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Abstract. Ultracold fermions trapped in a honeycomb optical lattice constitute
a versatile setup to experimentally realize the Haldane model (1988 Phys. Rev.
Lett. 61 2015). In this system, a non-uniform synthetic magnetic flux can be
engineered through laser-induced methods, explicitly breaking time-reversal
symmetry. This potentially opens a bulk gap in the energy spectrum, which is
associated with a non-trivial topological order, i.e. a non-zero Chern number.
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In this paper, we consider the possibility of producing and identifying such a
robust Chern insulator in the laser-coupled honeycomb lattice. We explore a large
parameter space spanned by experimentally controllable parameters and obtain
a variety of phase diagrams, clearly identifying the accessible topologically
non-trivial regimes. We discuss the signatures of Chern insulators in cold-
atom systems, considering available detection methods. We also highlight the
existence of topological semi-metals in this system, which are gapless phases
characterized by non-zero winding numbers, not present in Haldane’s original
model.
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1. Introduction

Topological phases of matter have been a topic of great interest in condensed matter physics
since the discovery of the integer quantum Hall effect [1]. They are characterized by transport
properties—such as a quantized Hall conductivity—that depend on the topological structure of
the eigenstates [2], and not on the details of the microscopic Hamiltonian. As a result, such
properties are remarkably robust against external perturbations. Integer quantum Hall phases,
the first topological insulating phases to be discovered [1], are realized by applying a large
uniform magnetic field to a quasi-ideal two-dimensional electron gas, as formed in layered
semiconductors structures.

New Journal of Physics 15 (2013) 013025 (http://www.njp.org/)

http://www.njp.org/


3

The presence of a uniform magnetic field is not, however, a necessary condition to produce
quantum Hall states, as first realized by Haldane [3]. He proposed a remarkably simple model
on a honeycomb lattice, with real nearest-neighbor (NN) hopping and complex next-NN (NNN)
hopping mimicking the Peierls phases experienced by charged particles in a magnetic field.
Although the total magnetic flux through an elementary cell of the honeycomb lattice is zero,
a staggered magnetic field present within this cell locally breaks time-reversal symmetry.
Haldane showed that this two-band model supports phases that are equivalent to integer
quantum Hall phases: they correspond to insulators with quantized Hall conductivities, σH =

νe2/h where e is the electron charge. In this manner, it is possible to generate a quantum
Hall effect without a uniform external magnetic field. The integer ν = ±1 (depending on
the particular values of the microscopic parameters) is a topological invariant—the Chern
number—characteristic of the phase and robust with respect to small perturbations [2, 4]. More
recently, a more broad concept of topological insulators has emerged, classifying all possible
topological phases for non-interacting fermions in terms of their symmetries [5, 6]. In this
modern terminology, the Haldane model belongs to the class A of Chern insulators, which are
topologically equivalent to the standard quantum Hall states.

The Haldane model has not been directly realized in solid-state systems, due to the
somewhat artificial structure of the staggered magnetic field. Interestingly, ultracold atomic
gases [7, 8] appear better suited to achieve this goal [9, 10]. In recent years, many proposals
have been put forward to realize artificial magnetic fields for ultracold atoms (see [11] for a
review). Staggered fields are relatively easier to implement than uniform ones [12–14], and have
already been realized in a square optical lattice [15]. Building on these ideas, Alba et al [16]
proposed a model very similar to Haldane’s that could be realized with ultracold atoms. Their
variant is based upon a state-dependent honeycomb optical lattice [8], where cold atoms in two
different internal ‘pseudospin’ states are localized at two inequivalent sites of the elementary
cell. Additionally, laser induced transitions [12, 17] between the NN sites lead to pseudospin-
dependent hopping matrix elements containing phase factors, schematically depicted in figure 1.
Furthermore, Alba et al [16] suggested a measurement based on spin-resolved time-of-flight
(ToF) experiments to identify topological invariants.

The present work provides a systematic analysis of the model proposed in [16] and
identifies parameter regimes where Chern insulators emerge. The goals are: firstly, to serve
as a detailed guide to possible experiments aiming at realizing such topological phases; and
secondly, to discuss the subtle issue of identifying them through ToF methods. Alba et al [16]
focused on the very special case when one of the NNN hopping amplitudes was zero, and we
find that such a system is semi-metallic, not a quantized Chern insulator. In this limit, where the
bulk energy gap is closed, the Hall conductivity is no longer simply given by a Chern number
σH 6= νe2/h, and therefore, this transport coefficient generally loses its topological stability. Yet,
the ToF method seems to give a non-trivial signature in this regime, which is robust with respect
to small variations of model parameters. The subtlety is that the ToF method of [16] actually
measures a winding number [18], which only coincides with a topologically protected Hall
conductivity when the energy gap is open. If this condition is met, the ToF method of [16] then
produces a reasonable experimental measure of the topologically invariant Chern number, and
we indeed verify its robustness when varying the system parameters. Interestingly, if the bulk
gap is closed, we find that the winding number measured from a ToF absorption image might
still depict a stable plateau when varying the microscopic parameters, under the condition that
the Fermi energy is exactly tuned at the gap closing point (i.e. requiring that the low-energy bulk
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(b) Laser geometry (c) State-dependent lattice
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Figure 1. (a) Honeycomb lattice composed of two coupled triangular sublattices
A and B. The site positions in each sublattice are defined as rmA = m1a1 +
m2a2 and rmB = m1a1 + m2a2 − δ2, with unit vectors a1 = δ1 − δ3 and a2 =

δ2 − δ3 and with m = (m1,m2) integer. The NN vectors are δ1 = a/2(1,
√

3),
δ2 = a/2(1,−

√
3) and δ3 = a(−1, 0). We define a3 = a1 − a2 = δ1 − δ2. The

hopping factors between NN and NNN sites of the honeycomb lattice are
indicated by tA, tB and teiφ, with φ ≡ φ(mA,mB) given by equation (3). The
lattice spacing is a

√
3, and we set a = 1 in the main text, which defines our

unit of length. (b) Three-beam laser configuration giving rise to the desired
spin-dependent hexagonal lattice, which we describe for 40K. In this vision,
the lasers are detuned between the D1 and D2 lines of the 4S–4P transition,
whereby the state-independent (scalar) light shift is zero. The remaining spin-
dependent potential—an effective Zeeman magnetic field—is depicted in (c).
The strength of the ‘same-spin’ hopping, i.e. ta and tb, is governed by the
choice of internal states: the pair | f = 9/2,mF = 7/2〉 and | f = 7/2,mF = 7/2〉

produce ta ≈ tb as they have opposite magnetic moments. In contrast, the choice
| f = 9/2,mF = 9/2〉 and | f = 7/2,mF = 7/2〉 produces ta 6= tb. The effective
Zeeman shift is plotted with a color scale where blue indicates the potential
minima for pseudo-spin up atoms, forming the A sublattice; and red indicates
the minima for pseudo-spin down atoms, forming the B sublattice. Not shown
are an additional pair of Raman lasers, also in the ex − ey plane, that couple
between the different sublattices (red and blue in (c)).

band remains completely filled). In this work, such gapless phases associated with a non-trivial
winding number will be referred to as topological semi-metals. Absent in the original Haldane
model, they constitute intriguing topological phases, which can be created and detected in the
laser-coupled honeycomb lattice.

In this work, several types of band structures and topological orders will therefore
be present: (i) Chern insulating phases, i.e. gapped phases with non-trivial Chern numbers
ν = ±1, (ii) topological semi-metals, i.e. gapless phases associated with a non-trivial winding
number and (iii) standard semi-metals, i.e. gapless phases with the two bands touching at
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the Dirac points, as in graphene [19, 20], and which are found at the transition between two
topological phases.

This paper is structured as follows. In section 2, we introduce the model and discuss how
the energy band topology can be characterized in terms of Chern numbers. We also discuss
the magnetic flux configuration as a function of the model parameters, highlighting the time-
reversal-symmetry breaking regimes. Section 3 presents the main results, where the phase
diagrams are investigated as a function of the microscopic parameters. In section 4, we examine
the signatures of the ToF method [16], and compare its results when applied to a Chern insulator
or to a semi-metallic phase, i.e. when the topological bulk gap is absent. We summarize the
results in section 5, and discuss an extension which implements the Kane–Mele model leading
to Z2 topological insulators [21].

2. The model and the gauge structure

2.1. The Hamiltonian

In the model introduced in [16], cold fermionic atoms are trapped in a honeycomb structure
formed by two intertwined triangular optical lattices, whose inequivalent sites are labeled by A
and B respectively (see figures 1(a)–(c)). In the tight-binding regime—applicable for sufficiently
deep optical potentials VA,B(x)—atoms are only allowed to hop between neighboring sites of
the two triangular sublattices, which correspond to NNNs of the honeycomb lattice (denoted
〈〈nτ ,mτ 〉〉, with τ = A,B). The second-quantized Hamiltonian takes the form

ĤNNN = −tA

∑
〈〈nA,mA〉〉

â†
nA

âmA − tB

∑
〈〈nB,mB〉〉

b̂†
nB

b̂mB, (1)

where âmA (b̂mB) is the field operator for annihilation of an atom at the lattice site rmA (rmB)
associated with the A (B) sublattice, and where tA,B are the tunneling amplitudes. Furthermore,
the two sublattices are coupled through laser-assisted tunneling, where hopping is induced
between neighboring sites of the honeycomb lattice by a laser coupling the two internal states
associated with each sublattice. This corresponds to tunneling processes linking NNs sites of
the honeycomb lattice, denoted as 〈mA,mB〉, which are described by the Hamiltonian

ĤNN = −t
∑

〈mA,mB〉

(
eiφ(mA,mB)â†

mA
b̂mB + h. c.

)
. (2)

Here, the phases φ(mA,mB) generated by the laser fields are the analogues of the Peierls phases
familiar from condensed matter physics [22, 23], with rmA and rmB specifying the nearest
neighboring sites of the hexagonal lattice. Following the approach of Jaksch and Zoller [12],
these phases can be expressed in terms of the momentum p transferred by the laser-assisted
tunneling as

φ(mA,mB)= p · (rmA + rmB)/2 = −φ(mB,mA), (3)

so that the phases have opposite signs for rA → rB and rB → rA hoppings (see figure 2(a)
and [11, 13]). Finally, the model also features an on-site staggered potential, described by

Ĥstag = −ε
∑

m

(
â†

mA
âmA − b̂†

mB
b̂mB

)
, (4)
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1

6 5

4

32

(a) The flux configuration (b) Comparing with the Haldane model

B

A

Figure 2. (a) Laser-coupled honeycomb lattice, including the Peierls phases (3),
and the corresponding flux configuration. The local fluxes 81,2,3 are explicitly
given in terms of the momentum recoil p. Here, the basic reciprocal lattice
vectors are b1 = 2π/3(1,

√
3) and b2 = 2π/3(1,−

√
3). (b) The Haldane model

and its simpler flux configuration, entirely characterized by the phase φH.

which explicitly breaks the inversion symmetry of the honeycomb lattice [3]. The total
Hamiltonian, given by

Ĥtot = ĤNN + ĤNNN + Ĥstag (5)

is characterized by the hopping amplitudes (t , tA and tB), the momentum transfer p = (px , py),
as well as the mismatch energy ε.

To eliminate the explicit spatial dependence of our Hamiltonian (5), we perform the unitary
transformation

â†
mA

→ ã†
mA

= â†
mA

exp(i p · rmA/2),

b̂†
mB

→ b̃†
mB

= b̂†
mB

exp(−i p · rmB/2),
(6)

giving a transformed Hamiltonian

Ĥtot = −t
∑

〈nA,mB〉

(
ã†

nA
b̃mB + b̃†

mB
ãnA

)
− tA

∑
〈〈nA,mA〉〉

eiφ̃(nA,mA)ã†
nA

ãmA − tB

∑
〈〈nB,mB〉〉

eiφ̃(nB,mB)b̃†
nB

b̃mB

−ε
∑

m

(
ã†

mA
ãmA − b̃†

mB
b̃mB

)
, (7)

with new Peierls phases given by

φ̃(nA,mA)= p · (rmA − rnA)/2,

φ̃(nB,mB)= p · (rnB − rmB)/2.
(8)

The transformed Hamiltonian (7), featuring complex hopping terms along the links connecting
NNN sites, is similar to the Haldane model [3], but with important differences highlighted in
section 2.4.
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Since rnA,B − rmA,B = δµ − δν = ±aλ are the primitive lattice vectors of the honeycomb
lattice (see figure 1), where µ, ν, λ= 1, 2, 3, the phases φ̃ in equation (8) no longer depend on
the spatial coordinates. Therefore, the Hamiltonian (7) is invariant under discrete translations,
[Ĥtot, T1,2] = 0 where T1,2ψ(r)= ψ(r + a1,2), allowing us to invoke Bloch’s theorem and reduce
the analysis to a unit cell formed by two inequivalent sites A and B. In momentum space, the
Hamiltonian takes the form of a 2 × 2 matrix,

H(k)= −

(
ε + 2tA f (k − p/2) tg(k)

tg∗(k) −ε + 2tB f (k + p/2)

)
, (9)

where

f (k)=

3∑
ν=1

cos(k · aν), g(k)=

3∑
ν=1

exp(−ik · δν), (10)

and k = (kx , ky) belongs to the first Brillouin zone (FBZ) of the system. We rewrite this
Hamiltonian in the standard form

H(k)= ε(k)1̂ + d(k) · σ̂ , (11)

with

ε(k)= −tA f (k − p/2)− tB f (k + p/2), (12)

where σ̂ is the vector of Pauli matrices, and d(k) has real-valued Cartesian components defined
by

dx(k)− idy(k)= −tg(k),

dz(k)= −ε− tA f (k − p/2)+ tB f (k + p/2).
(13)

The eigen-energies of the Hamiltonian (11) are E±(k)= ε(k)± d(k), where we introduced the
‘coupling strength’ d(k)= |d(k)|.

Our Hamiltonian (11)–(13) differs from the expression derived in [16], where different
Peierls phases were used8. Both models are exactly equivalent when tB = 0, where the system
describes a semi-metal (see sections 3 and 4).

We now briefly describe how the energy spectrum changes with the parameters (tA, tB, ε)

of the Hamiltonian (11)–(13), in the absence of momentum transfer p = 0. When tA,B = ε = 0,
the band structure is that of graphene [19, 20], namely, the spectrum is given by

E±(k)= ±|tg(k)|, tA,B = ε = 0. (14)

The two bands touch at zero energy for particular points K± (the so-called Dirac points), where
g(K±)= 0, and around which the spectrum is quasi-linear with momentum, E±(k)≈ ±vF|k|.
We will still use the term ‘Dirac’ points to denote K±, even if the gap is open (in the vicinity
of these points the excitations describe massive Dirac fermions). For ε 6= 0, a bulk gap 1∝ ε

opens at the Dirac points, where the gap width is defined as 1= min(E+)− max(E−).9 This is

8 In [16], Peierls phases were considered to be of the form φ(mA,mB)= p · (rmA − rmB) instead of equation (3),
see the supplemental material in [16]. We note that the correct form (3), used in the present work, corresponds to
the synthetic Peierls phases that can be realized with cold atoms in optical lattices, following the method of [12].
9 We set 1= 0 when max(E−)>min(E+). This happens when the two bands touch at a Dirac point, E+(K D)=

E−(K D), but also when the bulk gap is indirectly closed, see figures 6(a)–(c). The properties of semi-metallic
phases with 1= 0 are discussed in section 4.2.

New Journal of Physics 15 (2013) 013025 (http://www.njp.org/)

http://www.njp.org/


8

not a necessary condition to open a gap, as the NNN couplings tA, tB are also able to do so. For
tA,B 6= 0 and ε = 0, the spectrum is now

E±(k; p = 0, ε = 0)= D+(k)±
√

|t g(k)|]2 + [D−(k)]2, (15)

with D±(k)= −(tA ± tB) f (k). Next we note that |g(k)|2 = 3 + 2 f (k), showing that a gap
1∝ |tA − tB| opens at the Dirac points due to NNN couplings. For finite momentum transfer
p 6= 0, the energy spectrum

E±(k)= ε(k; p, tA,B)±

√
[tg(k)]2 + [dz(k; p, ε, tA,B)]2 (16)

leads to more complex spectral structures and phases, to be explored in section 3.
In the following, we study the phases of non-interacting fermions in an optical-lattice setup

described by Hamiltonian (11)–(13). Such a system forms a metal (or a semi-metal) when the
gap is closed1= 0, and an insulator when1> 0. In the latter case, we set the Fermi energy EF

in the middle of the bulk gap. This classification in terms of the band structure is not exhaustive,
and it must be completed by a description of the topological properties of this band structure.
This is examined in the following section 2.2. In addition, the properties of some peculiar semi-
metals are also explored in this work (see section 4).

2.2. The Chern number

When the two-band spectrum E(k) exhibits an energy gap 1, one can define a topologically
invariant Chern number [24], which encodes the topological order of the system. As shown
in [4], the Chern number ν is equal to the transverse Hall conductivity, σH = ν in units of the
conductivity quantum, provided the Fermi energy is located in the bulk gap. The Chern number
is given by the standard TKNN expression [4, 25]

ν =
i

2π

∫
T2

〈∂kx u(−)(k)|∂ky u(−)(k)〉 − (kx ↔ ky)d
2k, (17)

=
1

2π

∫
T2

1z · (∇k × A(k))d2k, (18)

where |u(−)(k)〉 denotes the single-particle eigenstate associated with the lowest bulk band
E−(k). The Berry’s connection—or vector potential—A(k) is defined by

A(k)= i〈u(−)|∇k|u(−)〉. (19)

This quantity, which defines the parallel transport of the eigenstates over the FBZ [24], also
determines the topological order of the system [2]. The integration in equation (18) is taken
over the FBZ, a two-torus denoted as T2, where the contribution due to any singularities of
A(k)—to be discussed later on—should be excluded.

It is convenient to parametrize the ‘coupling’ vector d(k) in terms of the spherical angles
θ ≡ θ(k) and φ ≡ φ(k), defined as

tanφ = dy(k)/dx(k), cos θ = dz(k)/d(k), (20)

where φ = π − arg g(k) for t > 0. In what follows we shall assume that t > 0, without loss of
generality. In this representation, the Hamiltonian (11) takes the form

H(k)= ε(k)1̂ − d(k)

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
. (21)
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The lowest eigenstate of (21) is given by

|u(−)〉 =

(
−e−iφ sin(θ/2)

cos(θ/2)

)
, (22)

and from equations (19) to (22), we obtain an explicit expression for the Berry’s connection,

A(k)=
1

2
(1 − cos θ)∇kφ. (23)

A crucial point to note is that the Berry’s connection (23) has singularities at the points
in k-space where dx(k)= dy(k)= 0 and dz(k) < 0. The condition dx(k)= dy(k)= 0, which
coincides with the zeros of the function g(k), is always fulfilled at the special points K± =

(2π
3 ,±

2π
3
√

3
), where we have set a = 1. The second condition dz(K±) < 0 is only satisfied for

certain values of the model parameters (tA,B, ε, p). In terms of the coupling vector d, the
singularity takes place at the ‘South pole’ where θ = π and φ is arbitrary, so that the state
|u(−)〉 is multivalued there. Note that this singularity can be removed locally by a gauge
transformation, but not globally [26]. Moreover, we find that the phase φ = π − arg g(k) yields
opposite vorticities at the two inequivalent Dirac points,

v± =

∮
γ±

∇φ(k) · dk = ±2π, (24)

where γ± denotes closed loops around the two Dirac points K±.
If these singularities were absent, the integrand in equation (18) would constitute an

exact differential form over the entire FBZ. In this trivial case, Stokes theorem would then
ensure that the integral in equation (18) is zero, since this exact two-form is integrated over
a closed manifold10. To account for these singularities, Stokes theorem can be applied to a
contour avoiding them [2, 27]. In particular, the Chern number (18) can be written as a sum of
integrals performed over the excluded singularities, i.e. by contributions from small circles of
infinitesimal radius γ± around the excluded Dirac points k = K± at which A(k) is singular,

ν = −
1

2π

∑
K−,K +

∮
γ±

A(k) · dk. (25)

Using equation (24) and taking into account the fact that cos θ(k) remains well-defined close to
K±, we find the simple expression for the Chern number

ν =
1

4π
(cos[θ(K +)]v+ + cos[θ (K−)]v−)

=
1

2

(
dz(K +)

|dz(K +)|
−

dz(K−)

|dz(K−)|

)
, (26)

which only involves the sign of the ‘mass’ term dz(k) (13) at the two inequivalent Dirac points
K±. A detailed demonstration of equation (26), which further highlights the role played by the
singularities, is presented in appendix A. The important result in equation (26) shows that the
Chern number ν can now be directly evaluated, without performing the integration over the FBZ
in equation (17). From equations (13) to (26), one can already deduce that non-trivial Chern

10 The FBZ is a two-dimensional torus T2, which is a closed manifold. See also appendix A.
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numbers ν 6= 0 can only be obtained when dz(k) has opposite signs at the two inequivalent
Dirac points K±, which can only be achieved for p 6= 0. In the following section 2.3, we
give a physical interpretation in terms of effective magnetic fluxes and time-reversal-symmetry
breaking. We also comment on pathological time-reversal symmetric configurations, which
necessarily lead to a trivial topological order ν = 0.

To conclude this section, we note that a Chern insulator is also characterized by current-
carrying edge states that propagate along the edge of the system. This edge transport is
guaranteed by the opening of a non-trivial bulk gap (1, ν 6= 0, see figure 6(b)), and it leads
to the quantization of the Hall conductivity via the bulk-edge correspondence [27]. The
latter is observed through transport measurements in solid-state experiments. In the cold-atom
framework, such measurements are not convenient, as they would require atomic reservoirs
coupled to the optical lattice. However, alternative methods, based on Bragg spectroscopy
[28, 29], have been proposed to extract and image these topological edge states [30]. We will
use the appearance of chiral edge states later in this paper to strengthen the identification of
Chern insulators (section 3.2). They are obtained from the spectrum of Hamiltonian (5) in a
finite geometry [27], as explained in appendix B.

2.3. Flux configurations and physical description of the model

In this section, we examine the effects of the Raman-induced phases in equation (3) from a less
formal point of view, by associating effective ‘fluxes’ to these Peierls phases. First, one can
evaluate the number of magnetic flux quanta penetrating each hexagonal plaquette 7, which
yields (see figure 2(a))

2π8(7)=

∑
7
φ(nA,mB)= 0.

Therefore, in the absence of NNN hopping (i.e. tA,B = 0), the system has a trivial flux
configuration 8= 0 and remains invariant under time reversal.

Importantly, when NNN hopping terms are introduced (i.e. tA,B 6= 0), triangular sub-
plaquettes are penetrated by non-zero magnetic fluxes, explicitly breaking time-reversal
symmetry and potentially leading to quantum Hall phases [3]. Considering the sub-plaquettes
formed by the A–B and A–A hoppings, illustrated in figure 2(a), one finds that

81 = − p · a3/4π = (p2 − p1)/2,

82 = − p · a2/4π = −p2/2, (27)

83 = p · a1/4π = p1/2,

where we expressed the recoil momentum p = p1b1 + p2b2 in terms of the basic reciprocal
lattice vectors b1,2, for which b j · al = 2πδ jl . The sub-plaquettes formed by the A–B and B–B
hoppings have a similar flux structure. Thus, the space-dependent Peierls phases (3) produce
a flux configuration characterized by three local fluxes 81,2,3, and which is translationally
invariant over the whole lattice (see figure 2(a)). We also note that

∑
α8α = 0, which indicates

that the total flux penetrating each hexagonal plaquette 7 remains zero, as found above [3].
The system remains invariant under time reversal when H({81,2,3})≡ H(−{81,2,3}),

where {81,2,3} represents the flux configuration stemming from a given p. Besides the obvious
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case p = 0, we find from equation (27), that this occurs:

• if p1 and p2 are both integers, i.e. if p is a vector of the reciprocal lattice;

• if one of the components p1, p2 or p2 − p1 is an even integer, and in particular, if p is
collinear with one of the basis vectors b1,2. For example, when p1 = 0 (resp. p2 = 0), one
finds 83 = 0 and 81 = −82 (resp. 82 = 0 and 81 = −83).

In these pathological ‘staggered flux’ cases, the system remains invariant under time
reversal and therefore topologically trivial (note that the number of magnetic flux quanta 8α

is only defined modulo 1).
We can verify that these singular time-reversal configurations equally correspond to the

condition

dz(K +)= dz(K−), ∀tA, tB. (28)

As established in equation (26), the condition (28) naturally leads to a trivial Chern insulator
ν = 0 when 1> 0, as expected for a time-reversal-invariant system exhibiting a gap. One can
check that the condition (28) can be simply rewritten in terms of the vector p = p1b1 + p2b2,

sin(πp2)− sin(πp1)+ sin [π(p2 − p1)] = 0, (29)

whose solutions exactly reproduce the pathological cases listed above. When p satisfies the
condition (29), the system is necessarily a trivial insulator or a metal depending on the
other parameters. In section 3.1, we explore other values of the momentum recoil p, where
trivial or non-trivial phases can be found depending on the specific values of the parameters
tA, tB, ε.

2.4. Comparison with the Haldane model

We conclude this section by comparing the laser-coupled honeycomb lattice (5), with the
original Haldane model (see [3] and figure 2(b)). In the latter, the hopping factor t1 between NN
sites of the honeycomb lattice is real, while NNN hoppings t2 are multiplied by a constant phase
factor e±i2πφH (the sign being determined by the orientation of the path). Thus, in the Haldane
model, the three small triangular subplaquettes illustrated in figure 2(b) are all penetrated
by the same flux 81,2,3 = φH, whereas the large central triangular plaquette is penetrated by
a flux −3φH. This leads to a staggered magnetic field configuration, with a vanishing total
flux penetrating the hexagonal unit cell 8(7)= 0. We stress that time-reversal symmetry
is necessarily broken in the Haldane model, for any finite value of the phase φH 6= 0. This
important difference between the two models highlights the richness of the laser-coupled
honeycomb lattice (11)–(13), where the flux configuration and the nature of the spectral gaps
strongly depend on the orientation of the vector p entering the Peierls phases.

3. Phase diagrams for topological insulating phases

In this section, we perform a systematic characterization of the phase diagram. We set the NN
tunneling amplitude to t = 1, thus effectively measuring all energies in units of t . The Cartesian
components of the recoil momentum px and py are conveniently measured in units of Kx and
K y , which are the coordinates of the Dirac point K +, with Kx = 2π/3 and K y = 2π/3

√
3.
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Figure 3. Phase diagrams as a function of the recoil momentum components
px and py . In all the figures, we set t = 1, ε = 0 and tA = 0.3t . In panel (a)
we set tB = tA = 0.3t , and in panel (b) tB = 0.2t . The extreme case tB = 0 is
shown in (c). The white regions correspond to metallic phases (i.e. vanishing
of the gap 1≈ 0), the blue and red regions correspond to topological phases
with ν = ±1. The green regions correspond to trivial insulating phases ν = 0.
The ‘resized’ FBZ is indicated by a hexagon, which also serves to highlight
the angle dependence with respect to the inverse lattice vectors. The size of the
gaps is indicated by the intensity: the lightest shades denote areas where the
gaps are 1< 0.1t and the areas with the strongest shades of color correspond to
1.5t <1< 2t .

Following the discussions in the preceding section, we can expect three different phases:

• a semi-metal (energy gap 1= 0),

• an insulator (energy gap 1 6= 0) with trivial topology (ν = 0),

• a Chern insulator (1 6= 0, ν 6= 0).

At this point, let us remind ourselves that the Chern number ν defined in equation (17)
characterizes the topological order of insulating phases [2]. However, the expression in
equation (26) could also be formally computed for a semi-metal configuration (1= 0), but
in this case, the index ν cannot be associated with a robust and topologically protected Hall
conductivity. This fact, which is crucial from the experimental detection point of view, is further
elaborated in the next section 4. In this section, where the focus is set on Chern insulators, we
are therefore looking for wide regions in parameter space where both 1 and ν are non-zero. In
section 3.1, we consider how the system evolves as the recoil momentum p is varied without
staggered potential (ε = 0). We examine further the role of anisotropy in the tunneling energies
(tA 6= tB) in section 3.2, and finally the role of a staggered potential (ε 6= 0) in section 3.3.

3.1. Recoil momentum

We first investigate the effects of the Raman recoil momentum p. Here, the staggered potential
is set to ε = 0. The phase diagrams shown in figure 3 illustrate the appearance of topological
phases as a function of the Cartesian components px and py , for several values of the tunneling
rates tA,B. The areas corresponding to non-trivial topological phases, characterized by the Chern
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numbers ν = ±1, are indicated by blue and red colors, respectively. Green areas correspond
to the trivial insulating phase ν = 0, and white areas signify the ‘undesired’ metallic regime
(1≈ 0). The size of the bulk gap 1 is simultaneously shown through the color intensity.
Panel (a) shows the isotropic case with equal NNN tunneling amplitudes set to tB = tA =

0.3t . Here, non-trivial topological phases (ν = ±1) are generally separated by semi-metallic
or metallic phases, and these topological regions depict triangular patterns. Panels (b) and
(c) correspond to anisotropic cases where the hopping amplitude tB is reduced to tB = 0.2t
in panel (b) and set to zero in panel (c). As the anisotropy increases, the metallic regions and
trivial insulating phases progressively modify the non-trivial islands.

In the special case tB = 0, we find that all the regions that were non-trivial for tB > 0 reduce
to semi-metals: when tB = 0, no topological insulating phase is found (contrary to what the
skyrmion behavior of the vector d would suggest [16], see section 4). We stress that the semi-
metallic behavior of the special case tB = 0 is found for the entire parameter space (i.e. for all
tA, ε and p), and equally happens for the case tA = 0 and tB 6= 0. This subtle effect is highlighted
in figure 6(c), presented in section 3.2, where the band structure E = E(ky) clearly shows the
indirect gap closing for the case tB = 0. This energy spectrum suggests that a small perturbation
could open the bulk gap and lead to a Chern insulator. However, in section 3.3, we show that
the staggered potential does not open such a non-trivial gap in the case tB = 0. We therefore
conclude that the condition tA,B 6= 0 should be satisfied to generate a robust Chern insulator.

The Hamiltonian is a periodic function of p, and the resulting periodicity of phases is
conspicuous in the phase diagrams illustrated in figure 3. The central elementary lattice (the
‘resized’ FBZ) cell is marked by a black hexagon11 in all panels of figure 3. We find that the
most convenient non-trivial topological insulating phases (i.e. phases protected by the largest
bulk gaps 1∼ 2t) are found for p ∝ (sin Nπ/3, cos Nπ/3), where N is an integer. Therefore,
setting px = 0 potentially leads to topological phases with large bulk gaps, which is the most
interesting situation for an experimental realization (see section 4).

We now explore how the topological phases evolve as the laser recoil momentum p and the
tunneling amplitudes tA,B are modified. As motivated above, we set px = 0, and then compute
the phase diagrams in the py–tA plane. First of all, we investigate the isotropic case tA = tB (the
effects of anisotropy will be discussed in section 3.2). The phase diagram presented in figure 4
indicates that in the realistic situation where tA ≈ tB, the sizes of the topological gaps 1 are
maximum for tA ≈ tB ≈ 0.3t , where 1≈ 2t for py ≈ 4K y (see also figure 3(a)). Furthermore,
this figure indicates that one should generally observe phase transitions between metallic and
non-trivial topological phases as py is varied. Importantly, we note that the system remains
metallic (1= 0) when the ‘natural’ hoppings tA,B are larger than the Raman-induced hopping
t , in particular when tA ≈ tB ≈ t . In the following, we show that an anisotropy tA 6= tB, or the
inclusion of a staggered potential ε 6= 0, can turn this metallic phase into a topological one.

3.2. Anisotropy

In figure 5, we show the phase diagram in the plane py–tB for a large and fixed value of the
tunneling rate tA = t . This important result shows that when tA ≈ t , the anisotropy |tA − tB| 6= 0
is necessary to open non-trivial topological gaps. This effect occurs for a relatively large

11 To be more precise, the arguments of the cosines and the complex exponentials in the Hamiltonian feature
p/2, thus the ‘resized’ FBZ is twice larger than the actual FBZ. The panels of figure 3 show rectangular regions
containing exactly four Brillouin zones.
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Figure 4. Phase diagrams as a function of the tunneling amplitude tA and the
recoil momentum component py . We set t = 1, ε = 0, p = (0, py) and tA = tB.
The color code is the same as in figure 3.

Figure 5. Phase diagram as a function of the tunneling amplitude tB and the
recoil momentum component py , as tA = t is fixed. Here, we set t = 1, ε = 0
and px = 0. The color code is the same as in figure 3. The three dotted
configurations (a)–(c) are further illustrated through band structures E = E(ky)

in figures 6(a)–(c).

range of the anisotropy, namely for tB ∈]0, tA], and for specific values of the momentum py .
For larger anisotropy |tA − tB|> t , the topological phases are destroyed and only metallic and
trivial insulators survive. Specific phase transitions between semi-metallic and Chern insulating
phases, indicated in figure 5 by three successive dots, are further illustrated through the edge-
state analysis, in figure 6. The energy spectrum E = E(ky) shown in this figure is obtained for
a finite geometry, revealing the projected bulk bands E±(kx , ky)→ E±(ky) as well as the edge
states dispersions (see [27] and appendix B). In panel 6(b), one indeed observes the presence
of topological edge states within the bulk gap, which is the hallmark of a Chern insulator,
i.e. through the bulk-edge correspondence [27]. Finally, we note the robustness of the
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Figure 6. Energy spectra E = E(ky), as a function of the quasi-momentum ky ,
for a cylindrical geometry with zigzag edges, see appendix B. The parameters
in (a)–(c) correspond to the configurations labeled by dots in figure 5: namely,
ε = 0 and (a) tA = tB = t , (b) tB = 0.3t , (c) tB = 0. In all the figures tA = t = 1,
ε = 0 and py = 4K y . When ν 6= 0 and 1 6= 0, as in figure (b), gapless dispersion
branches cross the bulk energy gap: they describe current-carrying edge states,
which lead to a quantized Hall conductivity [27]. Figures (a) and (c) illustrate
the peculiar situations where the bulk gap indirectly closes, 1= 0, and where
the winding number (30) is non-trivial w 6= 0 (see section 4.2). Note that the gap
closing is indeed indirect in figure (a): the false impression that the bands touch
is due to the projection E±(kx , ky)→ E±(ky). For the topological semi-metals
(a) and (c), the gap closing point corresponds to E∗

= max(E−)= min(E+).

topological edge states within the semi-metal regime 1= 0, in figures 6(a), (c), a fact which is
further analyzed in section 4.

3.3. Staggered potential

In this section, we explore the effect of the staggered potential. In figure 7, we show the
phase diagram as a function of the staggered potential strength ε and of the recoil momentum
component py , for several configurations of the tunneling amplitudes tA,B (we set px = 0).
First, we show the case tA = tB = t in figure 7(a). In this situation, large metallic regions and
small non-trivial islands are found in the phase diagram, which can already be anticipated
from figure 4 for ε = 0. Interestingly, in the totally symmetric case, where tA = tB = t , the
topological phases vanish for ε = 0, and they are thus separated along the ε-axis12 . These results
indicate that the staggered potential is necessary to induce topological phases in this situation
where tA = tB = t . However, for large values of the staggered potential, a trivial phase with
ν = 0 is always privileged, in agreement with the general belief that such a staggered potential
generically leads to trivial phases [3].

For tA = tB < t , non-trivial Chern insulating phases can be formed both with and without
the staggered potential. In figure 7(b), we illustrate the effects of the staggered potential for
the optimized values of the tunneling rates tA = tB = 0.3t . Here, one observes two topological
phases with ν = ±1, which are separated by a small metallic region. This result highlights

12 Note that the vanishing of the topological insulating phases for tA = tB = t and ε = 0 can be visualized in
figure 4.
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Figure 7. Phase diagrams as a function of the staggered potential strength ε
and the recoil momentum component py . In all the figures, we set t = 1 and
px = 0. (a), (b) The isotropic cases tA = tB = t and tA = tB = 0.3t . The extreme
case where tB = 0 is shown in (c). The color code is the same as in figure 3.

that one should generally observe phase transitions between semi-metallic and non-trivial
topological phases as py is varied. On the other hand, varying the staggered potential to large
values always privileges the transition to a trivial phase with ν = 0.

In the extreme case where tB = 0, shown in figure 7(c), one finds the contour of the phase
diagram presented in [16]. However, we stress that the two central regions featured in this
diagram do not correspond to Chern insulating phases, as their corresponding bulk gap is closed.
This indirect gap closing is further illustrated in figure 6(c). In the next section, we analyze this
important point in more detail.

4. The winding number and the time-of-flight measurement: Chern insulators,
topological semi-metals and skyrmions

In the previous section, we identified the topological insulating phases that could be realized
in our cold-atom system, when the parameters (tA,B, ε, p) are tuned in the gapped regimes
1> 0. In these situations, the Chern number (17) associated with the low-energy eigenstate
|u−〉 can be defined, and its experimental measure would witness a clear manifestation of non-
trivial topological order. However, contrary to solid-state experiments where the Chern number
is directly evaluated through a Hall conductivity measurement [1], it can only be observed
indirectly in the cold-atom framework [10, 16, 30–35]. In this section, we analyze in detail the
topological orders which could be detected through a ToF experiment [16], and further discuss
the role played by the bulk gap 1 in this context.

First of all, let us note that the Hamiltonian (11) can be associated with a topological
(Pontryagin) winding number [18, 36–38],

w =
1

4π

∫
T2

n · (∂kx n × ∂ky n)d2k

=
1

4π

∫
T2

d
d3

· (∂kx d × ∂ky d)d2k, (30)
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which measures the number of times the unit vector n(k)= d(k)/d(k) covers the Bloch sphere
S2 as k evolves on the entire FBZ [18]. When w 6= 0, this leads to a skyrmion configuration for
the vector field n(k). As will be discussed later in this section and depicted in figure 10, the
skyrmion configuration corresponds to a situation where the unit vector n(k) entirely covers the
Bloch sphere once, which for the present model implies that the vector n(k) points in opposite
directions (i.e. north and south poles) at the two inequivalent Dirac points,

w = +1 −→ n(K +)= +1z and n(K−)= −1z,

w = −1 −→ n(K +)= −1z and n(K−)= +1z.
(31)

The winding number w characterizes the map n(k) : T2
→ S2 defined in equation (13),

and therefore, it is not necessarily related to the spectrum or eigenstates of the
Hamiltonian (11)—contrary to the Chern number (17), which is a mathematical index associated
with the state |u−〉 [24].

In this work, a topological semi metal denotes a gapless phase 1= 0, characterized by a
non-trivial winding number w 6= 0. The fate of the winding number w and its corresponding
skyrmion pattern will be discussed in section 4.2, where these structures are shown to remain
stable when 1= 0, as long as the gap does not close at the Dirac points. In fact, when the gap
is open 1> 0, the Chern number (17) is exactly equal to the winding number (30),13

ν = w, (32)

as can be demonstrated using equations (18) and (19) and (22) (see also [18, 37, 38]). As
a corollary, the result in equation (31) can be easily deduced from equation (26). From the
equivalence (32), we observe that the Chern insulating phases discussed in the previous sections
are characterized by a non-trivial winding numberw 6= 0, and therefore, they are also associated
with a skyrmion pattern. In summary, measuring the winding numberw in an experiment would
allow to equally identify Chern insulators (1> 0) and topological semi-metals (1= 0).

As first observed in [16], the vector field n(k) could be detected through a ToF absorption
image. From such data, one could then evaluate the winding number w, using a discretized
version of equation (30). This detection method is based on the fact that n(k) can be expressed
in terms of the momentum densities ρA,B(k) associated with the two spin species A, B (see
figure 1). Defining the regions K(±) = {k : E (±)(k) < EF}, we find that

ρB(k)− ρA(k)= + nz(k) for k ∈K(−) and k /∈K(+),

ρB(k)− ρA(k)= − nz(k) for k ∈K(+) and k /∈K(−),

ρB(k)− ρA(k)= 0 otherwise.

Unfortunately, one cannot generally determine the regions K(±) in an experiment, unless the
Fermi energy is exactly located in a bulk gap (in which case K(−) = FBZ and K(+) = ∅).
Therefore, the vector field n(k) can only be approximately reconstructed from the data when
both bands E±(k) are partially filled. In fact, if we apply the relation ρB(k)− ρA(k)= nz(k) to
every pixel of a ToF image14, and discretize the expression (30) to evaluate the winding number

13 The Chern number (17) and its corresponding fiber bundle structure [24] could also be formally defined when
the gap is indirectly closed, such as in figure 6(c). Thus, the Chern number ν and the winding number w are
formally equivalent under the more general gap-opening condition [39]: E−(k) < E+(k) for all k ∈ FBZ. In the
present model, this condition reads dz(K±) 6= 0.
14 The other components nx,y(k) of the vector field could be obtained through similar measurements, combined
with a rotation of the atomic states [16].
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from this data, we would experimentally measure the following quantity:

wToF =
1

4π

(∑
K(−)

−

∑
K(+)

) ∑
µ 6=ν 6=λ

nµ(k)(nν(k + ex)nλ(k + ey)− nν(k + ey)nλ(k + ex)

+nν(k + ey)nλ(k)− nν(k + ex)nλ(k)+ nν(k)nλ(k + ex)− nν(k)nλ(k + ey)), (33)

where µ, ν, λ= x, y, z, and where ex,y are the two unit vectors defined on the discretized FBZ.
When the Fermi energy is set within a bulk gap, only the first sum contributes

∑
K(−)

=
∑

FBZ,
and the quantity wToF converges toward the winding number w as the resolution of the grid
is increased (see appendix C). When the gap is closed, and if the Fermi energy is tuned such
that the bulk bands E±(k) are only partially filled, the quantity wToF will generally deviate
from the quantized value w. Consequently, the assumption of a perfectly filled lowest band
(K(−) = FBZ and K(+) = ∅), as considered in the calculations of [16], is crucial in the case
1= 0. However, we indicate that this condition would be difficult to fulfill in an experiment,
due to experimental imperfections and finite temperatures. We now illustrate this discussion in
sections 4.1 and 4.2, where the signatures of Chern insulators and topological semi-metals are
compared and commented. Let us finally remark that the quantity wToF defined in equation (33)
is strictly equivalent to the discretized expression for the Hall conductivity σH, which is not
necessarily quantized in the general case where the Fermi energy is not located in a bulk gap
(see appendix D).

4.1. The Chern insulators

When a spectral gap is opened, 1> 0, the winding number (30) is exactly equal to the Chern
number (18). This potentially gives rise to a Chern insulator, as illustrated in figures 8(a) and (b),
where we compare how the energy gap 1, the winding number w and the ToF measurement
wToF vary as a function of the recoil momentum py . As expected from the topological property
of the Chern number, we find that the ranges where 1> 0 and ν = w = ±1 lead to the clear
plateaus depicted by the observable wToF(py)≈ ±1 (see appendix C for a discussion on finite
size effects). We also demonstrate the robustness of these plateaus in figure 9(a), where the
quantity wToF is computed as a function of the Fermi energy EF, and where a large plateau
∼1 is observed for fixed values of the other parameters. Therefore, the ToF winding number
wToF shows a robust behavior, and exhibits a clear plateau when the Fermi energy lies in the
band gap. In other words, the Chern insulating phase is characterized by a ‘quantized’ winding
number wToF, which is protected against finite changes of the parameters through the existence
of a topological bulk gap15.

Let us stress the important fact that the Chern number ν in equation (18) no longer reflects
the quantized Hall conductivity when the bulk gap is closed, in which case the system effectively
describes a metallic phase. However, the topological order and skyrmion patterns associated
with the winding number w survive even when the bulk gap is closed, as we now explore in the
next subsection.

15 The plateaus depicted by wToF are strictly equivalent to Hall conductivity plateaus (see appendix D). However,
since the Hall conductivity is not measured in cold-atom experiments, we choose to represent the observable
quantity wToF in our plots, rather than σH.
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Figure 8. The energy gap 1 and the discretized winding number wToF as a
function of py for (a, b) tA = tB = 0.3t , ε = 0 and (c, d) tA = 0.5t , tB = 0,
ε = −0.5tA. For all plots px = 0. The discretized winding number wToF has
been computed from equation (33) using a 30 × 90 lattice and setting the Fermi
energy: (b) EF = 0 (i.e. inside the gap); (d) EF = −0.25 (i.e. at the gap closing
point). Thus, the low-energy bulk band E−(k) is maintained completely filled for
all values of py . For comparison, purple dotted lines show the integral winding
number w defined in equation (30). The parameters in (c, d) are the same as
in [16]. In all the figures, a vertical dashed line shows the value py = 4K y used
in figure 9.

4.2. The topological semi-metals

First of all, we find that the ToF winding numberwToF, given by equation (33), can be robust even
when the gap is closed. This effect is illustrated in figures 8(c) and (d), where we compare how
the energy gap 1, the winding number w and the ToF winding number wToF vary as a function
of the recoil momentum py . From figures 8(c) and (d), we find that the winding number w
displays non-trivial plateaus w = ±1, in regions where the bulk energy gap is closed 1= 0. In
figure 8(d), we precisely set the Fermi energy at the gap closing point EF = −0.25t , which can
be determined from the spectra in figures 10(b)–(e), thus completely filling the lowest bulk band.
In this specific configuration, the observable winding number wToF(py) depicts plateaus, and it
converges toward the quantized value wToF → w as the resolution of the grid is increased (see
appendix C). However, as the Fermi energy is tuned away from this ideal value, we find that the
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Figure 9. The winding number wToF as a function of the Fermi energy EF at
zero temperature for px = 0, py = 4K y . The parameters in (a) are the same as in
figures 8(a) and (b), whereas the parameters in (b) are the same as in figures 8(c)
and (d). The computations were performed using equation (33), on a 30 × 90
lattice. The dashed lines show the values (a) EF = 0, (b) EF = −0.25 used in
figures 8(b) and (d), respectively. According to figure 8, the situation represented
in (a) corresponds to a Chern insulator (1> 0 and w = 1), while the situation
in (b) corresponds to a topological semi-metal (1= 0 and w = 1). Note that the
highlighted value EF = −0.25 in (b), represents the singular point at which the
lowest band E−(k) is completely filled (i.e. it corresponds to the spectrum gap
closing point).

plateaus wToF(py)∼ ±1 progressively lose their robustness. This dramatic effect is illustrated
in figure 9(b), where wToF is computed as a function of the Fermi energy. Here, in contrast with
the Chern insulator case shown in figure 9(a), the winding number wToF is strongly parameter-
dependent: it only reaches wToF ≈ w = +1 at the specific Fermi energy EF = −0.25t (see
figure 9(b)). Consequently, the robust behavior of these topological semi-metals will only be
observed if the Fermi energy is precisely tuned at the gap closing point (such as in figure 8(d)).
This important fact makes topological semi metals more challenging to detect than Chern
insulating phases. We point out that the phase diagrams and skyrmion configurations presented
in [16], and reproduced in figures 8(c) and (d), only feature trivial insulators and ‘topological
semi-metals’, since all the computations were performed for the peculiar configuration tB = 0,
whose corresponding spectrum remains gapless in the ‘non-trivial’ regions (see also figure 10).

The topological semi-metal is an intriguing phase, and in this new context, an important
question arises: if the topological winding number w remains stable for1= 0 (see figure 8(d)),
under which conditions does the value of this quantity change? We address this question by
analyzing the energy spectrum E(ky) together with the skyrmion pattern depicted by the vector
n(k) in figure 10. Here, the parameters are the same as in figure 8(d) and py is varied between K y

and 8K y , where transitions betweenw = 0 ↔ w = +1, but also betweenw = +1 ↔ w = −1, are
expected. From figure 10, we find that the winding number w, and its corresponding skyrmion
pattern, remain extremely stable as long as the energy bands do not touch at the Dirac points.
When a direct gap closing occurs at the Dirac point K D, where K D denotes K + and/or K−,
we observe a topological phase transition signaled by a change in the winding number w
(see figures 10(b) and (d)). In particular, we find that this direct gap closing is accompanied
with the cancellation dz(K D)= 0 at the band touching point K D. In fact, the gap-closing
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Figure 10. Topological phase transitions: (top) energy spectra E(ky) and
(bottom) skyrmion configuration depicted by the vector n(k) within the FBZ.
The parameters are the same as in figures 8(c) and (d), namely tA = 0.5t ,
tB = 0 and ε = −0.5tA. Note that the bulk gap is closed 1= 0 in all the figures
except in (a). The x and y components of the normalized vector field n(k)=

(dx(k), dy(k), dz(k))/d(k) are represented by red arrows for dz(k) > 0 and blue
arrows for dz(k) < 0. The corresponding winding numbers w = 0,±1 are also
indicated. The location of the two Dirac points K± are indicated by two vertical
lines (top) and circles (below). A non-trivial winding number w = ±1 is clearly
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Figure 10. (Continued) seen when the vector n(k) has covered the whole Bloch
sphere once. Namely, when the north (n = +1z) and south (n = −1z) poles have
been reached at the two inequivalent Dirac points K± (see equations (26)–(32)).
Note that topological phase transitions w→ w′ occur through a band touching
point. This process is accompanied with the vanishing of dz(K D), at the Dirac
point K D where the bands touch.

condition dz(K D)= 0 should necessarily be satisfied at the transition between different values
of the winding number w, as can be deduced from the equivalence (32) and from the simple
expression (26).

The topological phase transitions are clearly visible in the skyrmion patterns of figure 10,
where a non-trivial winding number w = ±1 emerges when the vector n(k) has covered the
whole Bloch sphere once. We remind the reader that this full coverage of the Bloch sphere is
achieved when the vector field n(k) reaches the north (n = +1z) and south (n = −1z) poles at the
two inequivalent Dirac points K±. In figure 10, we observe a radical change in the behavior of
n(K±) as py is varied. For example, for py = K y (figure 10(a)), the vector field n(k) visits the
north pole twice (i.e. at K + and K−) but never the south pole (w = 0), while for py = 4K y

(figures 10(c)) the vector visits the entire Bloch sphere once (w = 1). Between these two
topologically different configurations, the energy bands E± touch at k = K− for py = 2K y (see
figure 10(b)), a singular situation where the gapless phase is generally equivalent to a standard
semi-metal [19, 20]. We note that transitions w = 0 ↔ w = ±1 require a single band-touching
point (see figure 10(b)), while transitions w = +1 ↔ w = −1 involve two band-touching points
(see figure 10(d)). Therefore, in agreement with the equivalence (32), we observe that the
topological phase transitions between different topological semi metals are of the same nature
as the transitions between different Chern insulators, in the sense that both phenomena occur
through direct gap closing (driven here by the control parameter py).

In summary, we conclude that the laser-coupled honeycomb lattice and the ToF method
of [16] offers the possibility to explore the topological order of topological semi-metals, which
survive in the absence of a band gap. However, we remind the reader that this detection scheme
relies on the evaluation of the winding number wToF, through a ToF measurement of the vector
field n(k), which only converges toward the quantized value w for a complete filling of the
lowest energy band E−(k). Thus, the experimental detection of topological semi-metals would
constitute a subtle task, in the sense that the Fermi energy should be finely tuned in order to
maximize the filling of the lowest band (figure 8(d)). Let us stress that the winding number can
only take three possible values, w = 0,±1. Therefore, an experimental plateau wToF(py)∼ ±1,
stemming from a slightly incomplete filling of the band E−(k) and from finite size effects,
would already provide an acceptable witness of non-trivial topological order.

We end this section by observing that the transitions between topologically different semi-
metals are driven by the laser recoil momentum p, and therefore, this interesting effect cannot
be captured by the original Haldane model.

5. Conclusion

In this paper, we explored the rich properties of the laser-coupled honeycomb lattice, which
is described by the Hamiltonian (11)–(13). We demonstrated the existence of robust Chern
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insulators in this system, which can be reached in experimentally accessible regions of the
large parameter space. In particular, we showed that the possibility of producing such non-
trivial phases highly depends on the laser-coupling, through the orientation of the momentum
transfer p and the effective (laser-induced) tunneling amplitude t . We showed that it is important
to finely tune the ratios tA/tB and tA,B/t in order to open large and robust topological bulk
gaps of the order 1∼ 2t . We also discussed the role of the staggered potential ε, which is
shown to be crucial in the fully symmetric regime t = tA,B, and which could also be used
to drive transitions between topological phases of different nature. Importantly, we addressed
the question of detectability in the context of the quest for robust Chern insulators, and we
stressed the importance of identifying regimes corresponding to large bulk gaps. We showed
that an experimental measure of the topological winding number (30)–(33), e.g. through ToF
measurement [16], yields a strong signature for two types of topological phases: the Chern
insulating phase and the topological semi-metal (a semi-metal characterized by a non-trivial
winding number). Importantly, we showed that the detection of the topological semi-metal
would require a delicate tuning of the Fermi energy, which privileges the search for Chern
insulating phases from an experimental point of view.

The Chern insulator could alternatively be detected through the identification of chiral
edge states, which are protected by the topological gap. A clear signature could be obtained,
for example, using the shelving method described in [30]. From the spectra presented in
figures 6(a), (c) and 10, we find that these topological edge states remain robust in the
topological semi-metallic phase: the edge states can only disappear from the bulk gap through
direct band-touching processes at the Dirac points. However, the experimental identification of
these robust edge states for the semi-metallic regime, e.g. using the shelving method, remains
an open question to be explored.

Let us end this work by mentioning the fact that this system could be directly extended
to reproduce the spinful Kane–Mele model for Z2 topological insulators [21] (see also its
generalizations [40–45]). In this case, each triangular sublattice should trap atoms in two
internal atomic states (Zeeman sublevels), yielding a ‘spin’-1/2 structure. These atoms should
then be coupled independently by lasers in such a way that the tunneling operators, which are
2 × 2 matrices acting between NN sites nA and mB, have the form

U (nA,mB)= exp(iσZ p · (rnA + rmB)/2),

where σZ acts on the ‘spins’ and U (nA,mB)= U †(mB, nA). In this spinful honeycomb lattice
configuration, non-trivial Z2 topological phases featuring helical edge states [21, 46, 47], should
be reached in the non-trivial regions identified in section 3. Thus, the versatile laser-coupled
honeycomb lattice is well suited for the exploration of two-dimensional topological phases with
cold atoms [10, 30, 48–52]. Finally, we note that Chern insulators could also be induced by
many-body interactions in fermionic lattices, as predicted in [53–55].
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Appendix A. Analytical calculation of the Chern number

In this appendix, we provide a more detailed calculation of the Chern number (18), which further
highlights the role played by the singularities at the Dirac points K±. First, we express the Chern
number as

ν =
1

2π

∫
T2

1z · (∇k × A(k)) d2k

=
1

2π

∫
T2

F, (A.1)

where the Berry’s curvature F= Fxy dkx
∧ dk y is a two-form associated with the Berry’s

connection A= Aµ dkµ = i〈u(−)|∇µ|u(−)〉 dkµ through the exterior derivative F= dA, with

Fxy(k)= ∂kx Ay(k)− ∂ky Ax(k). (A.2)

Note that contributions due to any (gauge-dependent) singularities of A(k) should be excluded
in the first-line of equation (A.1).

Considering the gauge in which the lowest eigenstate of the Hamiltonian (21) is given by

|u(−)〉 =

(
−e−iφ sin(θ/2)

cos(θ/2)

)
, (A.3)

we find

Aµ(k)=
1

2
(1 − cos θ)∇kµφ,

Fxy(k)=
1

2
sin θ(∂kxθ ∂kyφ− ∂kyθ ∂kxφ).

(A.4)

At this point, let us note that the Berry’s curvature F is a gauge invariant quantity, which
remains well defined over the entire FBZ. In contrast, the Berry’s connection A depends on
the gauge and can potentially possess singularities within the FBZ. In the present gauge, the
singularities correspond to cos θ(k)= −1, which can only happen at a Dirac point K D, under
the condition that dz(K D) < 0 (see also main text). We stress that such singularities, if present,
could either take place at one or at two inequivalent Dirac points K D = K±, depending on the
model parameters (tA,B, ε, p) that determine the specific values of dz(K±). In the following,
we will show that it is the number of singularity points that determines the non-triviality of the
Chern number in equation (A.1). To do so, let us consider the following situations.

A.1. Absence of singularities

When the Berry’s connection is regular over the entire FBZ, the Berry’s curvature F= dA is
an exact differential form. In this case, the Chern number (A.1) is given by the integral over a
closed manifold (i.e. the two-torus T2) of an exact differential form

ν =
1

2π

∫
T2

F=
1

2π

∫
T2

dA= 0, (A.5)
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(a) No singularity (b) One singularity at

Figure A.1. The FBZ and the patchwork configuration. (a) When the Berry’s
connection (A.4) is regular over the entire FBZ, the Chern number (A.1)
vanishes, by direct application of Stokes theorem to the edgeless torus. (b) When
the Berry’s connection (A.4) is singular at a unique Dirac point (e.g. K +), the
Chern number is non-trivial. In this case, one defines a local Berry’s connection
A= {AI,AII}, which is regular within the two corresponding regions RI and RII.
Here, the common boundary between these two regions is ∂R = γ+.

which is trivial from Stokes theorem. In particular, when dz(K±) > 0 at the two inequivalent
Dirac points, the Berry’s connection (A.4) remains regular over the entire FBZ and the Chern
number necessarily vanishes.

A.2. One singularity at a unique Dirac point

Now suppose that the Berry’s connectionA in equation (A.4) is singular at one Dirac point, say
KD = K +. This situation occurs when dz(K +) < 0 and dz(K−) > 0, which we now consider to
be the case in this paragraph. In the presence of such a singularity, the Berry’s curvature F is no
longer an exact differential form, and Stokes theorem cannot be applied globally over the torus.
In order to compute the integral (A.1), we partition the FBZ into two complementary regions,
RI and RII, whose common boundary ∂R is chosen to be a loop γ+ encircling K +. Here, we
define the region RII as the one that contains the Dirac point K + at which the singularity takes
place (see figure A.1(b)). Then, we define specific gauges within each region [2, 26, 27],

|u(−)〉I =

(
−e−iφ sin(θ/2)

cos(θ/2)

)
, |u(−)〉II =

(
− sin(θ/2)

eiφ cos(θ/2)

)
. (A.6)

In this patchwork configuration, the Berry’s connection A= {AI,AII} is a locally-defined
quantity, which is now given by

AI(k)=
1

2
(1 − cos θ)∇kφ, (A.7)

AII(k)= −
1

2
(1 + cos θ)∇kφ, (A.8)
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inside the regions RI and RII, respectively. We note that the gauge structures of the two
individual regions are connected at the frontier ∂R = γ+ through the gauge transformation

|u(−)〉II = eiφ(k)
|u(−)〉I, (A.9)

AII(k)= AI(k)− ∇kφ. (A.10)

Furthermore, we note that the Berry’s connection AII(k) is now regular at the Dirac point K +,
where dz(K +) < 0. Therefore, the locally-defined Berry’s connection A= {AI,AII} is regular
over the entire FBZ, and the integral (A.1) can now be computed by applying Stokes theorem
to the two different regions [2, 27]

ν =
1

2π

∫
T2

F=
1

2π

∫
RI

dAI +
1

2π

∫
RII

dAII

=
1

2π

∮
∂R
(AII − AI) · dk

= −
1

2π

∮
γ+

∇kφ(k) · dk = −v+/2π = −1. (A.11)

Therefore, when the singularity only takes place at the Dirac point K +, the Chern number is non-
trivial and its value is directly related to the vorticity v+ associated with this Dirac point [27].

In the opposite situation, where the singularity only takes place at the other Dirac point
K D = K−, namely when dz(K +) > 0 and dz(K−) < 0, a similar calculation (with ∂R = γ−)
yields

ν = −v−/2π = +1. (A.12)

A.3. Singularities at both Dirac points

When the Berry’s connection (A.4) is singular at both Dirac points, namely when dz(K±) < 0,
the Chern number (A.1) is necessarily trivial. Indeed, the gauge transformation

|u(−)〉 → |ũ(−)〉 = eiφ(k)
|u(−)〉 (A.13)

simultaneously removes the singularities at both Dirac points. In this case, Stokes theorem can
be applied globally over the entire FBZ, leading to a zero Chern number (see the case with no
singularity).

A.4. Synthesis

From the results presented above, we conclude that the Chern number ν characterizing the
topological order of our system can only take non-trivial values ν = ±1 when the Berry’s
connection (A.4) features a unique singularity inside the FBZ. Therefore, this non-trivial regime
is reached when the function dz(k) has opposite signs at the two inequivalent Dirac points K±.
Then, from equations (A.11) and (A.12), we finally obtain the result

ν =
1

2
(sign(dz(K +))− sign(dz(K−))), (A.14)

already announced in equation (26).
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Figure C.1. (a) The winding number wToF as a function of py for tA = tB = 0.3t ,
ε = 0. The winding number wToF has been computed through equation (33),
using a N × N lattice. Here, the Fermi energy is set such that the lowest energy
band E−(k) remains perfectly filled. (b) The winding number wToF as a function
of the lattice length N , for py = 4K y , tA = tB = 0.3t and ε = 0.

Appendix B. Calculation of topological edge states in finite geometries

It is a standard procedure to determine the edge state structure by considering a semi-infinite
system, namely using a cylindrical geometry in which periodic boundary conditions have only
been applied to one spatial direction. Here, we assume that the system is closed along the y
direction only, and we write the single-particle eigenfunctions as ψA,B(r)= exp(iky y) uA,B(r),
where uA,B(r + a3)= uA,B(r). Setting 9n = (uA(rnA), uB(rnA − δ2)), where the index n labels
the sites along the open direction (chosen along x here), we obtain the Harper-like equation

E9n =D9n +R9n+1 +R†9n−1,

D=

(
−ε− 2tA cos( p · a3/2 − ky(a3)y) −t(e−iky(δ2)y + e−iky(δ1)y)

−t(eiky(δ2)y + eiky(δ1)y) ε− 2tB cos( p · a3/2 + ky(a3)y)

)
,

R=

−tA

(
e−i p·a1/2 eiky(a1)y + e−i p·a2/2 eiky(a2)y

)
−t e−iky(δ3)y

0 −tB

(
ei p·a1/2 eiky(a1)y + ei p·a2/2 eiky(a2)y

)
 .

(B.1)

The energy spectrum E = E(ky), describing the projected bulk bands E±(kx , ky)→ E±(ky),
but also the edge states dispersions, can be obtained by solving the corresponding 2L × 2L
Hamiltonian matrix numerically, where n = 1, . . . , L . We stress that the chiral edge states,
identified with this method, could lead to clear signatures in an optical-lattice setup, even in
the presence of an external confining trap [10, 30, 51].

Appendix C. The winding number and finite size effects

In this appendix, we analyze the finite size effects that arise when the winding number wToF

is evaluated through the discrete sum (33). The results are presented in figure C.1, in the ideal
case where the Fermi energy is chosen such that the lowest energy band remains perfectly filled.
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The winding number wToF is computed for different lattice sizes N × N , with N = 10, 50, 100.
The convergence of the winding number wToF toward the quantized value w = +1 is shown in
figure C.1(b).

Appendix D. The Hall conductivity and the winding number

The Hall conductivity is given by the Kubo formula [4]

σH =
e2

h̄

i

V

∑
Eα<EF

〈∂kx uα(k)|∂ky uα(k)〉 − (kx ↔ ky)

=
e2

h

i

2π
1kx1ky

∑
Eα<EF

〈∂kx uα(k)|∂ky uα(k)〉 − (kx ↔ ky), (D.1)

where V is the volume and where the sum
∑

α takes into account the contribution of all the
occupied states |uα〉 = |u±(k)〉 with energy Eα = E±(k) < EF. In our two-band system, the
sum in equation (D.1) can be decomposed into two parts∑

α

Fα
xy(k)=

(∑
K(−)

−

∑
K(+)

)
F (−)

xy (k),

K(±) = {k : E (±)(k±) < EF},

(D.2)

where F (±)
xy (k)= ∂kx A(±)y (k)− ∂ky A(±)x (k) is the Berry’s curvature associated with the state

|u(±)(k)〉, and where we used the fact that F (−)
xy (k)= −F (+)

xy (k). When the first band E−(k)
is totally filled (K(−) = FBZ,K(+) = ∅), namely when EF lies in a spectral gap, we find the usual
TKNN relation (or Chern number ν) [4]

σxy =
e2

h

1

2π

∫
T2

F (−)
xy (k) dk =

e2

h
ν, (D.3)

in the limit1kx,y → 0. When the Fermi energy is not located in a bulk gap, the Hall conductivity
must be computed using the more general expression

σxy =
e2

h

1

2π

(∫
K(−)

dk −

∫
K(+)

dk
)

F (−)
xy (k), (D.4)

which takes into account the fact that both bands E±(k) could be partially filled.
Next, we note that the Berry’s curvature Fxy = F (−)

xy , given in equation (A.4), is equal to
the Pontryagin form

Fxy(k)=
1

2
sin θ(∂kxθ ∂kyφ− ∂kyθ ∂kxφ)=

1

2
n · (∂kx n × ∂ky n), (D.5)

where the vector field n(k)= d(k)/d(k) is defined in equation (13). Therefore, we can write
the Hall conductivity in terms of the vector field n(k)

σxy =
e2

h

1

4π

(∫
K(−)

dk −

∫
K(+)

dk
)

n · (∂kx n × ∂ky n). (D.6)

New Journal of Physics 15 (2013) 013025 (http://www.njp.org/)

http://www.njp.org/


29

Discretizing the Pontryagin form

n · (∂kx n × ∂ky n)=1k−1
x 1k−1

y

∑
ν 6=µ6=λ

nµ(k)(nν(k + ex)nλ(k + ey)− nν(k + ey)nλ(k + ex)

+nν(k + ey)nλ(k)− nν(k + ex)nλ(k)+ nν(k)nλ(k + ex)− nν(k)nλ(k + ey), (D.7)

with ν, µ, λ= x, y, z, and writing the integrals in (D.6) as sums, leads to the equivalence
between the Hall conductivity in equation (D.4) and the ToF winding number (33): σH =

(e2/h) wToF. When the Fermi energy is in a gap, equation (D.5) also shows the equality between
the Chern number ν and the winding number w (see main text).
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