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Background: Macro- and micro-structural neuroimaging measures provide valuable information on the patho-
physiology of Huntington's disease (HD) and are proposed as biomarkers. Despite theoretical advantages of mi-
crostructural measures in terms of sensitivity to pathology, there is little evidence directly comparing the two.
Methods: 40 controls and 61 early HD subjects underwent 3 T MRI (T1- and diffusion-weighted), as part of the
PADDINGTON study. Macrostructural volumetrics were obtained for the whole brain, caudate, putamen, corpus
callosum (CC) and ventricles. Microstructural diffusion metrics of fractional anisotropy (FA), mean-, radial- and
axial-diffusivity (MD, RD, AD) were computed for white matter (WM), CC, caudate and putamen. Group differ-
ences were examined adjusting for age, gender and site. A formal comparison of effect sizes determined which
modality and metrics provided a statistically significant advantage over others.
Results: Macrostructural measures showed decreased regional and global volume in HD (pb0.001); except the

ventricles which were enlarged (pb0.01). In HD, FA was increased in the deep grey-matter structures
(pb0.001), and decreased in theWM (CC, p=0.035;WM, p=0.053); diffusivity metrics (MD, RD, AD) were in-
creased for all brain regions (pb0.001). The largest effect sizes were for putamen volume, caudate volume and
putamen diffusivity (AD, RD and MD); each was significantly larger than those for all other metrics (pb0.05).
Conclusion: The highest performingmacro- andmicro-structural metrics had similar sensitivity to HD pathology
quantified via effect sizes. Region-of-interest may be more important than imaging modality, with deep
grey-matter regions outperforming the CC and global measures, for both volume and diffusivity. FA appears to
be relatively insensitive to disease effects.
© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-SA license. 
1. Introduction

Huntington's disease (HD) is an inherited neurodegenerative disor-
der caused by a CAG triplet repeat expansion in the gene encoding the
protein huntingtin. The disease is characterised clinically by an insidious
onset usually occurring in mid-late adulthood, followed by progressive
abnormalities of cognition, movement and behaviour. The classic patho-
logical hallmark of HD is early and pronounced striatal atrophy;
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however, there is now a wealth of evidence showing the neurodegener-
ative effects of HD to be diffuse, with involvement of the white matter
(WM) and extra-striatal grey matter, even prior to symptom onset
(Aylward et al., 2011; de la Monte et al., 1988; Paulsen et al., 2006;
Tabrizi et al., 2009, 2011, 2012).

The application of macro- and micro-structural magnetic resonance
imaging (MRI) measures to large multi-site cohorts will enable better
characterisation of the nature, course and clinical relevance of the
neurodegenerative process in HD. Macrostructural measures, usually
derived from T1-weighted MRI, represent the gross effects of neuro-
degeneration, namely brain atrophy. Microstructuralmeasures, derived
from diffusion-weighted MRI, are sensitive to the diffusion of water
molecules through the brain and are used tomake inferences regarding
the microstructural properties of the tissue. Although diffusion metrics
are typically used in relation towhitematter, they can also offer insights
into the microstructural architecture of grey matter. Interpretation of
cense. 
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diffusionmetrics is complex; however, it is generally accepted that such
metrics represent a combination of neural fibre density, alignment and
coherence, as well as changes to cellular membranes, axonal injury/loss
and demyelination— all of which influence the diffusion of water mol-
ecules through the brain. By examining a range of diffusion metrics, we
can better understand the relative contribution of these processes toHD
pathophysiology. For example, fractional anisotropy (FA) relates to
fibre coherence/directionality of the tissue microstructure; it is highest
in highly organisedwhitematter and is thought to decrease with loss of
tissue organisation or cellular integrity. Radial- and axial-diffusivity
measure the rate of diffusion perpendicular and parallel to the main di-
rection of diffusion, respectively. There is some evidence that increases
in radial diffusivity are associated with demyelination of WM tracts,
whereas abnormalities in axial diffusivity may be more reflective of ax-
onal degeneration and loss (Beaulieu, 2002), thus reflecting different el-
ements of the neurodegenerative process.

There is increasing evidence ofmicrostructural change inwhitemat-
ter such as increased diffusivity and decreased FA associated with HD
(Bohanna et al., 2011; Della et al., 2010; Di Paola et al., 2012; Reading
et al., 2005; Rosas et al., 2006). However, diffusion measures within
grey matter have produced inconsistent results, with both increased
and decreased diffusivity (Mascalchi et al., 2004; Rosas et al., 2006;
Seppi et al., 2006) and differences between findings in the caudate
and putamen (Douaud et al., 2009; Rosas et al., 2006). There is a need
to better characterise microstructural abnormalities evident in early-
manifest HD using a large cohort of patients.

Although both micro- and macro-structural neuroimaging metrics
are proposed as biomarkers for HD (Dumas et al., 2011; Paulsen et al.,
2008; Rosas et al., 2006; Tabrizi et al., 2011, 2012; Weaver et al.,
2009), there is little evidence directly comparing the two modalities in
terms of their relative sensitivities. For inherent biological reasons, it is
assumed that microstructuralmeasuresmay show improved sensitivity
to HD-related pathology compared with macrostructural measures (i.e.
wewould expect disruption of cellularmembranes and axonal injury to
precede gross morphometric changes); however, one small study com-
paring striatal volume with striatal Trace values suggested the opposite
(Vandenberghe et al., 2009). It is difficult to draw conclusions from this
early study since numbers were small (10 HD and 12 controls), the ac-
quisition protocol was basic (3 directions for the diffusion-weighted se-
quence) and there was no formal statistical comparison of modalities.
Conversely, another study using a voxel-wise approach to distinguish
pre-clinical HD subjects from controls, found that diffusion tensor imag-
ing (DTI) metrics gave a better separation than those derived from T1
data (Kloppel et al., 2008). Hence there is a need to perform a robust
statistical evaluation of the relative sensitivities of macro- and micro-
structural neuroimaging measures in HD.

To summarize, the main aims of the current study were:

(1) Tobetter characterisemicrostructural brain abnormalities evident
in early HDusing a large cohort ofwell-characterised patients and
controls, examining metrics over regions-of-interest previously
implicated in HD; namely the caudate, putamen, WM, CC, whole
brain and lateral ventricles;

(2) To directly compare the sensitivities of microstructural brain
measures with those of well-established macrostructural mea-
sures, via robust statistical comparison of effect sizes. Such anal-
ysis enables us to determine if any of the regions or modalities
investigated has a significant advantage over the others in
terms of sensitivity to HD pathology. This may be particularly
relevant when selecting imaging methods and modalities for
observational studies and has potential implications for the de-
sign of future clinical trials. Although future longitudinal analysis
will be required, it is important to first determine the cross-
sectional sensitivity of these imaging measures. To our knowl-
edge, this is the firstmulti-centre study to statistically evaluate ef-
fect sizes of macro- andmicro-structural imaging readouts in HD.
2. Materials & methods

2.1. Participants

Forty controls and 61 early manifest HD subjects were enrolled
into the PADDINGTON study from four sites across the European
Union: Leiden (Netherlands), London (UK), Paris (France) and Ulm
(Germany). Early HD subjects were required to be within stage I of
the disease (Shoulson and Fahn, 1979), defined by a UHDRS Total
Functional Capacity (TFC)≥11, indicating good capacity in functional
realms. Control subjects were spouses, partners or gene-negative sib-
lings of the early HD subjects. Inclusion criteria included participants
being 18–65 years of age, free from major psychiatric and concomi-
tant neurological disorders, not currently participating in a clinical
drug trial and able to tolerate and safely undergo MRI. The study
was approved by the local ethical committees and written informed
consent was obtained from each subject. Participants were part of
Work Package 2 of the PADDINGTON study (Pharmacodynamic Ap-
proaches to Demonstration of Disease-modification in Huntington's
disease by SEN0014196). Work Package 2 is an observational, imag-
ing biomarker study with assessments at baseline, 6 months and
15 months, involving a well-characterised cohort of Stage 1 HD pa-
tients and healthy controls, who undergo 3 T MRI as well as motor,
cognitive and neuropsychiatric testing. In this investigation, we
focus on the baseline imaging data.

2.2. MRI acquisition

3 T MRI data (T1- and diffusion-weighted) were acquired based on
protocols previously standardised for multi-site use (Tabrizi et al.,
2009). Data were pseudoanonymised and archived on a secure web
portal. Quality control was performed on all datasets by UCL Institute
of Neurology, London, UK (T1-weighted) andUniversity of Ulm,Germa-
ny (diffusion-weighted). Quality checks included the following: com-
pliance with relevant acquisition protocols (e.g. scanner model,
acquisition parameters), minimal artefacts (e.g. movement, intensity)
and sufficient tissue contrast for analysis. Rescans were requested
where necessary. All image processing and analysis was performed
blinded to participant diagnosis.

2.3. MRI acquisition protocols

Using 3 T MR scanners, high-resolution three-dimensional T1-
weighted structural scans and diffusion-weighted images were ac-
quired for all participants, with clinically acceptable acquisition times
(i.e. b10 min per modality). In brief, for T1-weighted scans three-
dimensional magnetisation-prepared rapid gradient echo (MP-RAGE)
protocols were used to acquire contiguous sagittal slices with 1 mm
(London, Paris, Leiden) or 1.1 mm (Ulm) slice thickness, with no
inter-slice gap, giving full brain coverage. For the diffusion-weighted
scans, multiple diffusion-sensitizing gradients (42 directions in London,
Paris, Leiden; 47 directions in Ulm) were applied with a diffusion
weighting of b=1000 s/mm2. Additional reference images with no dif-
fusion weighting (b=0 s/mm2) were acquired (7 b0 images for Lon-
don, Paris; 3 b0 images for Ulm, 1 b0 image for Leiden). Contiguous
axial slices were acquired with either 2 mm (London, Paris, Leiden) or
2.2 mm slice thickness and corresponding in-plane resolution, yielding
2 mm3 and 2.2 mm3 isotropic voxels, respectively. For full details of the
acquisition parameters per site see the Supplementary material.

2.4. Volumetric analysis

Semi-automated volumetric measurements were performed on
the T1-weighted images using MIDAS (Medical Image Display and
Analysis Software) (Freeborough et al., 1997). Regions-of-interest
were predefined to be the caudate, putamen, CC, lateral ventricles
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and whole brain. Intracranial volume (ICV), an index of head size, was
also measured on each scan using a reliable semi-automated protocol
(Whitwell et al., 2001). This entailed setting a lower intensity thresh-
old at 30% of the mean brain intensity to outline the edge of the dura,
on every tenth axial slice, with the presence of cortical and cerebellar
tissue defining the superior and inferior boundaries, respectively. Tri-
linear interpolation of areas was used to generate an estimate of ICV
for each participant to enable regional volumes to be standardised
for head size.

Scans were corrected for intensity inhomogeneity using N3 (Sled et
al., 1998). To perform the local region-of-interest segmentations
(caudate, putamen, CC and lateral ventricles), each T1-weighted scan
was transformed into Montreal Neurological Institute (MNI) 305 atlas
space to enable consistent application of landmark-derived cut-offs in-
cluded in the segmentation protocols. A 6 degrees-of-freedom (rigid)
registration was used to ensure no scaling or shearing to the images
during template registration, as these effects may influence the derived
volumetric measurements. Segmentation of each structure was
initialised using predefined intensity constraints related to the mean
brain intensity of each scan; this created an initial outline of the struc-
ture. This outline was subsequently refined by expert raters, following
detailed protocols validated for use in atrophied and healthy brains.

2.5. Diffusion analysis

Diffusion-weighted imageswere pre-processed by initial rigid regis-
tration to the b0 reference image, to correct for motion and eddy
current distortions, and B-vectors adjusted accordingly, after which a
non-linear least-squares method was used to fit the tensor at each
voxel, by incorporating the data from each gradient direction. Fractional
anisotropy (FA), mean-, radial-, and axial-diffusivity (MD, AD, RD)met-
rics were computed over four regions-of-interest (whitematter, corpus
callosum, caudate and putamen), as follows: (1) regions were defined
on the T1-weighted image for each individual, (2) to reduce partial vol-
ume effects in the diffusion metrics, all regions were eroded by one
voxel in T1-space. This was preferred to applying a threshold (e.g. FA
cut-off), to avoid circularity between region definition and outcome
variable, (3) eroded regions-of-interest were transformed into ‘FA
space’ to calculate the diffusion metrics. This transformation was
achieved using NiftyReg (http://sourceforge.net/projects/niftyreg) as
follows: the T1-weighted image was registered to the FA image using
a global affine initialisation step (Ourselin et al., 2001), followed by a
non-linear registration step to improve local alignment (Modat et al.,
2010). This approach was adopted as the differing voxel sizes and un-
even distribution of susceptibility artefacts in the two modalities
meant that rigid registrations were insufficient to give anatomical cor-
respondence, particularly for subcortical structures. FA maps were cho-
sen as the target image, as opposed to the b0 image, as visual inspection
indicated greater anatomical correspondence was achieved with FA.
The transformations generated during these registrationswere then ap-
plied to the eroded binary regions-of-interest using trilinear interpola-
tion, after which the regions were finalised by thresholding at 0.5 and
reconverted to binary format. All transformed T1 images and regions
were visually checked to ensure accuracy of registrations between mo-
dalities. Mean diffusion metrics were calculated over these regions
using the fslstats utility within the FSL toolbox (Smith et al., 2004).

2.6. Regions-of-interest (ROI)

Caudate segmentation included the head and body of the caudate,
with the medial border defined by the lateral ventricle, and the lateral
border defined by the internal capsule (Hobbs et al., 2009). For putamen
segmentation, the anterior and lateral borderswere defined by theWM
of the internal and external capsules respectively, whilst voxel intensity
differentiated the putamen from the globus pallidus along the medial
border. Segmentation of the CC was performed in the sagittal plane
and extended four slices either side of the mid-sagittal plane for each
participant (i.e. each segmentation included a total of nine slices of
the image). Lateral ventricular segmentation included the lateral ventri-
cles and temporal horn of the lateral ventricles but not the third or
fourth ventricles (Scahill et al., 2003). Whole-brain segmentation was
performed in native space and utilised interactive thresholding to ex-
clude non-brain material (e.g. scalp and CSF), followed by a series of
morphological operations (erosions and conditional dilations) to out-
line the brain (Freeborough et al., 1997).

To generate global WM metrics for the diffusion analysis, a WM
region was generated on the T1-weighted images. Since the
diffusion-weighted sequence did not include full brain coverage
(for some subjects the cerebellum was only partially covered), the
‘global’ white-matter region included cut-offs to ensure anatomical
consistency in voxels sampled between subjects and sites. In brief,
the whole-brain regions (described above) were thresholded using
predefined intensity thresholds to exclude grey matter and CSF voxels.
An inferior cut-off excluded all voxels inferior to the orbito-frontalWM.
To reduce partial volume effects, the region was eroded by one voxel in
T1-space, and further optimised by masking with the caudate and
putamen segmentations (described above) and an automated grey-
matter mask, generated using the expectation–maximisation algorithm
(Cardoso et al., 2011) in NiftySeg (http://niftyseg.sf.net).

To assess the reliability of the segmentations, some subjects had
their scans segmented twice, at least a week apart, by two or three dif-
ferent raters. Caudate, whole brain, lateral ventricles, whitematter, cor-
pus callosum and total intracranial volumes were calculated each time.
For each of the ROIs, inter- and intra-rater reliabilities were calculated
using the variance estimates from a crossed random effects model
(Bartlett and Frost, 2008). All ROIs had both inter- and intra-rater reli-
abilities of greater than 0.99. For putamen volume, only a single rater
calculated volumes each time. The reliability for this ROI was calculated
using an intraclass correlation coefficient (ICC), andwas found to have a
value of 0.988.

2.7. Quality control of processed data

Regions and registrations were subjected to visual quality control,
both in T1- and FA-space, to ensure datawere reliable prior to statistical
analysis. As a result some data-points are missing (Table 2). The one
missing value for putamen volume was due to insufficient contrast in
this region. Four participants are missing data-points for all diffusion
metrics; two due to severe motion artefacts and two due to poor
T1-to-FA registration. A total of sevenWM regional metrics are missing
because three further participants had occipital regions positioned out-
side the field-of-view as a result of poor head positioning.Where whole
datasets were rejected (e.g. due to motion artefacts), rescans were re-
quested but were not possible in these cases due to patient burden
and/or scan-time limitations at the site.

2.8. Statistical methods

Each outcome was separately analysed using a generalised least
squares regression model. The model allowed for different residual vari-
ances for HD subjects and controls, in line with our a priori belief that
variance would be higher in HD subjects. Potential confounders of age,
gender and study site were controlled for in all models. Where model
checking suggested non-normality, the 95% confidence intervals (CIs)
for the group differences in outcome were estimated using Bias
Corrected and accelerated (BCa) bootstrapping with 2000 replications
(Efron and Tibshirani, 1993). Volumes of thewhole brain, caudate, puta-
men and corpus callosumwere expressed as a percentage of intracranial
volume, to standardise for differences between individuals in head-size.
All othermetricswere analysed as absolute values. Effect sizes for the dif-
ference in cross-sectional outcome were calculated as the estimated ab-
solute adjusted difference in the mean of the metric between HD
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subjects and controls, divided by the estimated residual standard devia-
tion of the HD subjects. 95% CIs for the effect size were calculated using
BCa bootstrapping with 2000 replications. Differences in effect sizes
were calculated for each pair of outcomes. CIs for differences between
each pair of effect sizes were calculated using the same bootstrap tech-
nique as previously described, with 95% and 99% CIs being calculated in
order to give p-value accuracy to either 0.05 or 0.01. Whether or not to
make adjustments when carrying out multiple statistical comparisons
is a controversial subject (Rothman, 1990). When each statistical com-
parison being made is of independent scientific interest, as we believe
is the case when comparing effect sizes here, there is a good argument
for notmaking any adjustment to p-values for the fact thatmultiple com-
parisons have beenmade and so this is the policy we have adopted here.
Throughout, a cut-off of p=0.05 was used to establish formal statistical
significance, with the actual p-values also considered in the interpreta-
tion of results. All analysis was performed in STATA v12.

3. Results

3.1. Group demographics

Forty controls and 61 early HD subjects were scanned in total.
Group demographics are displayed in Table 1. Age and gender were
well-balanced between groups, by design (Table 1). For the controls,
each of the four study sites contributed exactly 25% of the sample. For
the HD subjects, contribution from each site ranged between 21% and
28%. 5/61 HD subjects did not fulfil criteria for being within Shoulson
and Fahn Stage 1 of the disease; four of these were Stage 2 and one
was Stage 3 (see Table 1 for details). Medication usage by group is de-
tailed in Inline Supplementary Table S1.

Inline Supplementary Table S1 can be found online at http://dx.
doi.org/10.1016/j.nicl.2012.12.001.

3.2. Group differences

There was no evidence of a difference in intracranial volume be-
tween controls and HD subjects, p=0.54.

Nineteen of the 21 imaging outcomes showed highly significant
differences between HD and controls at baseline (pb0.01, Table 2).
Table 1
Characteristics of the PADDINGTON Work Package 2 cohort at baseline.

Characteristic Controls (N=40) HD Stage I (N=61)

Age (years) (mean
(SD); range)

51.4 (8.4) 29.0–66.6 48.7 (10.8) 23.5–67.3

Gender
Female N (%) 23 (57.5%) 37 (60.7%)
Male N (%) 17 (42.5%) 24 (39.3%)

Centre
Leiden N (%) 10 (25%) 17 (27.9%)
London N (%) 10 (25%) 16 (26.2%)
Paris N (%) 10 (25%) 13 (21.3%)
Ulm N (%) 10 (25%) 15 (24.6%)

Total motor score
(mean (SD); range)

1.4 (1.9) 0–7 20.1 (10.7) 6–58

Total functional capacity
(mean (SD); range)

12.98 (0.16) 12–13 11.74 (1.45) 5–13

CAG (mean (SD); range) 43.8 (3.2) 39–54
Disease burden scorea

(mean (SD); range)
376.5 (85.2) 226.4–559.2

Total functional
capacity breakdown
N (%)
TFC 11–13 (HD Stage 1) 56 (91.8%)
TFC 7–10 (HD Stage 2) 4b (6.6%)
TFC 3–6 (HD Stage 3) 1c (1.6%)

a Penney et al. (1997). Disease-burden formula: age×(CAG — 35.5).
b 3 participants from the London site, 1 from Paris.
c 1 participant from the Paris site.
Differences for the remaining two outcomes, WM and CC FA, were
borderline statistically significant (p=0.053 and 0.035, respectively).

The macrostructural outcomes provided strong evidence of de-
creased regional and global volume in HD subjects compared with con-
trols (pb0.001), with exception of the lateral ventricles which were
significantly enlarged, as expected (pb0.01, bootstrapped, Table 2).

In the HD group, FA was increased in the grey-matter structures ex-
amined (caudate and putamen, pb0.001) and decreased in the white-
matter structures examined (CC, p=0.035, and global WM, p=
0.053), compared with controls. For all other diffusion metrics
(mean-, radial- and axial-diffusivity), increased levels were observed
inHD subjects comparedwith controls, for all brain regions investigated
(pb0.001, Table 2).

3.3. Comparison of effect sizes

Fig. 1A presents the estimated effect sizes and 95% CI for each of the
21 outcomes, grouped by imaging metric and modality (for values, see
Inline Supplementary Table S2). Fig. 1B displays the statistical results
of comparisons between effect sizes for each pair of imaging metrics.

Inline Supplementary Table S2 can be found online at http://dx.
doi.org/10.1016/j.nicl.2012.12.001.

The two largest effect sizes were observed for the macrostructural
metrics of putamen volume and caudate volume, with estimates of
2.41 (95% CIs: 1.75, 2.94) and 2.35 (95% CI: 1.58, 2.96), respectively.
These effect sizes were significantly larger than for all of the other
metrics (pb0.05), with exception of axial-, radial- and mean-diffusivity
in the putamen (Fig. 1B). The othermacrostructural outcomes ofwhole-
brain, lateral ventricular and CC volume showed comparatively smaller
effect sizes of around one or less (Fig. 1A).

Structure-specific diffusivity effect sizes were broadly similar
irrespective of measurement (i.e. radial, axial or mean). Diffusivity ef-
fect sizes were largest for the putamen, followed by the caudate, with
comparison between effect sizes for these two structures not statistical-
ly significant for each of the three diffusivity metrics. The putamen dif-
fusivity effect sizes were significantly greater than the WM and CC
diffusivity metrics (Fig. 1B).

The FA effect sizes were smaller in magnitude than those for both
the volume and diffusivity metrics for the corresponding structure,
and were significantly smaller than those for all other putamen met-
rics, as well as caudate volume and caudate axial diffusivity (pb0.01,
Fig. 1B).

4. Discussion

4.1. Comparative sensitivities of neuroimaging metrics and modalities

Macro- and micro-structural neuroimaging measures provide
valuable information on the pathophysiology of neurodegenerative
diseases such as HD, and are proposed as biomarker candidates. In
this study we directly interrogated the relative sensitivities of both
T1-volumetric and diffusion-tensor derived metrics over a range of
pathologically-implicated regions-of-interest, via a statistical com-
parison of effect sizes. We found similar sensitivity to HD pathology
between the highest performing T1-weighted metrics (putamen and
caudate volume) and the highest performing diffusion metrics (puta-
men diffusivity — mean, radial and axial). This is perhaps surprising;
neurodegeneration in HD is a slow process where neurons undergo
prolonged alterations including axonal- and dendritic-remodelling
prior to gross morphometric change; hence, we had hypothesized
that the microstructural diffusion metrics would show significant ad-
vantages in sensitivity over the macrostructural volumetrics. Howev-
er, the reliance of diffusion MRI on echo planar imaging confers on it a
reduced signal-to-noise ratio and concomitant decrease in spatial res-
olution compared with T1-weighted imaging. These factors are likely

http://dx.doi.org/10.1016/j.nicl.2012.12.001
http://dx.doi.org/10.1016/j.nicl.2012.12.001
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Table 2
Baseline imaging results for each group, and between-group differences adjusted for age, gender and study site.

Metric Brain region Controls HD Stage 1 Adjusted difference in means

N Mean SD N Mean SD Estimate 95% CI p-Value

Volume Putamen (% TIV) 40 0.54 0.06 60 0.35 0.08 −0.195 (−0.224, −0.166) b0.001
Caudate (% TIV) 40 0.54 0.05 61 0.36 0.07 −0.172 (−0.195, −0.148) b0.001
Whole brain (% TIV) 40 80.03 3.38 61 75.74 4.99 −4.721 (−6.100, −3.342) b0.001
Lateral ventricular (ml) 40 20.32 12.71 61 28.46 14.12 9.972 (5.014, 14.095) b0.01 (BS)
CC (% TIV) 40 0.37 0.05 61 0.32 0.06 −0.054 (−0.076, −0.032) b0.001

Fractional anisotropy Putamen 39 0.24 0.03 58 0.25 0.04 0.020 (0.011, 0.030) b0.001
Caudate 39 0.22 0.02 58 0.24 0.03 0.022 (0.014, 0.030) b0.001
WM 35 0.47 0.02 58 0.46 0.02 −0.008 (−0.016, 0.000) 0.053
CC 39 0.66 0.04 58 0.64 0.05 −0.015 (−0.029, −0.001) 0.035

Mean diffusivity (mm2/s)×10−3 Putamen 39 0.72 0.04 58 0.85 0.08 0.134 (0.113, 0.155) b0.001
Caudate 39 0.94 0.09 58 1.07 0.14 0.132 (0.102, 0.161) b0.001
WM 35 0.74 0.02 58 0.76 0.02 0.020 (0.011, 0.029) b0.001
CC 39 0.90 0.06 58 0.94 0.08 0.049 (0.029, 0.069) b0.001

Radial diffusivity (mm2/s)×10−3 Putamen 39 0.64 0.04 58 0.75 0.07 0.111 (0.092, 0.131) b0.001
Caudate 39 0.85 0.08 58 0.95 0.13 0.112 (0.084, 0.139) b0.001
WM 35 0.54 0.03 58 0.56 0.03 0.020 (0.010, 0.030) b0.001
CC 39 0.51 0.07 58 0.55 0.08 0.040 (0.017, 0.063) 0.001

Axial diffusivity (mm2/s)×10−3 Putamen 39 0.90 0.04 58 1.07 0.11 0.179 (0.152, 0.205) b0.001
Caudate 39 1.13 0.10 58 1.29 0.16 0.172 (0.139, 0.205) b0.001
WM 35 1.14 0.02 58 1.16 0.02 0.021 (0.011, 0.030) b0.001
CC 39 1.67 0.09 58 1.73 0.09 0.066 (0.038, 0.094) b0.001

(BS) 95% CI obtained using bootstrapping (BCa interval) due to non-normality of residuals from primary model. p-Value accurate to b0.05 or b0.01.
WM=white matter; CC=corpus callosum.
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to mitigate the advantages that the technique offers in detecting
abnormalities.

Our findings show that the region-of-interest examined may be
more important than the imaging modality applied, with the subcorti-
cal grey-matter regions outperforming the global measures and corpus
callosum for both macro- and micro-structural metrics. The exceptions
were the FA results for the caudate and putamen, which ranked much
lower in the effect-size table; 14th and 17th out of the 21 imaging out-
comes, respectively. At least cross-sectionally, FAmeasures appear to be
relatively insensitive to HD pathology in early manifest disease.

In the context of biomarker candidates, when deciding betweenmet-
rics which are not significantly different, other factors may come into
play, such as time and ease of acquisition, image analysis costs, whether
the metrics provide independent information on neurodegeneration
and whether they show significant alterations over time. For example,
in the current cross-sectional study, caudate and putamen metrics
performed very similarly in terms of effect size, which is not surprising
since we would expect these structures to degenerate in parallel;
hence there may be limited advantages in including measures from
both regions in a study or trial. Conversely, although the CCmetrics pro-
duced smaller effect sizes, the CC is not part of the basal ganglia–
thalamocortical-pathway; hence, these metrics may provide unique
information on neurodegeneration, independent of grey-matter degen-
eration. However, effect sizes for the diffusion metrics were consistently
smaller than for the corresponding volumetrics (although not always
significantly so); hence, this study suggests that there may be little
gain in generating both T1-volumetric and diffusion-tensor metrics, in
terms of cross-sectional detection of pathology in early HD patients.

4.2. Characterisation of micro- and macro-structural abnormalities in
early HD

This study also enabled us to better characterise the macro- and
micro-structural abnormalities evident in early manifest HD on the
same cohort of patients; this is the largest study cohort for DTI metrics
in HD to date. We observed reduced FA, thought to reflect alterations in
fibre coherence and directionality, in both the CC (Bohanna et al., 2011;
Della et al., 2010; Di Paola et al., 2012; Rosas et al., 2006, 2010) and the
global WM metric, concurring with findings across widespread WM
regions in HD patients (Della et al., 2010; Delmaire et al., in press;
Rosas et al., 2006). It has been suggested that such abnormalities
could be attributed to damaged oligodendrocytes and axonal mem-
branes, disrupted axonal transport due to the presence of mutant
huntingtin, and early increases in reactive microglia (see Bohanna et
al., 2008 for discussion).

We also observed an increase of FA in the deep grey-matter struc-
tures examined. This is in accordance with most previous studies
(Delmaire et al., in press; Douaud et al., 2009; Sanchez-Castaneda et al.,
in press; Sritharan et al., 2010), although two studies have found in-
creased FA in the putamen but surprisingly, not the caudate (Bohanna
et al., 2011; Rosas et al., 2006). Whilst FA alterations in grey-matter
structures are more complicated to interpret, the observed group differ-
ences may represent selective neurodegeneration, i.e. a preferential loss
of connections along specific directions radiating from the subcortical
grey-matter nuclei, coupled with relative sparing of other directions;
when combined these factors would make the tissue appear less isotro-
pic. Supportive of this hypothesis is evidence fromaDTI study examining
the dispersion of the fibre orientations in the subcortical grey-matter
structures in manifest HD, which found that the striatal–pallidal projec-
tions appeared to be themost affected (Douaud et al., 2009). The specific
histological correlates of such abnormalities in grey-matter FA require
further work and verification.

We observed increased mean diffusivity in the grey- and white-
matter regions in the early HD group, in line with previous research
(Douaud et al., 2009; Mascalchi et al., 2004; Rosas et al., 2006;
Sanchez-Castaneda et al., in press; Seppi et al., 2006). To further inves-
tigate these abnormalities, we examined both radial and axial diffusiv-
ity. Radial diffusivity measures the perpendicular motion of water
molecules in the fibres and is thought to be sensitive to abnormalities
in the myelin sheath (Song et al., 2002). Axial diffusivity measures the
motion of water molecules parallel to the fibres and abnormalities are
thought to be reflective of axonal injury or degeneration (Song et al.,
2003). In accordance with previous findings, we observed increased
radial- and axial-diffusivity in the CC (Di Paola et al., 2012; Rosas et
al., 2010). We also found the same pattern of increases across global
WM in early HD, which, to our knowledge, has not been demonstrated
previously. Taken together, these findings suggest that both myelin
breakdown and axonal damage play an important role in the patho-
physiology of HD by the time the disease manifests and that these
changes are not restricted to theWMof the CC, but are present through-
out the brain. In the current study, axial diffusivity abnormalities were
slightly larger in magnitude than radial diffusivity, which may suggest



Fig. 1. A. Effect-size estimates (mean and 95% CIs) for each of the imaging outcomes. Data are grouped by imagingmetric andmodality. Effect sizes calculated as the absolute difference in
the mean of the metric between groups, adjusted for age, gender and study site, divided by the estimated residual standard deviation of the HD group. B. Statistical comparison of effect
sizes between imagingmetrics andmodalities (⁎/⁎⁎ indicates pb0.05/0.01). ⁎ & ⁎⁎ denote a statistically significant difference at pb0.05 and pb0.01, respectively, in themagnitude of the
effect sizes for each pair ofmetrics. For example, although putamen volumehad the largest effect size overall (top of the list), thiswas not significantly larger than that for caudate volume,
putamen AD, MD or RD (absence of ⁎ in adjacent boxes); however, it was significantly larger than that for caudate AD, MD and RD at pb0.05 (⁎ in each adjacent boxes), and also signif-
icantly larger than that for all other metrics at pb0.01 (⁎⁎ in adjacent boxes). Metrics are ordered bymagnitude of effect sizes and colour-coded by imagingmodality (left-hand side) and
brain region (right-hand side).
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that axonal degeneration predominates over myelin abnormalities at
this stage of the disease. Further investigations are required to verify
this hypothesis. It should be noted that interpretation of the pathophys-
iological correlates of DTI metrics can be somewhat tenuous (Jones et
al., 2012), and there may a number of non-pathological or latent influ-
ences on changes in FA or diffusivity. Evidence that the patterns of ab-
normalities in diffusivity metrics described above have been shown to
concur with direct histology in rodents (Song et al., 2002, 2003) does
not necessarily translate to humans. Nevertheless, histological investi-
gations of end-stage HD show substantial WM atrophy, accompanied
by decreases of both myelin and axis cylinders (Tellez-Nagel et al.,
1974). These post-mortem findings should give increased confidence
that the diffusion metrics employed here do in fact reflect pathological
processes.
Radial and axial diffusivity were also abnormal in the caudate and
putamen of early HD subjects, with increases of a similar magnitude
in both structures in HD patients compared with controls. To our
knowledge, this is the first study to explicitly examine these diffusion
metrics in early HD in the striatal structures, although a pattern of radial
and axial diffusivity increasing in tandemwould result in a mean diffu-
sivity increase, which has been reported (Bohanna et al., 2011;
Delmaire et al., in press; Douaud et al., 2009; Mandelli et al., 2010;
Rosas et al., 2006; Sanchez-Castaneda et al., in press; Seppi et al.,
2006; Sritharan et al., 2010; Vandenberghe et al., 2009). As with FA,
the pathology underlying alterations in diffusivity in grey-matter is
not well understood, but could reflect an increase in extra-cellular
spaces due to neural tissue loss. Aswith thewhitematter, axial diffusiv-
ity changes were larger than radial changes. Speculatively, this may be
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an indication that a specific neuronal population with a common orien-
tation is atrophying, alongside the relative preservation of other cells
with an oblique orientation. This hypothesis would fit with the early
loss of striatalmedium spiny neurons, well-characterised in neuropath-
ological studies of HD (Kowall et al., 1987; Vonsattel et al., 1985).

As expected, our volumemeasures provided strong evidence of mac-
rostructural degeneration in early HD, with highly significant differences
betweenHD and controls for allmetrics examined. Reduced regional and
global volumes, coupled with increased lateral ventricular volume are in
agreement with previous studies (Ciarmiello et al., 2006; Di Paola et al.,
2012; Paulsen et al., 2008; Rosas et al., 2010; Tabrizi et al., 2009), as
well as post mortem data of end-stage disease, which show gross atro-
phy of the caudate and putamen (Vonsattel et al., 1985), cortical and
extra-striatal subcortical atrophy (de la Monte et al., 1988; Mann et al.,
1993) accompanied by a two-fold increase in ventricular size and consid-
erable WM reductions (de la Monte et al., 1988).

4.3. Strengths

A strength of this study is that it uses a relatively large, well-
characterised cohort of participants. Additionally, few studies in the lit-
erature have directly compared macro- and micro-structural imaging
metrics on the same cohort, particularly not with the robust statistical
approach taken in this study. Furthermore, we have analysed the diffu-
sion data in its native space, without adjusting the voxel sizes; hence
our results, particularly for the deep grey-matter structures, are unlikely
to be confounded by registration error or tissue shifts as has been
suggested for previous findings in the literature (see Kloppel et al.,
2009 for discussion).

4.4. Limitations

We acknowledge the limitations of the study. Firstly, in terms of
assessing the relative advantages of biomarkers of disease progression,
longitudinal assessment is essential, since cross-sectional findings can-
not reliably be extrapolated to longitudinal scenarios. Hence, it will be
important to repeat this analysis on longitudinal data particularly if
the findings are to be used to inform clinical trial design. Also, our
data were pooled from four different study sites across Europe, and de-
spite efforts to standardised procedures, it is impossible to rule out in-
creased noise due to site-specific factors. However the fact that our
study is multi centre can also be considered a strength since it is likely
that future clinical trialswill involvemultiple centres. Indeed, the present
demonstration of significant effects using pooled imaging data should
give confidence to any forthcoming multi-site studies.

4.5. Conclusions

In summary, we have measured a range of macro- and micro-
structural neuroimaging measures on a large cohort of early manifest
HD patients and controls. All measures were sensitive to HD pathology,
determined by between-group differences. However, statistical com-
parison of effect sizes showed no significant advantages between the
highest performing macro- and micro-structural measures, with puta-
men volume, caudate volume and putamen diffusivity metrics proving
to be the most sensitive. In future studies and trials a panel of bio-
markers is likely to be required to understand the full effects of HD,
andwhat result any interventionmay have on its progression. By statis-
tically interrogating effect sizes, we can make informed choices about
which metrics are the most powerful, both cross-sectionally and
longitudinally.
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