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Abstract. Modern high-energy density facilities allow us to bring matter to
extreme states of density, temperature and velocity. Rigorous scaling laws
proved that the relevant regimes could be reached, and those regimes are
reproducibly achievable. Using powerful lasers and adapted target designs,
similarity experiments in the POLAR project aim at studying the formation and
dynamics of accretion shocks as found in magnetic cataclysmic variables. At
the astrophysical scale, the system we consider is a column of infalling plasma
collimated by a magnetic field onto the surface of a white dwarf. As matter hits
the surface with supersonic velocity, a shock forms at the basis of the column and
propagates upstream. In this paper, numerical simulations are presented in order
to describe the experience and to give expectations concerning physical regimes
reachable for future experiments on a kilojoule facility. In particular, our target
design is discussed and improvements are detailed.
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1. Introduction

Magnetic cataclysmic variables are semi-detached binary systems containing a highly
magnetized white dwarf accreting material coming from its Roche-lobe-filling companion (see,
e.g., Warner 1995 and Wu 2000 for reviews). In particular, we are interested in systems named
AM Her stars or polars where the white dwarf has a magnetic field higher than 10 MG. In
those objects, the magnetic field is strong enough to prevent the formation of an accretion
disc around the white dwarf. Material leaving the companion is tied to the field lines of
the white dwarf magnetic field and then led toward the magnetic poles of the compact star
where accretion columns form. When the supersonic flow (u f f ∼ 5000 km s−1) falls onto the
white dwarf surface, a radiative shock wave is produced and propagates through the column
upstream. In the post-shock region, matter reaches extreme physical conditions (T ∼ 108 K,
ρ ∼ 10−7–10−4 g cm−3) and produces most of the high-energy radiation emitted by the system.
Radiative processes induce a cooling behind the shock front, which structures the profile of
density, temperature and velocity since the typical dynamical time is longer than the cooling
time scale (Chevalier and Imamura 1982). Considering the current theoretical scheme, some
observational issues remain controversial. For example, quasi-periodic oscillations in the light
curve are observed in optical wavelengths (Larsson 1992) but not in x-rays, or the energy
balance between soft and hard x-ray emissions in some polars (Ramsay and Cropper 2004),
which cannot be explained by considering the numerical forecasting at the astrophysical scale
with the current model. Moreover, the determination of the white dwarf mass based on the
radiation emitted at the basis of the column is still highly model dependent (Cropper et al 1998).

Modern high-energy facilities give us an opportunity to have a new point of view
of those objects, since reaching extreme conditions of density and temperature has now
become achievable (Remington et al 2006, Savin et al 2012). Our objective is to get a better
understanding of the post-shock structure. Using scaling laws, it can be possible to generate
flows similar to astrophysical ones in the laboratory (Ryutov et al 1999, Falize et al 2009).
Moreover, we can take advantage of diagnostics which allow good characterization of the
plasma during the experiment. This is not feasible today at the astrophysical scale, given that
the accretion column is approximately 1000 km long and thus unresolved. Furthermore, in the
laboratory, we can try to control boundary conditions and parameters of the system which are
important for testing predominant physical mechanisms linked with radiation processes that
occur in this high-energy environment. The experience has recently been validated and tested
(Falize et al 2012).
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In this context, we present new target designs which can allow one to get closer to similar
regimes to those encountered at the astrophysical scale. In the first place, we present scaling laws
defining the relevant experimental regime and similarity properties of our system. Then, based
on numerical simulations, we analyze the target behavior. In particular, the new proposed target
designs include a mass reservoir. This mass reservoir allows us to get a more homogeneous flow
for a longer time, which is precisely the crucial point of the experiment. Using a light foam to
fill the mass reservoir, we also manage to reach higher flow velocity and thus higher post-shock
temperature after the impact. To conclude, the astrophysical relevance of laboratory flows is
discussed and similarity properties predicted by numerical simulation are presented.

2. Similarity properties and scaling laws

According to the physical regime of the post-shock region, several hypotheses can be made to
describe the accretion column (Lamb and Masters 1979, Busschaert et al 2013). The medium
can be considered as optically thin for bremsstrahlung emission since the mean free path is larger
than the typical radius of the column for x-ray wavelength radiation. The shock is collisional
considering that the typical time scale associated with ion–ion collision is shorter than the
dynamical timescale (Langer et al 1982). We can also assume that for a low-mass white dwarf
(M < 1 M�), the post-shock region can be correctly modeled by a single temperature medium
(Wu et al 1994) and the external field of gravitation generated by the white dwarf can be locally
neglected since the column height is quite small compared to the white dwarf radius. Finally,
the curvature of the white dwarf surface can be neglected since the column seems to cover
only a small fraction of the white dwarf surface (see, e.g., Ramsay and Cropper (2007) for an
observational estimation).

For a given white dwarf mass—on which depends the infalling free-fall velocity—accretion
rate and magnetic field are the two main parameters driving the system geometry and
radiative emission in magnetic cataclysmic variables (see figure 1). For B < 10 MG, magnetic
cataclysmic variables are called intermediate polars. Depending on the spin period of the white
dwarf and the orbital period of the binary system, four accreting geometries can take place in
those astrophysical systems: discs, streams, rings and propellers (Norton et al 2008). In this
paper, we are interested in the specific case of polars with B > 10 MG. When the accretion
rate is relatively high, ṁ ∼ 1–100 g cm−2 s−1, and B ∼ 10–30 MG, bremsstrahlung emission
dominates the cooling processes in the column (figure 1, black zone (1)). In this regime, the
only significant effect of the magnetic field is to channel the flow of plasma toward the magnetic
poles. For higher magnetic field and lower accretion rate, cyclotron emission can no longer be
negligible as a cooling process (figure 1, gray zone (2)). As the accretion rate decreases below
ṁ ∼ 1 g cm−2 s−1 for B ∼ 10 MG, not only the cyclotron has to be considered but also the two-
temperature effects (figure 1, white zone (3)). For still lower accretion rate or higher magnetic
field, the flow can no longer be considered as collisional. No reverse shock can be formed in
the flow and the accretion regime is modeled by a bombardment solution that seems to well
describe the specific class of low accretion rate polars (Schmidt et al 2005).

For each polar regime, a scaling law can be defined (regimes (1) and (2) demonstrated in
Falize et al (2011a) and regime (3) in Falize et al (2011b)). For now, we focus on the regime
where cooling is dominated by the bremsstrahlung process (regime (1), figure 1), since then the
magnetic field only collimates the flow. Thus, an adapted description of the plasma is obtained
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Figure 1. Diagram of the specific accretion rate versus magnetic field
showing the different regimes of accretion in the case of magnetic cataclysmic
variables for a white dwarf of 1 solar mass. Intermediate polars have B <
10 MG; polars have B > 10 MG. For polars, when the accretion rate is high
(ṁ ∼ 1–100 g cm−2 s−1) and B ∼ 10–100 MG (black zone (1)), bremsstrahlung
dominates the radiative cooling. This black-colored zone corresponds to the
regime we focus on in laboratory experiments. For higher B and lower accretion
rate (gray zone (2)), cyclotron emission cooling cannot be neglected, and for
still lower accretion rate or higher magnetic field (white zone (3)), cyclotron
dominates the cooling and two-temperature effects have to be taken into account.
Based on Lamb and Masters (1979) and Wickramasinghe et al (2000).

by the following system of equations:
∂tρ + 5.(ρ u)= 0,

∂t (ρ u)+ 5.(ρ (u ⊗ u)+ pI))= 0,

∂t E + 5.((E + p)u)= −3(ρ, p),

(1)

where ρ is the density, u the velocity, p the thermal pressure and E the total energy density.
The total energy is the sum of the kinetic and internal energies, E = ρu2/2 + ρe. The function
3(ρ, p) models energy losses by radiative processes. These are defined as a power law of
density and pressure 3=30ρ

ε pζ , where 30, ε, ζ are three constants characterizing the
mechanism causing the cooling in specific domains of density and temperature. Bremsstrahlung
cooling is modeled by the cooling function 3=30ρ

3/2 p1/2, with 30 = 3.9 × 1011 J m−2 s−1

(Rybicki et al 1986). Such an expression allows one to develop a model that accepts analytical
solutions (Chevalier and Imamura 1982, Falize et al 2009).
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To establish scaling laws between the astrophysical and the laboratory system, both have to
be driven by the same physics and then described by the same equations. Moreover, each system
needs to satisfy boundary and initial conditions verifying the scaling laws. The one-parameter
homothetic Lie group (Bluman and Cole 1974) is used to relate quantities at the astrophysical
(Xa) and laboratory (X l) scale. It is defined by Xa = λδX X l, where λ and δX are, respectively, the
group parameter and the homothetic exponent specific to each quantity. The absolute similarity
is the classical approach, which consists in the rescaling of independent (x , t) and dependent
(ρ, p, T , u) variables. The more general global similarity framework does not require
conservation of the sub-physical scales, which adds additional free parameters (Falize
et al 2011a).

In the framework of absolute similarity, exact scaling laws between quantities at the
astrophysical and laboratory scale, with the subscripts a and l, respectively, can be constructed:

ρa

ρl
= λα,

pa

pl
= λβ,

Ta

Tl
= λβ−α,

ua

ul
= λ(β−α)/2 ,

ta

tl
= λ(β−3α)/2,

xa

xl
= λβ−2α , (2)

ε0,a

ε0,l
= 1 ,

30,a

30,l
= 1

with L and t , respectively, the length and time in our system and α, β, two constant free
scaling parameters. We assume that pressure, density and temperature are linked by the relation
P = ε0ρT . In the global similarity framework, the scaling laws become

ρa

ρl
= λα,

pa

pl
= λβ,

Ta

Tl
= λ(β−ψ−α),

ua

ul
= λ(β−α)/2 ,

ta

tl
= λ(β−3α+ψ)/2−δ,

xa

xl
= λβ−2α−δ+ψ/2 , (3)

ε0,a

ε0,l
= λψ ,

30,a

30,l
= λδ ,

where ψ and δ are two additional scaling parameters.
The scaling laws expressed above (equations (2) and (3)) give the typical scales needed for

the laboratory experiments, see table 1. Consequently, astrophysical systems can be modeled
in the laboratory with a system whose typical length is of the order of a few millimeters and
which evolves on a timescale of the order of a few tens of nanoseconds. The experiment
has to be so designed as to get a flow of plasma which reaches a post-shock temperature of
the order of 100 eV with an infalling density of the order of 10 mg cm−3 and a flow velocity
around 300 km s−1. Such a regime of velocity, temperature and density can be reached using a
megajoule laser facility.

3. Experimental simulations of accretion processes in polar experiments

To reproduce the astrophysical phenomenon in the laboratory, an experimental design has been
established. As a first step, we validate the experimental concept of our target on a kilojoule
facility. The following numerical simulations are done in the conditions of the LULI2000 facility
with a high-energy long pulse laser beam characterized by E ∼ 300 J at 2ω (λL = 527 nm) with
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Table 1. Typical scale of the two systems of interest: the astrophysical and
laboratory accretion columns when applying the scaling laws of absolute
invariance expressed above (equation (2)). The key parameters are: the column
height, x , the dynamical timescale, t , the inflow velocity, u, the infalling plasma
density, ρ, and the post-shocked temperature, T .

x (m) t (s) u (km s−1) ρ (g cm−3) T (K)

Polar 105 1 3 × 103 10−8 108

Laboratory 10−3 10−7 3 × 102 10−2 106

Figure 2. Experimental principle. A flow is generated by laser–matter interaction
(a) and propagates into a tube (b). The supersonic flow hits an obstacle
mimicking the white dwarf surface and a reverse shock is produced (c).

a typical pulse length of 1.5 ns. The focal spot diameter is typically 400µm with a resulting
intensity of IL ∼ 1014 W cm−2 (Loupias et al 2007).

The concept is based on the generation of a flow of plasma mimicking the material falling
onto the white dwarf (see figure 2). This flow has to be supersonic in order to generate a reverse
shock at the collision. An obstacle is needed which plays the role of the white dwarf surface. In
order to collimate the flow, we use a tube which plays the role of the magnetic field confinement.
We have studied two types of flows: the first one from a solid driver used during the first POLAR
experiment (Falize et al 2012) and the second one from a foam driver inspired by supersonic jet
experiments (Loupias et al 2007) and proposed in Falize et al (2011c).

We will first describe the behavior of the first target design. To generate the supersonic flow,
we exploit the interaction between a nanosecond laser and matter. We present one-dimensional
(1D) and two-dimensional (2D) numerical simulations (see figure 3) done using the CEA laser
radiation hydrodynamic ALE code FCI2 (Schurtz et al 2000). We use the multi-group diffusion
model (100 groups) which allows one to reproduce the LULI2000 regime and the laser–matter
interaction is modeled by a ray tracing algorithm. The typical resolution of the simulations is
around 0.5µm. The laser ablates the plastic layer and it launches a shock by the rocket effect.
This shock propagates through the layer of plastic and then passes through the high-Z material,
see figure 4(1)). We use a bi-layer pusher formed by a 10–20µm layer of plastic (CH) and
a 3–5µm layer of high-Z material such as aluminum, titanium or tin. The high-Z layer is used
to protect the obstacle from x-ray radiation produced by the hot coronal plasma. Once the shock
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Figure 3. Top: evolution of the density (g cm−3) in a typical bi-layer target, which
corresponds to the first design, along the transverse direction of the target with
time. The bi-layer is composed of CH (20µm thick) and titanium (3µm thick).
The obstacle is a block of quartz; the pre-heating is overestimated due to the 1D
approximation. Middle: the same diagram for a target with a two-layer target
and a cylinder of foam corresponding to the second target design which can be
approximated by a 1D system. The cylinder length is 85µm and the foam density
is 50 mg cm−3. Bottom: the same diagram with the same target as the middle one
except for a 250µm long cylinder of foam.

reaches the bottom of the high-Z layer after ∼1 ns, the shocked material is heated and ionized
and the plasma begins to expand into the tube which is a few millimeters long. As can be seen
in figure 3 (top), the plasma expands until reaching the obstacle. The asymptotic velocity of
the flow can be estimated in the LULI conditions by the expression of a ballistic expansion
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Figure 4. Dynamics of the shock propagation into the pusher of both kinds of
target, without mass reservoir on the left and with a layer of foam on the right.
With the first target design, when the initial shock passes through the interface
between the CH and the high-Z material (1), a transmitted shock is generated
along with a reflected one. When a layer of foam is added, the reflected shock
generated by the initial shock passage at the interface between CH and the high-
Z material (1) interacts with the thermal front generated by the ablation of the
CH by the laser (3). This leads to the formation of a secondary shock which
passes through the high-Z layer (4) and can lead ultimately to the coalescence of
the two generated shocks propagating into the foam (5) provided that the foam
thickness is large enough. If the coalescence takes place, the resulting shock is
accelerated and the asymptotic velocity of the expanding plasma of foam is larger
than otherwise.

(Zel’dovich and Raizer 1967), Umax ∼ 150 km s−1. A parametric study was done to optimize the
composition and thickness of the two layers of the pusher and also the length of the tube. The
latest is defined to get a compromise between the velocity of the expanding flow and its density.
Indeed, the tube has to be long enough for the plasma to reach the maximum asymptotic velocity,
but the mean density of the flow is inversely proportional to the length of the tube and must stay
high enough to be diagnosed during experiments. Considering the LULI2000 properties, the
best compromise is a tube of l = 2 mm for bi-layer pushers. Thus the collision time tcoll can be
estimated by tcoll ∼ l/Umax ∼ 15 ns.

As the supersonic flow hits the obstacle, a reverse shock is produced inside the flow.
This reverse shock propagates through the medium inside the tube, while a transmitted shock
propagates through the obstacle. Numerical simulations forecast a supersonic flow with an
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internal Mach number around 15 and a reverse shock characterized by a Mach number of 2
which propagates for a few nanoseconds through an inhomogeneous medium. Those numerical
results are in agreement with the first experimental results (Falize et al 2012). Since we are
interested in the evolution of the reverse shock through the incoming medium, we would like
to get a homogeneous medium for the longest achievable period as in the astrophysical case.
With the bi-layer target configuration, once formed, the reverse shock rapidly passes through
the high-Z layer of plasma to get into the plastic plasma expanding into the tube which presents
a steep density gradient (see figure 3). This multi-materials interaction and the inhomogeneity
of the incoming flow make the shock dynamics more complex and also make the astrophysical
relevance less obvious. Finally, the velocities we reach using such a design are not high enough.
We look for a radiative medium, so the higher the temperature the better, and to get those higher
temperatures we need the highest achievable velocity, T ∝ u2

flow. That is why we test a second
target design where the flow of plasma is generated using a mass reservoir located just behind
the bi-layer pusher. Two reservoir geometries are investigated: a cylinder of foam and a cone of
foam with an opening angle 8, the former being a generalization of the cylinder where 8= 0.
The cone geometry was already used during previous experiments to generate the fastest and
highest Mach number flow achievable under the LULI2000 conditions (Loupias et al 2007). Jets
characterized by a velocity of 144 km s−1 and an internal Mach number of 10 were produced.
Two lengths for the cylinder reservoir are under consideration: the first one, l1 = 85µm, to get
a cylinder with a volume equal to that of the cone and thus the same contained mass, and the
second one, l2 = 250µm, which is equal to the length of the cone. To investigate the target
behavior, we considered a foam composed of CH with the same density of 50 mg cm−3 as that
used in previous jet experiments. The geometry of the cylindrical target allows us to make a 1D
approximation to describe the system in the first place (see the scheme of the target in figure 3,
middle and bottom).

The general mechanisms in the target are identical. The initial shock is going through
plastic, then a high-Z material layer and eventually the foam. A plasma of foam is then
expanding through the tube toward the obstacle with an internal Mach number of the order of
10–20 (see figure 3, middle and bottom). The reverse shock appears in the foam and propagates
upstream. For the first length, l1, the high-Z layer follows closely the head of the flow. So
the reverse shock once formed in the foam passes rapidly through the titanium layer after
a few nanoseconds. For the second length, l2, the reverse shock propagates for ∼10 ns into
the foam with a constant velocity urev.shock ∼ 20 km s−1. Typical Mach number of the reverse
shock considering both lengths is of the order of 2–4. This design offers a more homogeneous
incoming flow compared to the first target design (see figure 3), which facilitates the comparison
with the astrophysical situation. Indeed, we want to investigate the evolution of the column
structure once cooling mechanisms have become strong enough to influence it. Our accreting
shock then needs to be fed by a homogeneous flow for the longest achievable period in order
to allow enough time for the cooling mechanism to impact the column structure. The longest
cylinder of foam seems more fitted to our experimental expectations since the reverse shocks
propagate for a longer time into the foam before passing through the high-Z layer. Moreover,
looking at the maximum velocities reached in both flows expanding in the tube, we note that the
velocities are of the order of 170–180 km s−1, which is higher than the typical velocity using the
first kind of target.

The maximum velocity of the flow generated with the longest cylinder is vmax ∼

180 km s−1, which is slightly higher than the shortest one where vmax ∼ 170 km s−1, even if the
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mass which has to be put into motion is three times higher. This result is due to the interesting
dynamics of transmitted and reflected shocks at each interface when the initial shock is launched
(see figure 4). When the shock reaches the interface between the CH and the high-Z layer
(see figure 4 (1)), the relative impedance of both layers leads to a transmitted shock which
passes through the high-Z material and a reflected shock which goes back into the CH. The
transmitted shock propagates through the high-Z layer, and when it reaches the layer of foam
which has a lower impedance (see figure 4 (2)) a transmitted shock is produced in the foam and
a rarefaction wave propagates back into the high-Z layer. Meanwhile, the reverse shock reaches
the ablation front generated by the laser (see figure 4 (3)). There, a reflected shock appears
and once again passes through the CH layer toward the high-Z layer and generates a second
transmitted shock in the high-Z layer. This shock encounters the rarefaction wave (see figure 4
(4)) and accelerates until reaching the interface between the high-Z layer and the foam. There,
it generates a second transmitted shock in the foam which goes faster than the first transmitted
shock. Ultimately, if the foam layer is long enough, both shocks can coalesce (see figure 4 (5)).
In this configuration the resulting shock is propagating faster into the foam and the asymptotic
velocity of the expanding foam plasma is also higher. Considering the 1D numerical simulation
presented in figure 3 of the target with the longest cylinder, the coalescence happens around
2 ns after the laser ignition once both shocks are approximately 100µm away from the interface
between the high-Z layer and the foam. That is why such an effect is not seen with the shorter
cylinder: the first shock has already reached the bottom of the foam layer and the plasma has
begun its expansion before the second shock can catch up with the first one.

Several leads are studied to produce a fast flow of plasma with a high enough velocity to
get high post-shock temperature and to enhance radiative effects. In previous jet experiments a
cone of foam has been used to generate a high Mach number flow. The properties of such jets are
interesting in our context, so we investigate the behavior of a target with a conical mass reservoir
instead of a cylindrical one. The complex propagation of transmitted and reflected shocks when
the first launched shock is interacting with the cone wall helps in the collimation of the flow
and should help to accelerate the material. The 1D approximation is no longer sustainable with
this particular geometry. Then 2D simulations have been realized to investigate the behavior
of the target (see figure 5). The cone angle had been optimized in the previous supersonic
jet experiments and a parametric study validates the use of the same angle 8= 77◦ for our
target configuration. The propagation of the initial shock into the cone leads to the formation of
transmitted and reflected shocks when interacting with the cone wall, which can be seen at the
early stage of the simulation (see figure 5, at t = 5 ns). The flow begins to expand into the tube
after approximately tout = 7 ns. While the flow expands, its interaction with the tube leads to the
formation of shocks propagating inward in the middle of the tube (see figure 5, at t = 17 ns).
At the late stage, when the flow hits the obstacle, the reverse shock is formed and begins to
propagate upstream (see figure 5, at t = 34 ns). The typical velocity of the flow, with a foam
initially with a density of 50 mg cm−3, is around u ∼ 170 km s−1 and the internal Mach number
of the flow is approximately 10–20. The simulations are in agreement with the experimental
regime published in Loupias et al (2007) (see table 1 in the present paper). The collision time
is around t = tout + L tube/u ∼ 20 ns, the typical post-shock density in the foam is of the order of
20 mg cm−3, and the temperature is T ∝ u2

flow ∼ 25 eV (see figure 5). This temperature is lower
than that obtained in the 1D simulations. This seems to be due to 2D effects: as an example,
the loss of energy by the plasma while it interacts with the cone and the dissipation of part of
the energy through transmitted shocks into the cone, which is not as efficient in the cylindrical
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Figure 5. Evolution of the target with time; the color scale corresponds to the
logarithm of density. At first the shock generated by the laser–matter interaction
propagates through the cone of foam and reaches the bottom of the layer. The
plasma expands into the tube which is filled with void. The flow hits the obstacle
and a reverse shock is formed and propagates upstream. In this simulation, the
tube is rigid. The initial density of the foam is 50 mg cm−3.

case and which can be neglected as is done in the 1D simulations. The reverse shock propagates
through the incoming material with a velocity of urev.shock ∼ 20 km s−1 for ∼15 ns and the Mach
number characterizing this shock is of the order of 3.

4. Astrophysical relevance of laboratory experiments

The similarity properties concerning the two kinds of target and for the two different geometries
of the mass reservoir are presented in table 2. To characterize the radiative regime in the post-
shock flow, we give the order of magnitude for the Mach number of the reverse shock (M),
the Boltzmann number (Bo) in the post-shock region which compares the enthalpy flux to the
radiative energy flux, and finally, the cooling parameter (χ ) also in the shocked region which
represents the ratio of the characteristic cooling time to the dynamical one. Such characteristic
numbers allow one to classify radiative shocks and highlight important physical processes
at stake (Michaut et al 2009, Falize et al 2011a). In order to evaluate the thermodynamical
quantities of the medium in the post-shock region, we look at the quantities profile when the
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Table 2. Similarity properties of both kinds of target, from left to right:
targets with a bi-layer plastic/titanium pusher; a target with a bi-layer of
plastic/titanium and a cylinder of foam with l1 length; a target with a bi-layer of
plastic/titanium and a cylinder of foam with l2 length; typical order of magnitude
found in the astrophysical system. Orders of magnitude are taken inside the
plastic for the first type of target and inside the foam for the second and third ones
in 1D simulations, and inside the foam for the cone target in the 2D simulation
done with the CEA code FCI2.

Cylinder Cylinder
mass length Astrophysics

CH/Ti equation equation Cone system

v (km s−1) 130 170 180 170 5000
Post-shock
density (g cm−3) 0.15 0.03 0.04 0.02 5 × 10−8

Post-shock
temperature (eV) 45 35 45 25 104

M 2 4 2 3 > 10
Bo 10 5 4 10 . . .

χ 2 2 1 1 � 1

reverse shock is ∼100µm away from the obstacle. At such a distance, the reverse shock can be
diagnosed experimentally. The dynamical time is taken as equal to the ratio of the length of the
shocked region divided by the sound velocity, representing the time needed for a perturbation
to propagate across the shocked region. The cooling time is equal to the quotient of the internal
energy density by the emissivity of the medium. This latter can be evaluated by multiplying
σT 4 by the Planck mean opacity, where σ is the Stefan–Boltzmann constant.

At the astrophysical scale, we can estimate the order of magnitude for the velocity, density
and temperature in the plasma by an analysis of spectroscopic and photometric data (see, e.g.,
Traulsen et al 2011). The Mach number which characterizes the reverse shock is of the order of
15–20, and the cooling parameter is very small compared to 1: radiative processes completely
structure the post-shock region through their cooling effect.

Using a mass reservoir, we manage to create a supersonic flow of plasma with velocity of
the order of 170–180 km s−1, giving birth to a reverse shock characterized by Mach number of
the order of 2–4, and which propagates for a period from a few nanoseconds to ∼15 ns in a
relatively homogeneous plasma of foam. This is an improvement compared to the first design,
since we would like to get the fastest flow with the strongest possible reverse shock, and a
homogeneous inflow similar to the astrophysical situation.

The new target design allows us to give more impact of the cooling on the post-shock
structure. Indeed, the cooling parameter is smaller considering the use of a long mass reservoir.
For the second kind of target, either considering the long cylinder or the cone, the post-
shock flows are characterized by a χ parameter around 1. Consequently, radiative losses play
a role in the dynamics, but do not strongly dominate the evolution of the plasma as in the
astrophysical regime where χ � 1. Then, even if better, this mixed regime is still not satisfactory
for reproducing astrophysical flow. We would need a more efficient cooling system to obtain
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similarity with the astrophysical flow. A higher speed of the flow would provide a higher post-
shock temperature, which in turn could induce a more efficient radiative process to cool the flow
more rapidly. Thus, we can assume that in higher-energy facilities, typical scales given in table 1
are accessible and still more relevant regimes for laboratory astrophysics can be reached.

The similarity properties obtained from the 2D simulations considering a mass reservoir
with a conical geometry are more interesting than in the first target design using only a bi-layer
pusher. We should note that one of the advantages of this kind of target is that the flow of foam
generated into the tube is more diluted due to the propagation of the initial shock through all the
cone length. Thus, the incoming foam medium into the tube is more homogeneous and its typical
length is higher than with a cylindrical mass reservoir. This allows the reverse shock to propagate
for a longer time into the plasma of foam, which is precisely the aim of the experiment. In the
exhibited 2D numerical simulation, the reverse shock propagates for ∼15 ns before passing
through into the incoming titanium.

5. Conclusion

We have presented the experimental concept of the POLAR project similarity experiments. The
latest improvements of the target are presented concerning, in particular, the mass reservoir.
These new designs have been studied in order to get closer to similarity considering a kilojoule
laser facility. Numerical simulations were performed to study the physics of the target, to define
the best sizing compromise and to forecast regimes which can be reached in the laboratory. The
additional mass reservoir makes it possible to produce a faster and more homogeneous flow.
We also manage to get a reverse shock propagating for a longer time through the incoming flow
by using a conical mass reservoir instead of a cylindrical one. Moreover, we showed that using
a mass reservoir allows us to get a stronger reverse shock and also increases the influence of
cooling processes on the post-shock structure, which is promising for similarity experiments in
the context of polar accretion columns.

The first 1D simulations have to be complemented by 2D simulations to take into account
the effects of the target geometry (cone, tube, etc). An experiment has been performed at the
LULI2000 facility at the beginning of 2012 using the three target designs presented here.
Experimental data are still in analysis and are to be compared to numerical simulations.
Eventually, based on the results of this new experiment, work has to be done to pursue our
effort to get closer to similarity with the astrophysical situation by improving the target design.
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Falize É et al 2011c The scalability of the accretion column in magnetic cataclysmic variables: the POLAR project
Astrophys. Space Sci. 336 81–5
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