R. Ramakrishnan, S. Antonia, and D. Gabrilovich, Combined modality immunotherapy and chemotherapy: a new perspective, Cancer Immunology, Immunotherapy, vol.118, issue.10, pp.1523-1529, 2008.
DOI : 10.4049/jimmunol.166.1.678

J. Schlom, P. Arlen, and J. Gulley, Cancer Vaccines: Moving Beyond Current Paradigms, Clinical Cancer Research, vol.13, issue.13, pp.3776-3782, 2007.
DOI : 10.1158/1078-0432.CCR-07-0588

URL : http://clincancerres.aacrjournals.org/content/clincanres/13/13/3776.full.pdf

M. Dudley, J. Yang, R. Sherry, M. Hughes, R. Royal et al., Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens, Journal of Clinical Oncology, vol.26, issue.32, pp.5233-5239, 2008.
DOI : 10.1200/JCO.2008.16.5449

L. Apetoh, F. Ghiringhelli, A. Tesniere, M. Obeid, C. Ortiz et al., Toll-like receptor 4???dependent contribution of the immune system to anticancer chemotherapy and radiotherapy, Nature Medicine, vol.289, issue.9, pp.1050-1059, 2007.
DOI : 10.4049/jimmunol.173.1.307

URL : https://hal.archives-ouvertes.fr/hal-00316924

F. Ghiringhelli, L. Apetoh, F. Housseau, G. Kroemer, and L. Zitvogel, Links between innate and cognate tumor immunity, Current Opinion in Immunology, vol.19, issue.2, pp.224-231, 2007.
DOI : 10.1016/j.coi.2007.02.003

C. Garnett, C. Palena, M. Chakraborty, K. Tsang, J. Schlom et al., Sublethal Irradiation of Human Tumor Cells Modulates Phenotype Resulting in Enhanced Killing by Cytotoxic T Lymphocytes, Cancer Research, vol.64, issue.21, pp.7985-7994, 2004.
DOI : 10.1158/0008-5472.CAN-04-1525

R. Ramakrishnan, D. Assudani, S. Nagaraj, T. Hunter, H. Cho et al., Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice, Journal of Clinical Investigation, vol.120, issue.4, pp.1111-1124, 2010.
DOI : 10.1172/JCI40269DS1

L. Luznik, R. Jones, and E. Fuchs, High-dose cyclophosphamide for graft-versus-host disease prevention, Current Opinion in Hematology, vol.17, issue.6, pp.493-499, 2010.
DOI : 10.1097/MOH.0b013e32833eaf1b

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138214

P. Greenberg, D. Kern, and M. Cheever, Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+,2- T cells. Tumor eradication does not require participation of cytotoxic T cells, Journal of Experimental Medicine, vol.161, issue.5, pp.1122-1134, 1985.
DOI : 10.1084/jem.161.5.1122

M. Dudley, J. Wunderlich, P. Robbins, J. Yang, P. Hwu et al., Cancer Regression and Autoimmunity in Patients After Clonal Repopulation with Antitumor Lymphocytes, Science, vol.298, issue.5594, pp.850-854, 2002.
DOI : 10.1126/science.1076514

F. Ghiringhelli, C. Menard, P. Puig, S. Ladoire, S. Roux et al., Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients, Cancer Immunology, Immunotherapy, vol.95, issue.5, pp.641-648, 2007.
DOI : 10.4049/jimmunol.176.5.2722

M. Lutsiak, R. Semnani, D. Pascalis, R. Kashmiri, S. Schlom et al., Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide, Blood, vol.105, issue.7, pp.2862-2868, 2005.
DOI : 10.1182/blood-2004-06-2410

R. North, Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells, Journal of Experimental Medicine, vol.155, issue.4, 1982.
DOI : 10.1084/jem.155.4.1063

P. Berraondo, C. Nouze, X. Preville, D. Ladant, and C. Leclerc, Eradication of Large Tumors in Mice by a Tritherapy Targeting the Innate, Adaptive, and Regulatory Components of the Immune System, Cancer Research, vol.67, issue.18, pp.8847-8855, 2007.
DOI : 10.1158/0008-5472.CAN-07-0321

L. Zitvogel, L. Apetoh, F. Ghiringhelli, and G. Kroemer, Immunological aspects of cancer chemotherapy, Nature Reviews Immunology, vol.313, issue.1, pp.59-73, 2008.
DOI : 10.4049/jimmunol.172.4.2039

J. Pollard, Trophic macrophages in development and disease, Nature Reviews Immunology, vol.87, issue.4, pp.259-270, 2009.
DOI : 10.1172/JCI200319451

D. Gabrilovich and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system, Nature Reviews Immunology, vol.172, issue.3, pp.162-174, 2009.
DOI : 10.4049/jimmunol.172.7.4418

A. Mantovani, S. Sozzani, M. Locati, T. Schioppa, A. Saccani et al., Infiltration of Tumours by Macrophages and Dendritic Cells: Tumour-Associated Macrophages as a Paradigm for Polarized M2 Mononuclear Phagocytes, Novartis Found Symp, vol.256, pp.137-145, 2004.
DOI : 10.1002/0470856734.ch10

J. Engelhardt, B. Boldajipour, P. Beemiller, P. Pandurangi, C. Sorensen et al., Marginating Dendritic Cells of the Tumor Microenvironment Cross-Present Tumor Antigens and Stably Engage Tumor-Specific T Cells, Cancer Cell, vol.21, issue.3, pp.402-417, 2012.
DOI : 10.1016/j.ccr.2012.01.008

R. Lindquist, G. Shakhar, D. Dudziak, H. Wardemann, T. Eisenreich et al., Visualizing dendritic cell networks in vivo, Nature Immunology, vol.7, issue.12, pp.1243-1250, 2004.
DOI : 10.1186/1472-6750-2-11

N. Restifo, P. Spiess, S. Karp, J. Mule, and S. Rosenberg, A nonimmunogenic sarcoma transduced with the cDNA for interferon gamma elicits CD8+ T cells against the wild-type tumor: correlation with antigen presentation capability, Journal of Experimental Medicine, vol.175, issue.6, 1992.
DOI : 10.1084/jem.175.6.1423

I. Zeelenberg, M. Ostrowski, S. Krumeich, A. Bobrie, C. Jancic et al., Targeting Tumor Antigens to Secreted Membrane Vesicles In vivo Induces Efficient Antitumor Immune Responses, Cancer Research, vol.68, issue.4, pp.1228-1235, 2008.
DOI : 10.1158/0008-5472.CAN-07-3163

+. Foxp3, cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes, Immunity, vol.32, pp.266-278

M. De-bruijn, W. Slieker, J. Van-der-loo, J. Voerman, W. Van-ewijk et al., Distinct mouse bone marrow macrophage precursors identified by differential expression of ER-MP12 and ER-MP20 antigens, European Journal of Immunology, vol.5, issue.10, pp.2279-2284, 1994.
DOI : 10.1007/978-1-4757-9534-9_2

C. Sunderkotter, T. Nikolic, M. Dillon, N. Van-rooijen, M. Stehling et al., Subpopulations of Mouse Blood Monocytes Differ in Maturation Stage and Inflammatory Response, The Journal of Immunology, vol.172, issue.7, pp.4410-4417, 2004.
DOI : 10.4049/jimmunol.172.7.4410

S. Biswas and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm, Nature Immunology, vol.313, issue.10, pp.889-896, 2010.
DOI : 10.1016/j.ccr.2009.06.017

J. Condeelis and J. Pollard, Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis, Cell, vol.124, issue.2, pp.263-266, 2006.
DOI : 10.1016/j.cell.2006.01.007

URL : http://doi.org/10.1016/j.cell.2006.01.007

A. Sica, P. Larghi, A. Mancino, L. Rubino, C. Porta et al., Macrophage polarization in tumour progression, Seminars in Cancer Biology, vol.18, issue.5, pp.349-355, 2008.
DOI : 10.1016/j.semcancer.2008.03.004

P. Allavena, A. Sica, G. Solinas, C. Porta, and A. Mantovani, The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages, Critical Reviews in Oncology/Hematology, vol.66, issue.1, pp.1-9, 2008.
DOI : 10.1016/j.critrevonc.2007.07.004

B. Caillou, M. Talbot, U. Weyemi, C. Pioche-durieu, A. Ghuzlan et al., Tumor-Associated Macrophages (TAMs) Form an Interconnected Cellular Supportive Network in Anaplastic Thyroid Carcinoma, PLoS ONE, vol.174, issue.5, 2011.
DOI : 10.1371/journal.pone.0022567.s005

URL : http://doi.org/10.1371/journal.pone.0022567

M. Salem, C. Diaz-montero, A. Khami, S. El-naggar, O. Naga et al., Recovery from Cyclophosphamide-Induced Lymphopenia Results in Expansion of Immature Dendritic Cells Which Can Mediate Enhanced Prime-Boost Vaccination Antitumor Responses In Vivo When Stimulated with the TLR3 Agonist Poly(I:C), The Journal of Immunology, vol.182, issue.4, pp.2030-2040, 2009.
DOI : 10.4049/jimmunol.0801829

T. Nakahara, H. Uchi, A. Lesokhin, F. Avogadri, G. Rizzuto et al., Cyclophosphamide enhances immunity by modulating the balance of dendritic cell subsets in lymphoid organs, Blood, vol.115, issue.22, pp.4384-4392, 2010.
DOI : 10.1182/blood-2009-11-251231

M. Salem, A. Khami, S. El-naggar, C. Diaz-montero, Y. Chen et al., Cyclophosphamide Induces Dynamic Alterations in the Host Microenvironments Resulting in a Flt3 Ligand-Dependent Expansion of Dendritic Cells, The Journal of Immunology, vol.184, issue.4, 2010.
DOI : 10.4049/jimmunol.0902309

G. Schiavoni, A. Sistigu, M. Valentini, F. Mattei, P. Sestili et al., Cyclophosphamide Synergizes with Type I Interferons through Systemic Dendritic Cell Reactivation and Induction of Immunogenic Tumor Apoptosis, Cancer Research, vol.71, issue.3, pp.768-778, 2011.
DOI : 10.1158/0008-5472.CAN-10-2788

M. Salem, S. El-naggar, and C. Dj, Cyclophosphamide induces bone marrow to yield higher numbers of precursor dendritic cells in vitro capable of functional antigen presentation to T cells in vivo, Cellular Immunology, vol.261, issue.2, pp.134-143, 2011.
DOI : 10.1016/j.cellimm.2009.11.011

E. Nakasone, H. Askautrud, T. Kees, J. Park, V. Plaks et al., Imaging Tumor-Stroma Interactions during Chemotherapy Reveals Contributions of the Microenvironment to Resistance, Cancer Cell, vol.21, issue.4, pp.488-503, 2012.
DOI : 10.1016/j.ccr.2012.02.017

W. Movie, TuDCs make dynamic interconnections within the tumor parenchyma. Time-lapse TPLSM video showing YFP + cells (green) within an MCA-OVA tumor explanted from a CD11c-YFP transgenic mouse

W. Movie, Antigen-specific OTI/TuDC interactions within untreated tumors Montage of two time-lapse TPLSM videos showing OTI-CFP cells (cyan) and CD11c-YFP + cells (green) within an MCA-OVA tumor (left) and an MCA tumor (right), 4 days after adoptive transfer in the absence of CP treatment

W. Movie, Antigen-specific OTI/TuDC interactions within CP-treated tumors Montage of two time-lapse TPLSM videos showing OTI-CFP cells (cyan) and CD11c-YFP + cells (green) within an MCA-OVA tumor (left) and an MCA tumor (right), 4 days after adoptive transfer in a mouse treated with 100 mg

W. Movie, Volume rendering OTI/TuDC interactions Montage of two time-lapse TPLSM 3D videos showing OTI-DsRed cell (red) and CD11c-YFP + cell (green) interactions within an MCA-OVA tumor before (left) and after (right) volume rendering

W. Movie, 3D reconstruction of volume rendering OTI/TuDC interactions . TPLSM 3D reconstruction of 1-?m z spacing stack showing OTI-DsRed cell (red) and CD11c-YFP + cell (green) interactions within an MCA-OVA tumor after volume rendering

W. Figure, TuDCs cross prime OTI T cells Representative dot plot of CD69 expression and CFSE dilution profile of OTI T cells 3 days after coculture with CD11c + cells isolated from MCA-OVA tumors (upper panels) or MCA tumors (lower panels) treated or not by CP

W. Movie, Volume rendering of distinct OTI/TuDC interactions

W. Figure, TILs interact with TuDCs of renal tumor. (A) EL4 tumor cells were inoculated i.v. into C57Bl6 mice and survival was monitored

. Kaplan-meier, TPLSM image showing CD8 + -DsRed T cells (red), CD11c-YFP + cells (yellow), and autofluorescent renal tubules (purple) within an EL4-kidney tumor, 18 days after tumor cell injection. Nucleus staining (blue) is performed by i.v. injection of Hoechst (50 ?g in PBS) before imaging. White dashed line delimits the healthy kidney and the tumor nodule. (C) Quantification of the proportion of OTI T cells interacting with YFP + cells and the relative frequency of the different types of OTI/YFP + cell interactions

W. Movie and . Til, TuDC interactions in EL4-kidney tumor. Timelapse TPLSM video showing CD8 + -DsRed T cells (red) and CD11c- YFP + cells (yellow) within an EL4-kidney tumor, 18 days after i.v. injection. Nucleus staining (blue) of autofluorescent renal tubules (purple) is performed by i.v. injection of Hoechst

W. Movie, OTI T cell dynamics in different regions of the tumor

W. Movie, OTI T cell dynamics in different regions of the tumor