

(a) TLB Misses

0

20

40

60

80

100

FFT LU Ocean Radix Convol.E
xe

c.
 T

im
es

 N
or

m
al

iz
ed

 w
.r.

t.
th

e
B

as
el

in
e

Sy
st

em
(b) Execution Times

0

20

40

60

80

100

FFT LU Ocean Radix Convol.C
ac

he
 M

is
se

s
N

or
m

al
iz

ed
 w

.r.
t.

th
e

B
as

el
in

e
Sy

st
em

(c) Cache Misses caused by TLB Misses

Figure 4: Results with the PT3 Normalized w.r.t. the Baseline Architecture

values on the baseline architecture.
Figure 4a shows that the number of TLB misses is largely

reduced, reaching 70% for LU and Radix. Figure 4b shows
that the total execution times are reduced from 5% to 20%,
corroborating the TLB misses results. Finally, we analyze the
number of cache misses caused by TLB misses. The PT3

reduces these misses by approximately 60%. This result is
twice positive: first, it decreases the network traffic; second,
it minimizes the contention in the L2 cache containing the
page tables. We also expect the decrease in traffic to turn
into overall energy savings, although we did not perform such
measurements.

5. Conclusion

We proposed an efficient solution for maintaining TLB
coherence in hardware, and we advocate that TLB coherence
should not be coupled with cache coherence, since it can lead to
useless TLB invalidations. The main idea consists in releasing
the inclusivity constraint between TLBs and L1 caches, by
storing coherence related information in a separate structure
called PT3. Moreover, this structure indirectly increases the
L1 cache capacity, since it allows not to duplicate in the L1
cache the information stored in the PT3. Finally, this solution
has a better hardware memory cost than the original one, and
it does not increase the critical path in the L1 cache.

We applied this solution to the cycle-accurate model of the
TSAR manycore architecture, and observed that this solutions
improves the hit rate on both TLBs. This translates into per-
formance improvements on the total execution time, ranging
from 5% to 20% on five applications.

Future work includes the implementation of our solution at
the RTL level in order to integrate it in the reference VHDL
TSAR models. This will allow for measurements of the energy
saved by this solution.

References

[1] J. M. Rabaey, “Scaling the power wall: Revisiting the low-power design
rules,” Keynote speech at SoC, vol. 7, 2007.

[2] S. Borkar, “Thousand core chips: a technology perspective,” in Proceed-
ings of the 44th annual Design Automation Conference. ACM, 2007,
pp. 746–749.

[3] M. M. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache coherence
is here to stay,” Communications of the ACM, vol. 55, no. 7, pp. 78–89,
2012.

[4] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. C.
Kimerling, and A. Agarwal, “Atac: a 1000-core cache-coherent processor
with on-chip optical network,” in Proceedings of the 19th international
conference on Parallel architectures and compilation techniques. ACM,
2010, pp. 477–488.

[5] C. Ramey, “Tile-gx100 manycore processor: Acceleration interfaces and
architecture,” Tilera Corporation, 2011.

[6] A. Ros, M. E. Acacio, and J. M. Garcıa, “Cache coherence protocols for
many-core cmps,” Parallel and Distributed Computing, 2010.

[7] D. L. Black, R. F. Rashid, D. B. Golub, and C. R. Hill, Translation
lookaside buffer consistency: a software approach. ACM, 1989, vol. 17,
no. 2.

[8] B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy, “Unified
instruction/translation/data (unitd) coherence: One protocol to rule them
all,” in High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on. IEEE, 2010, pp. 1–12.

[9] S. Duncan, “Coherent translation look-aside buffer,” 2003, uS Patent
6,633,967.

[10] P. Damron, “Method and system for translation lookaside buffer coher-
ence in multiprocessor systems,” 2005, uS Patent 6,931,510.

[11] J. Laudon and D. Lenoski, “System and method for maintaining co-
herency of virtual-to-physical memory translations in a multiprocessor
computer,” 2001, uS Patent 6,182,195.

[12] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez,
A. Mendelson, N. Navarro, A. Cristal, and O. S. Unsal, “Didi: Mitigating
the performance impact of tlb shootdowns using a shared tlb directory,”
in Parallel Architectures and Compilation Techniques (PACT), 2011
International Conference on, 2011, pp. 340–349.

[13] TSAR: Tera-Scale Multiprocessor ARchitecture, Available: https://www-
soc.lip6.fr/trac/tsar, 2010.

[14] Y. Gao, “Generic cache controller for a massively parallel manycore ar-
chitecture using coherent shared memory,” Ph.D. dissertation, Université
Pierre et Marie Curie (UPMC), 2011.

[15] The Soclib Consortium, “Soclib: an open platform for virtual pro-
totyping of multi-processors system on chip,” [Online]. Available:
http://www.soclib.fr, Tech. Rep., 2008.

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-
2 programs: Characterization and methodological considerations,” in
Proceedings of the 22nd Annual International Symposium on Computer
Architecture. New York: ACM Press, 1995, pp. 24–37.

