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Abstract. The extended effective multiorbital Bose–Hubbard-type Hamil-
tonian which takes into account higher Bloch bands is discussed for boson sys-
tems in optical lattices, with emphasis on dynamical properties, in relation to
current experiments. It is shown that the renormalization of Hamiltonian pa-
rameters depends on the dimension of the problem studied. Therefore, mean-
field phase diagrams do not scale with the coordination number of the lattice.
The effect of Hamiltonian parameters renormalization on the dynamics in re-
duced one-dimensional optical lattice potential is analyzed. We study both the
quasi-adiabatic quench through the superfluid–Mott insulator transition and the
absorption spectroscopy, that is, the energy absorption rate when the lattice depth
is periodically modulated.
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1. Introduction

Ultra-cold bosonic atom gases in optical lattices have been an ultra-hot research area in recent
years (for recent reviews and an extensive reference list see [1–3]). They provide a means
to create and control experimental systems mimicking different condensed matter physics
models [4–6]. The interest has been stimulated in part by the fact that there exists [7] an accurate
mapping of a continuous Hamiltonian to a Hamiltonian on a lattice—the Bose–Hubbard
(BH) Hamiltonian, originally formulated by Gersch and Knollman [8]. The lattice models
significantly ease the analytical [9–12] and numerical analyses although promising new ideas
were proposed recently that can enable the analysis in continuous variables [13] beyond the
mean field level [14, 15].

Bosons in one-dimensional (1D) optical lattices have also been an area of extensive
experimental research [16–21]. The corresponding 1D BH Hamiltonian can be effectively
addressed numerically by density matrix renormalization group (DMRG) and related
techniques [22]. These techniques have broad applications, in particular they enable simulations
targeting real-life many-body systems [23], with controllable error and no systematic errors
due to unsound assumptions. Their success relies on area laws that control the growth of
entanglement [24]. The entanglement is used as a ‘small parameter’ [25, 26] that makes possible
the construction of an efficient variational set—the so-called matrix product states (MPS).
Several numerical investigations on experimental and ‘close to experimental’ systems have been
performed [27–29]. They focused largely on two aspects: a quench through a phase transition
and the simulation of absorption spectroscopy [16]. The phase transition from the superfluid
(SF) to the Mott insulator (MI) phase occurs when the lattice depth is increased beyond a critical
value [4, 30]. The adiabaticity of this process has been addressed in [15, 29, 31]. In the second
example, the energy absorption rate is analyzed as a function of the frequency of modulation
of the lattice depth [27, 32, 33]. The locations, the number of peaks in the spectrum and their
heights are related to the state of the gas: either SF or insulating.

The derivation of the BH Hamiltonian assumes the restriction of physics to the lowest
Bloch band of the optical lattice. This assumption is reasonable, as the energy gap between the
first and second Bloch bands is in most cases around ten times larger than the energy scale in
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the discrete model. It is also much larger than the thermal energy scale kBT providing additional
argument for a zero-temperature analysis. An early analysis [34] suggested that higher bands
may be included by an appropriate modification of BH Hamiltonian parameters for large
occupation numbers. The effects due to higher Bloch bands have also been studied for lower
densities [35–38] in relation to the discovery that higher bands affect the SF–insulator transition
in Bose–Fermi mixtures [39, 40]. This gave an explanation for experimental observations of
the shift of the SF–MI phase transition [41] which could not be explained by single-band
approaches. In [36], the first excited band is included in a two-flavor model; the effects of higher
bands could also be built in via an effective three-body interaction in the lowest band [35, 37].

In recent years, another approach for three-dimensional (3D) optical lattices has been
proposed [39, 42, 43] (which somehow resembles in spirit [34] while being used for moderate
atomic densities). In this approach, the higher bands are included in the on-site Hamiltonian,
which is then diagonalized and many-body ground states of this problem for different total
numbers of particles are used as a local Hilbert space, replacing the usual Fock basis |n〉.

The multiband lattice Hamiltonian is then expressed in this new basis, yielding an effective
single-band model with occupation-dependent parameters—renormalized values of the initial
Hamiltonian parameters for the lowest Bloch band. Interestingly, the change in BH Hamiltonian
parameters is large in the MI regime, where the energy gap is also large, contrary to naive
intuition.

In this paper, we consider the derivation of the BH model’s effective coupling constants,
taking a closer look at the underlying, quite challenging, numerical problem—the accurate
diagonalization of the on-site Hamiltonian. We study how the dimensionality of the optical
lattice affects the renormalization scheme. The dependence on dimension implies that the mean
field diagrams of the system no longer depend solely on the coordination number of the lattice.
We then take a look at the effects of the renormalization of coupling constants on the dynamics in
a 1D optical lattice: both quench through the SF–MI transition and the absorption spectroscopy
are analyzed. We find that renormalization of atom–atom interactions significantly shifts and
sometimes modifies the absorption peaks. It also appears to have a serious effect on adiabaticity
predictions for the SF–MI phase transition.

2. Tight-binding descriptions of an ultra-cold boson gas in an optical lattice

The second quantization Hamiltonian for a dilute gas of interacting bosonic atoms in the optical
lattice potential V (Er) and external trapping potential Ve(Er) is of the form

H =

∫
d3

Er 9†(Er)

(
−

h̄2

2 m
∇

2 + V (Er)+ Ve(Er)

)
9(Er)

+
1

2

∫
d3

Er d3
Er ′9†(Er)9†(Er ′)Vint(Er , Er

′)9(Er)9(Er ′), (1)

whereVint(Er , Er ′) is an isotropic short-range pseudopotential modeling s-wave interactions [44]

Vint(Er , Er
′)=

4π h̄2as

m
δ(Er − Er ′)

∂

∂|Er − Er ′|
|Er − Er ′

| (2)

with as being the scattering length.
The Hamiltonian admits a natural energy scale, set by the recoil energy ER =

h̄2k2

2m ,

where k =
2π
λ

and λ denotes the optical lattice wavelength. We assume this energy unit from
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now on. The optical lattice potential is typically: V (x, y, z)/ER = sx cos2(kx)+ sy cos2(ky)+
sz cos2(kz). If s := sx � sy = sz =: s⊥, then a classical setup for a 1D optical lattice is
obtained [16]. Tunneling in the y- and z-directions is highly suppressed and the system may
be considered as a series of independent 1D tubes along the x-direction. Similarly, when s :=
sx = sy � sz =: s⊥, a two-dimensional (2D) optical lattice is obtained. When sx = sy = sz =: s
the potential corresponds to a 3D lattice. Let us emphasize that all calculations of renormalized
parameters presented below are truly 3D ones, the labels ‘1D’ or ‘2D’ just referring to situations
where s and s⊥ are very different.

Jaksch et al [7] in their seminal paper introduced a mapping of (1) onto the BH Hamiltonian
(here Vi is the local energy shift due to Ve : Vi = Ve(Eri)):

HBH = − J
∑
〈i j〉

âi â
†
j + h.c.+

U

2

∑
i

n̂i(n̂i − 1)−
∑

i

n̂i(µ− Vi). (3)

The field operator is expanded in the set of the lowest band Wannier functions of the lattice:
ψ(Er)=

∑
w0

i (Er)ai —here wα
i denotes the (real valued) Wannier function localized on site i of

the lattice for the αth Bloch band (we shall denote sites by roman subscripts and bands by Greek
superscripts). The parameters U and J are expressed by the appropriate integrals of Wannier
functions: J = −

∫
w0

i (Er)(−
h̄2

2m ∇
2 + V (Er))w0

j(Er) dEr (where i and j are neighboring sites) and

U =
4π h̄2as

m

∫
w0

i (Er)
4 dEr .

However, it turns out that such a single-band approximation is often insufficient for realistic
values of the parameters, and that contributions of higher bands cannot be neglected. This
problem has been studied in the literature under various conditions and using various methods.
Of special interest is the situation where the scattering length as is large (near a Feshbach
resonance), where the optical lattice strongly modifies the effective atom–atom interaction, see,
e.g., [45–53]. This is not the situation realized for the 87Rb atom in zero magnetic field used
in the Florence experiment [18, 39], where as = 5.2 nm, much shorter than the lattice spacing
λ/2 = 377 nm.

In this paper, we will consider only situations where the atomic wavenumber k—being
evaluated either in the lowest band or in the excited bands included in the calculation—is
such that kas � 1 so that only s-wave low-energy interatomic scattering is relevant. In practice,
this puts a limit on the number of bands used B < 20, beyond which the model is not a good
approximation of the real world.

It is well known that, in dimensions higher than 1, contact interactions cannot be
modeled by a δ-potential, but require a specific regularization to avoid artificial divergences.
Mathematically, a self-adjoint extension of the original Hamiltonian is needed [54]. It boils
down to a dimension-dependent regularization of the δ-potential [55], which, in 3D, is the so-
called Fermi pseudo-potential [56] used in equation (2). Even with the correct pseudo-potential,
one must be careful when expanding over an infinite set of square integrable smooth basis
functions (such as the Wannier functions used below) without renormalization of the interaction
strength, because it may lead to incorrect results, such as diverging perturbative expansions,
see [57] for the specific example of two interacting particles in an harmonic trap. Numerical
diagonalization, used in the following, leads to less severe problems as discussed in [58]. We
will use a rather small number of bands (up to B = 15), so that the highest atomic wavenumbers
effectively included in the calculation are still rather small and the divergence of the Green
function at short distance is just a small perturbation. In other words, although the method
we use leads, in principle, to divergences when B → ∞, these divergences manifest themselves
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only beyond the largest B used in our calculations. Note also that the single-band approximation
described above is free of this problem and pure δ interactions can be used in these
cases.

Without restriction to the lowest Bloch band, the expansion in the full Wannier functions
basis set would give a multiband variant of the BH Hamiltonian

H = −

∑
α,i, j

J ααi j (â
α
i )

†âαj + h.c.+
∑
α...δ
i ...l

Uαβγ δ

i jkl (â
α
i )

†(âβj )
†âγk âδl +

∑
α,i

(Eα + Vi −µ)(âαi )
†âαi (4)

with

Uαβγ δ

i jkl =
4π h̄2as

m

∫
dEr wα

i (Er)w
β

j (Er)w
γ

k (Er)w
δ
l (Er) (5)

and

J ααi j = −

∫
dEr wα

i (Er)

(
−

h̄2

2m
∇

2 + V (Er)

)
wα

j (Er).

Note that, because Wannier functions are smooth, the potential (2) may be replaced by a contact
Fermi potential

Vc(Er , Er
′)=

4π h̄2as

m
δ(Er − Er ′) (6)

in the integral (5).
By construction J αβi j = 0 for α 6= β. For sufficiently deep optical lattices (typically s > 3), it

is enough to restrict hopping to nearest-neighbor sites, as tunneling amplitudes are exponentially
damped with the hopping distance (for shallow lattice next-nearest-neighbors hopping may be
necessary—see [21]).

A 3D Wannier function being a product of 1D Wannier functions, the 3D integral in Uαβγ δ

i jkl
is a product of three integrals over each coordinate. The interaction parameters differ for each
direction, as Wannier functions depend on the lattice depth, which may be different in each
direction.

The Hamiltonian (4) is difficult to use in practice, even in 1D systems, because the on-

site dimension d of the n-particle problem restricted to the lowest B bands is d =

(
B3+n−1

n

)
(the on-site problem is genuinely 3D even for a quasi-1D model), and moreover, the numerical
complexity of the best 1D algorithms scales with d at least as O(d3). The complexity of more
sophisticated approaches (such as multiscale entanglement renormalization ansatz (MERA) and
projected entangled pair states (PEPS) [59–62]) is several orders higher.

Thus for computational purposes, one must restrict the local Hilbert space. Assuming
that interactions are on-site only, i.e. Uαβγ δ

i jkl 6= 0 for i = j = k = l together with considering
the lowest Bloch band only (α = β = γ = δ = 0) [7] leads directly to the BH Hamiltonian,
equation (3), provided we chose the zero of the energy axis at E0.

A more sophisticated approach is discussed in [39, 43]. The on-site Hamiltonian, restriction
of (4) to a single site

Hloc = HE + HU =

∑
α

Eαn̂α +
∑
αβγ δ

Uαβγ δâ†
αâ†

β âγ âδ (7)

(with n̂α = â†
αâα) can be diagonalized to yield a space of n particle ground states. The

eigenenergies εn
0 of the on-site n particle ground states |ψn

0 〉 are the starting point in determining
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new values of U parameters in the effective Hamiltonian. To define renormalized values of U,
the energy εn

0 has to be decomposed into the interaction energy (which, in the case of the BH
model, is just U

2 n(n − 1)) and a single-particle energy; (which, in the BH case shifts µ by the
lowest Bloch band energy). The most natural way to define the interaction energy would be to
use

Un

2
n(n − 1)= 〈ψn

0 |

∑
αβγ δ

Uαβγ δâ†
αâ†

β âγ âδ|ψ
n
0 〉. (8)

Unfortunately, Un cannot be defined in such a way if we request the Hamiltonian to have
a form resembling equation (3). That is because the single-particle energy is no longer a linear
function of n. This can be circumvented by defining Un via

εn
0 =

Un

2
n(n − 1)+ nE0. (9)

This definition makes Hamiltonians (3) and (10) similar. But Un is no longer the interaction
energy, it also contains contributions of higher Bloch bands population to the single-particle
energy. From now on, we use definition (9). Note that Un depends nontrivially on the geometry
of the lattice.

The second stage is to reintroduce inter-site couplings. Even if only one band is taken into
account (so that Un is simply U ), the inter-site interaction U 0000

i i i j induces an effective coupling,

which is proportional to the density, that is, a term U 0000
i i i j aia

†
j (ni + n j − 1)+ h.c. in the effective

Hamiltonian (called bond-charge term in [39, 63]). Similarly to the original tunneling term, it
is important only between nearest neighbors as soon as s is larger than unity. In the low-density
regime (typically n < 7), this contribution leads to an increase (since U 0000

i i i j < 0 for s > 1) of
the tunneling amplitude J → J − U 0000

i i i j (ni + n j − 1). The correction is at most of the order of
the raw tunneling. When higher bands are taken into account, the modification of |ψn

0 〉 induces
a renormalization of the standard tunneling term (as well as of the bond-charge term) which
becomes also dependent on the occupation numbers of sites between which tunneling occurs.

The effective multiorbital (EMO) Hamiltonian finally becomes

H EMO
= −

∑
〈i, j〉

aia
†
j

∑
ni ,n j

Jni ,n j P i
ni

P j
n j

+ h.c.

 +
∑
n,i

Un

2
n(n − 1)P i

n , (10)

where P i
n = |i, n〉〈i, n|.

This Hamiltonian will allow us to study the influence of higher bands on the dynamics
later. First we discuss the accurate numerical determination of the U and J parameters that, in
itself, is a challenging problem, giving an insight into the physics involved.

2.1. Solving the on-site problem

The single-site problem is equivalent to finding the n particle ground state of the
Hamiltonian (7). If the lowest B Bloch bands are included (typical values of B: 4 [42], 9 [39]),
the problem quickly becomes too involved computationally to be exactly diagonalized, and
truncation of the basis has to be performed.

For small particle numbers, the problem is dominated by the HE term. The direct transition
from the lowest to the first excited band is forbidden by symmetry consideration so the relevant
energy scale is 1= E2 − E0. Promoting a particle from the lowest to the second excited
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Figure 1. Comparison of the effective on-site interaction strength Un obtained
using diagonalization of the on-site Hamiltonian on two different basis sets with
the same size equal to 40 000. If basis vectors are chosen according to their
energy (dashed lines), false saturation effects appear. Estimating the influence by
a perturbative-like scheme (solid lines) does not seem to suffer from saturation
effects. The 3D case is considered: s = s⊥ = 34.8.

band, via interaction term, is proportional to n3/2U 2000 where U 2000 is the corresponding
interaction integral. This yields for the validity of the perturbative approach the condition
n3/2U 2000

�1. For typical parameters corresponding to Rb scattering length and s of the order
of 30, 1/U 2000

≈ 60, yielding the limiting value of n � 15.
For small occupation numbers, a perturbative approach seems justified. Perturbation theory

enables us to estimate the impact each excited vector |ψp〉 has on the ground-state energy. Let
|ψ0〉 be an n-boson ground (Fock) state of HE . The larger the matrix element |〈ψ0|Hloc|ψp〉|

2

and the smaller the energy 〈ψp|Hloc|ψp〉, the larger is the impact. The perturbative scheme
provides a hint at how to choose an ‘optimal’ subset of the basis in which the full problem could
be diagonalized. Since the exact diagonalization in the variational basis is the last step, we do
not follow perturbation theory exactly, but just use it to choose a close to optimal basis, not to
calculate the energy correction. Details of basis generation and variational space sampling are
given in the appendix. A more traditional method [39] is to choose a subset according to the
least energy principle—with minimal 〈ψp|Hloc|ψp〉.

We have performed a detailed analysis comparing both methods for s = s⊥ = 34.8,
a strongly coupled case (3D optical lattice, 2as/λ= 0.014, λ= 754 nm—parameters taken as
typical values from [39]). We choose a system with n = 2 − 5 particles and 40 000 basis vectors
according to both least energy (as in [39]) and the perturbative method (39 900 vectors are
generated within the first-order, and 100 within the second-order perturbative scheme).

The ground-state energy—obtained from numerical diagonalization of the on-site
Hamiltonian in a restricted subset—versus the number B of bands included is shown in figure 1,
for various n. The least energy method clearly gives the false impression of saturation of results
if B ≈ 7–9 bands are included. The false saturation occurs because the least-energy method
does not evaluate |〈ψ0|Hloc|ψp〉|

2 and, therefore, fills the variational basis with low-energy
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Figure 2. Renormalized interaction parameters Un versus the strength of
the optical lattice, for various dimensionalities: black, green and red lines
corresponding to 1D, 2D and 3D, respectively. Interaction and lattice parameters:
2as/λ= 0.014, λ= 754 nm. The transverse lattice height is s⊥ = 34.8. The
curves meet at s = s⊥.

irrelevant vectors with vanishingly small matrix elements. The perturbative-like approach does
not show similar saturation effects and, moreover, suggests that linear extrapolation of the
results may be performed. We find that the best compromise between computational effort and
accuracy is to perform extrapolation of results as a function of 1/B by means of the ansatz
Un(B)= U∞

n + c0/B. The same extrapolation scheme can be used for the J parameters (but
leads to less drastic modification of the results). As mentioned above, numerical diagonalization
in the set of Wannier functions might lead to unphysical divergences as B → ∞ because of the
subtle properties of contact interactions in 3D. One could expect a 1/B divergence for large B.
Figure 1 does not show any indication of such a divergence, which could be visible for larger B.

The Un parameters for the 1D, 2D and 3D lattices are presented in figure 2, while the
renormalized tunneling amplitudes are shown in figure 3. We find that, in low dimensions, Un

vary less with s compared to the full 3D lattice. The high transverse lattice causes significant
renormalization of Un even for small s, as s⊥ is still large.

Inspection of figures 1 and 2 shows that the difference between consecutive Un is
approximately constant, i.e.

Un−1 − Un ≈ W (11)

at least for low densities (for typical lattice parameters, W is constant up to 10%). This is
easily understood: the alternative effective theory of [35] expresses the correction to the on-site
energy term via a three-body interaction term (equation (12) of [35]) and W is simply related
to their parameter Ũ3. The deviations from the linear form, equation (11), may be then related
to higher order terms in [35], i.e. four-body term, etc. Similarly, the lowest order perturbative
term discussed above gives a correction to the interaction energy term n(n − 1)U/2 of the order
n3[U 2000]2/1. That yields a crude estimate for W ≈ U 2000/1≈ 1/60 in good agreement with
figure 1.
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corresponding to 1D, 2D and 3D, respectively. Interaction and lattice parameters:
2as/λ= 0.014, λ= 754 nm, s⊥ = 34.8. The curves meet at s = s⊥.

3. Mean field diagrams for different lattice dimensions

A homogeneous (without external trap, Vi = 0) Hamiltonian may be taken to the
thermodynamic limit. Then the particle density is determined by the chemical potential µ and
the Hamiltonian parameters: J and U . An MI phase is determined by integer density 〈n̂〉 and
noncompressibility: ∂〈n̂〉

∂µ
= 0. The rest of the phase diagram is the compressible SF phase [9,

11, 64, 65]. We perform now the mean field analysis of the phase diagrams of Hamiltonians (3)
and (10). A Gutzwiller analysis of the BH model is a variational minimization of the following
functional (i.e. mean ground-state energy):

H BH[ψ] = 〈ψ |H BH
|ψ〉 = −2z J 〈âi〉〈â j〉 +

U

2
〈n̂(n̂ − 1)〉 −µ〈n̂〉 (12)

using the Gutzwiller ansatz: |ψ〉 =
⊗

|ψl〉 with |ψl〉 =
∑

fn|n〉 the on-site wavefunction. The
influence of the lattice geometry is reduced only to the coordinate number, z, in the first term, as
〈âi〉 = 〈â j〉 due to the translational invariance in the thermodynamic limit. The phase diagram
depends only on the single parameter z J

U .

For the EMO Hamiltonian, the dependence of interaction parameters on the dimensionality
of the optical lattice is nontrivial. We shall use the data from figure 2. Thanks to the translational
invariance, the Gutzwiller mean-field approach to the effective Hamiltonian (10) is equivalent
to the minimization of the following functional:

H EMO[ψ] = −2z
∑
n1,n2

Jn1,n2〈ψl |ai |n1〉〈n1|ψl〉〈ψl |a
†
i |n2〉〈n2|ψl〉

+
∑

n

Un

2
n(n − 1)|〈ψl |n〉|

2
−µ

∑
n

n|〈ψl |n〉|
2. (13)

Clearly, a single parameter is no longer sufficient to describe the mean field problem. Let
us denote by JBH the tunneling amplitude and by UBH the interaction of the standard BH
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Figure 4. Mean-field phase diagrams for 1D, 2D and 3D lattices. Different curves
denote borders between MI and SF phases. Dashed black lines correspond to the
standard BH model for any dimension and blue, green and red curves denote 1D,
2D and 3D lattices of the EMO Hamiltonian. Red dashed lines show the result
obtained for nine bands as in [39]. The limit z JBH(s)/UBH(s), s → ∞ is different
for each dimension. The s → ∞ limit corresponds to the ill-defined situation in
which the transverse lattice is shallower than the main lattice (this formal limit is
also dimension-dependent). The perpendicular lattice depth is fixed at s⊥ = 34.8,
λ= 754 nm, 2as/λ= 0.014 as appropriate for 87Rb [39].

Hamiltonian. As z JBH(s)
UBH(s)

is strictly decreasing with the lattice height s, it provides a way to plot

results calculated for lattice depth s in the ( z JBH
UBH
, µ) coordinate space used for a traditional phase

diagram. This mapping allows also to directly compare the results obtained using equations (12)
and (13). Figure 4 shows the Gutzwiller phase diagrams for 1D, 2D and 3D lattices. In contrast
with the ordinary BH model, there is a nontrivial dependence on the dimension. It is rather small
for the first lobe becoming more significant for higher occupation of sites. Let us stress again
that phase diagrams for the multiorbital (MO) parameters Jni ,n j/Un do not need to be directly
related to z JBH

UBH
. The physical observable that is common for the ordinary BH phase diagram

and the MO effective theory is the lattice depth s. Moreover, for dimensions 1 and 2, there is
actually a whole family of different phase diagrams indexed by s⊥.We show just a single choice
for a generic value of s⊥ = 34.8.

For 3D, a comparison with the mean field diagram obtained for nine bands [39] is possible.
The difference is quite small, the difference in Un (of the order of a few per cent—see figure 1)
manifests itself mostly in shifting the borders between different Mott lobes for higher occupation
numbers. Recently, a continuous space quantum Monte Carlo calculation of the SF–MI border
in the cubic lattice for unit filling was reported for various scattering lengths [66] and compared
with the mean field results of [39]. We consider a single ratio of as/λ as appropriate for 87Rb;
the small difference between our results and that of [39] for unit filling on the scale of figure 1
of [66] is negligible.
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Figure 5. 1D phase diagram obtained using imaginary time evolution and the
TEBD algorithm. Black dashed curves present the standard BH 1D case, and the
red solid lines are obtained for the EMO 1D model (10) with s⊥ = 34.8.

In 1D, the mean field approximation is inaccurate. To obtain a reliable phase diagram,
we have used energy minimization through imaginary time evolution using the time evolving
block decimation (TEBD) [25, 26] algorithm. We fix the lattice size to be L = 100 (we have
checked that choosing a larger lattice size L = 200, 300 and 400 does not alter the results
significantly, except at MI tips, where an approximate finite-size scaling is performed). This
is significantly less computationally demanding than using the infinite, translationally invariant
version of TEBD [62, 67]. The transverse lattice height is again s⊥ = 34.8. Let us denote by
E(N , s) the ground-state energy of an N -particle system for lattice height s. We calculate
approximations to the critical values of chemical potentials delimiting an MI region with
average filling n by µ+(s)≈ E(nL + 1, s)− E(nL , s), µ−(s)≈ E(nL , s)− E(nL − 1, s). We
plot the phase diagrams for both the BH and the EMO Hamiltonians in figure 5. We again see
similar results: the Mott lobes shrink also in 1D, as predicted by the mean-field approach. As
shown below, this is also reflected in the dynamical properties.

4. Consequences of coupling constants renormalization for dynamics

4.1. Modulation of optical lattice—absorption spectroscopy

By periodically modulating the lattice depth, one transfers energy to the atomic sample in
the lattice. Absorption spectroscopy—also incorrectly nicknamed modulation spectroscopy—
consists in studying the dependence of the energy absorption rate on the modulation frequency.
This absorption is sensitive to the quantum phases present in the system, as shown in early
experiments [16]. It has been simulated [27, 32, 33] for atoms in an optical lattice in the
presence of a harmonic confinement, using a standard 1D BH model. It seems interesting to
see whether excited bands affect the absorption spectra. To this end, we consider the real-time
evolution of the ground state of a given system at s = s0, exposed to a time-varying lattice
height s(t)= s0 + sm cosωt, sm/s0 � 1. The simulation is performed in the presence of a

New Journal of Physics 15 (2013) 013062 (http://www.njp.org/)

http://www.njp.org/


12

harmonic trap Vi = κ(i − i0)
2. The energy of the system is measured after some fixed time.

The energy gain (per particle) as a function of the modulation frequency yields the absorption
spectrum.

For a deep optical lattice in a predominantly Mott insulating phase, the absorption spectrum
for the standard BH Hamiltonian consists of a few peaks located at multiplicities of U [27,
32, 33]. The situation is slightly more complex for the EMO Hamiltonian. The position of
peaks can be easily determined in the deep Mott regime (J → 0). States excited during the
modulation are mainly those that differ from the ground state by nearest-neighbor transfer of one
particle [32, 68]. Up to a small correction due to the difference of the local chemical potential
µi = µ− Vi , the excitation energy is determined by the occupation numbers of the source site
i and destination site j. It is

1E(ni; n j)=
1
2

[
−Un j n j(n j − 1)+ Un j +1n j(n j + 1)

−Uni ni(ni − 1)+ Uni −1(ni − 1)(ni − 2)+1µi j

]
(14)

with 1µi j = µi −µ j = V j − Vi . Nearest-neighbor excitation means that |i − j | = 1, and |ni −

n j |6 1. If Un = U (BH Hamiltonian), we have that 1E(ni; n j)= (n j − ni + 1)U +1µi j .

By virtue of equation (11), we may approximate equation (14) by 1E(ni; n j)= (n j − ni +
1)Uni + (ni − n j − 2)(ni + n j − 1)W. For a trapped gas with maximum occupation number
n = 3, the relevant values are1E(1, 1)= U2, 1E(1, 2)= 3U3 − U2 ≈ 2U2 − 3W, 1E(2, 2)=

3U3 − 2U2 ≈ U2 − 3W, 1E(2, 3)= 6U4 − 3U3 − U2 ≈ 2U2 − 9W, 1E(3, 3)= 6U4 − 6U3 +
U2 ≈ U2 − 6W, 1E(n, n − 1)= 0, with 1µ neglected for clarity.

A qualitative comparison of the expected absorption spectra for the standard BH case
and the EMO model is possible. The density profile in the large s, low hopping, limit shows
the well-known wedding cake structure (see figure 6(a)). Weak, periodic modulation leads
mainly to nearest-neighbor excitations between any pair of neighboring sites. For the standard
BH Hamiltonian, the excitation spectrum consists of a large peak at energy U (figure 6(d)). The
nonzero width of the peak is due to variations of the local chemical potential (the presence of
a trap): the shallower the trap, the narrower the peak.

For the EMO Hamiltonian, the particle–hole excitations from different Mott plateaus have
different mean excitation energies. The shift with respect to the mean value is determined by
the 1µi, j . For shallow traps 1µi, j ≈ 2( j − i) κ (i − i0), and the excitation spectrum from Mott
plateau n consists of two bands—one corresponding to inward (I) hopping,1li, j < 0, the other
one to outward (O) hopping, 1li, j > 0, with respect to the trap center. For the central Mott
plateau with density nmax a single, broad peak in the excitation spectrum emerges. This is clearly
visible in figures 6(b) and (c). Two cases have been studied: a system of N = 260 particles in a
trap with κ = 0.001 ((b), moderate case) and N = 700, κ = 0.0001 ((c), very shallow trap). Both
cases were studied for the 1D optical lattice with s = 15, s⊥ = 40, λ= 830 nm, a = 5.1 nm. The
tunneling Jni ,n j is artificially set to 0 (the deep Mott regime).

A similar but smaller system is analyzed in a subsequent numerical study, for the same
parameters taking fully into account the tunneling effects. We choose a much tighter trap with
curvature, κ = 0.009, and use true values of the hopping constants Jni ,n j . The Wannier function
calculations give UBH = 0.662ER, and the renormalization procedure gives U2 ≈ 0.565ER,W ≈

0.0125ER.

We fill the trap with N = 36 particles. This system is similar to the one studied in [32,
33]. The system states are represented by MPS vectors and evolved using the TEBD algorithm
[25, 26]. The ground state of the system, being the initial state for the evolution, is calculated
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Figure 6. Effects of higher Bloch bands on absorption spectroscopy in the
deep Mott (low J ) regime, s = 15, s⊥ = 40. Panel (a) shows the well-known
wedding cake structure with n = 1, 2 and 3 Mott plateaus. Excitations within
each plateau (colored respectively light gray, dark gray and black, for n = 1, 2
and 3) have energies depending on the Mott plateau density and the trapping
potential. Inward and outward hopping lead to a splitting of the absorption
structure, a partial splitting for a moderate harmonic trap ((b), κ = 0.001) or
a broad well-resolved structure for a shallow trap ((c), κ = 0.0001) in contrast to
the standard BH case (d).

using an imaginary time evolution with bond dimension χ = 50. The local Hilbert space
assumes maximal filling of six bosons per site.

The density profiles of ground states of the BH and EMO models are practically the same
with a central plateau of two particles per site. Thus, any change of excitation frequencies
can be interpreted as an effect of coupling constants renormalization. We have performed the
absorption spectroscopy simulation for time t = 100h̄/ER. The modulation amplitude of the
lattice was sm = 1. The results are presented in figure 7.

The major difference between the spectra obtained for the BH and EMO Hamiltonians
is a significant shift of the observed structures. While for the BH case, the main structure is
centered at UBH, it has a similar shape, but centered around U2 in the EMO case. Because of the
steep harmonic trap—thus the large changes in local chemical potentials—the structure of the
peaks is rather complex. Note the global broadening for the EMO case, and an additional peak
in the main U2 structure, corresponding to the n = 1 plateau excitations having an energy larger
by roughly 3W , as discussed above.

A second small peak on the right appears at E = 1.75U2 (the EMO case) and E = 1.8UBH

(the BH case). It corresponds to a particle–hole excitation on the edge between the n = 1 and 2
Mott plateaus as identified in [33]. The right panel shows that the spectra become quite similar
if rescaled by their proper energy scale, UBH or U2.
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Bars above the plot give the mean expected positions of peaks for the n = 2 Mott
plateau. The right panel shows the same data with the rescaled energy axes (UBH
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The absorption spectra are quite sensitive to the details of the system. Taking the same
parameters for a slightly larger number of particles may create situations where the ground states
of the BH and EMO Hamiltonians significantly differ. This is then reflected in the absorption
spectra. If the density profile contains an n = 3 or higher plateau, then the structure of peaks
may become more complicated, as discussed above.

We have also compared the absorption spectra in the SF regime. The lattice height is fixed
at s = 5, s⊥ = 40 [18]. The system is modulated for t = 50h̄/ER with sm = 0.2. The results are
presented in figure 8. Unlike in the Mott regime, the positions of the absorption peaks are not
determined solely by the interaction. In particular, no global shift of the structure is observed. In
both cases, one observes a broad resonance around the recoil energy, with complicated detailed
structures. Note that the modulation depth is much smaller than in the MI situation (to avoid
significant excitation of the system) and therefore the absorbed energy per particle is much
smaller than in figure 7.

4.2. The Florence experiment revisited

In the Florence experiment [18], the starting point is an ultra-cold gas in a harmonic trap
(without optical lattice). The optical lattices are then ramped up (assuming s(t)= 0.2s⊥(t))
with an exponential ramp s(t)∼ s0(1 − exp(t/τ)), for τ = 30 ms, and a total ramping duration
100 ms. The system soon becomes quasi-1D producing a set of 1D tubes. If a ‘disordered’
system is desired, an additional optical lattice, with a different wavelength λ2, is superimposed
along the tubes. This adds a potential Vd(x)= s2 sin2(k2x). For s2 � s, it acts effectively as the
shift of the on-site energy, i.e. an additional pseudo-random disorder 1Vi = s2 sin2( λ

λ2
π i +φ),

where φ represents the offset between the two optical lattices. We take a generic value
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Figure 8. Absorption spectra in the SF case. The absorbed energy per particle
is plotted as a function of the frequency of modulation of the lattice depth.
Here s = 5, sm = 0.2, s⊥ = 40,UBH ≈ 0.465ER. The renormalized interaction
parameter: U2 ≈ 0.406ER. The left panel corresponds to 20 particles and the
right panel to 36 particles.

φ = 0.123 45. If the ratio λ/λ2 is chosen irrational enough, the bichromatic lattice simulates
a disorder well enough for a finite system [69–73]. The dependence of the pseudo-disorder
amplitude s2 on time is set by demanding that s2(t)∼ s(t) (all optical lattices are ramped up
simultaneously). We will consider three cases: no disorder (s2(t)= 0), weak disorder (s2 =

1
32s)

and strong disorder (s2 =
5

32s).
Consider first the no disorder case s2 = 0. As the initial state, we take 151 particles on 81

sites in the presence of a harmonic confinement coming both from the trap and the transverse
laser profile. The detailed procedure using the TEBD algorithm is described in [29, 33].

After the optical lattice is ramped, absorption spectroscopy is performed for 30 ms
(the conversion unit is 20.91h̄/ER = 1 ms). In the recent numerical investigation of this
experiment [29], a discrepancy between experimental [18] and numerical results was found.
The reported position of the first absorption peak was 1.9 kHz [18], while Wannier function
calculations gave 2.3 kHz [29]. The renormalization procedure renormalizes the value of the
U parameter to U2 = 2, U3 = 1.96 and U4 = 1.91 kHz. This suggests that the positions of
absorption peaks due to the n = 1, 2 and 3 Mott plateaus are: U2 = 2 kHz, −2U2 + 3U3 =

1.85 kHz, U2 − 6U3 + 6U4 = 1.74 kHz. The ‘average’ peak position is 1.87 kHz. Therefore,
the EMO Hamiltonian provides an estimate of the peak position in good agreement with the
experiment.

A simulation of the absorption spectrum performed for this system confirms this finding
as shown in figure 9. Although the initial state when the periodic lattice modulation starts is
not the ground state, but a wavepacket dynamically created during the ramping of the lattice,
the peak positions are well predicted by the EMO model. The positions of the first and second
peaks agree quite well with the experiment (the relative height is different presumably because
of the strong modulation used in [18]).

The exponential ramping of the optical lattice in the experiment [18] may not be adiabatic
as discussed in [29] using a standard BH description. Due to the discrepancy in the position
of the absorption peak, the lattice depth was adjusted in [29]. Instead of ramping the lattice up
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Figure 9. Absorption spectrum obtained by applying lattice modulation with
amplitude sm = 1 on the wavepacket created by exponential ramp up to s = 16.
The black dashed line corresponds to the standard BH model and the red line is
the result of EMO theory. The position of the absorption peaks in the latter case
reproduces well the experimental results [18].

to s = 16, the final value s = 14 was considered. In some sense, such a simplified approach
may be viewed as a renormalization of the BH parameters (without insight into its origin
explained in section 4.1). Let us stress that the agreement between the experimental position
of absorption peaks and the EMO predictions proves the necessity of using the EMO theory to
explain quantitatively the experimental results.

With that modification of the final s value, it was found using the BH model [29] that the
overlap of the prepared wavepacket on the ground state at the final s value was about 9% in the
absence of disorder. It is most interesting to see how taking into account higher bands within
EMO theory affects the adiabaticity of the dynamics. The simulation performed for the similar
exponential ramp starting at s = 5 up to 16 yields an overlap of the dynamical wavepacket
on the ground state at s = 16 equal to 17.3%. It may be qualitatively understood: in the EMO
model, the effective interactions are weaker and the effective tunneling larger, allowing particles
to redistribute more efficiently among sites during the ramp.

We have also tested an optimized s(t) pulse shape as in [29]. By choosing s(t) changing
slowly close to the phase transition point for the n = 3 Mott lobe, we have been able to enhance
adiabaticity up to 33% squared overlap with the ground state.

The presence of disorder has a devastating influence on adiabaticity, similarly to the
standard BH case [29]. We have found that for a small disorder, s2 =

1
32s the squared overlap is

a fraction of a per cent (0.005), whereas for the strong disorder s2 =
5

32s it becomes vanishingly
small (of the order of 10−9, beyond the accuracy of the calculation).

5. Conclusion

The aim of this paper is twofold. In the first part, we have presented an efficient numerical
implementation of the approach sketched in [39], which makes it possible to compute the
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parameters of the effective Hamiltonian for bosons in optical lattices. The approach goes beyond
the standard BH model [7] limited to the lowest Bloch band. The effective Hamiltonian approach
which includes contributions from higher lying bands (MO approach) has been shown to lead
to new effects and even new phases [37] for bosonic systems (see also [35]). Our scheme of
perturbatively generated basis seems clearly superior to the energy-selected basis used in [39]
for low and moderate occupation numbers and allows for better estimates of Hamiltonian
parameters. These estimates may be extrapolated to an infinite number of bands.

We have applied the method not only to the standard 3D cubic lattice, but also to reduced
1D and 2D problems, where the lattice depth is different in various directions. The effective
Hamiltonian obtained depends on the dimensionality of the problem. In effect, mean-field phase
diagrams as obtained with the Gutzwiller ansatz differ even if they are rescaled by the lattice
coordination number. It turns out that the role of excited bands is even more pronounced for
reduced dimensionality problems than for a 3D lattice.

Motivated by this difference, we have investigated whether the dynamics is different in
a standard BH model and for the EMO theory. We have considered two cases, the energy
absorption created by modulation of the lattice height and the quasi-adiabatic passage from the
SF to the MI phase. In both situations, it turns out that taking into account the density-dependent
tunneling terms as well as modification of interactions may lead to significant differences
between the two approaches. For the same lattice depth, the effective interactions turn out to
be significantly weaker than in the standard BH model. This results in profound differences in
the absorption spectra such as significant shifts of absorption peaks. Similarly, the full effective
theory predicts that the transition from SF to MI is more adiabatic than with the standard BH
model [29].

The results presented in this paper should have direct applicability to any experiment using
bosons in an optical lattice, with multiple site occupations.
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Appendix. Diagonalization of the on-site Hamiltonian

We describe the approach we use to generate a perturbatively based variational set used in the
diagonalization of the on-site n particle problem

Hloc = HE + HU =

∑
α

Eαn̂α +
∑
αβγ δ

Uαβγ δâ†
αâ†

β âγ âδ. (A.1)

The most elementary possible excitation promotes a boson from the α = 0 to 2 band. This
defines two limits: n3/2U 2000

� E2 − E0 and n3/2U 2000
� E2 − E0. Uαβγ δ becomes smaller as

the α, β, γ, δ indices grow.
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The first regime corresponds to the ordinary BH model in which HU can be treated as a
small perturbation, with zero-order ground state |ψ0〉 = (â†

(0,0,0))
n
|0〉, just as was assumed for

the ordinary BH Hamiltonian. The large density regime is dominated by HU . A straightforward
application of the multiband model in that regime is not justified; however, a mean-field-
based renormalization scheme leads to the approximate model of the same form with modified
parameters [34]. The transition to the nonperturbative regime occurs at approximately 10–15
atoms per site.

Consider the low-energy regime. By vectors reachable in kth-order perturbative expansion,
we call those Fock states |ψp〉 for which 〈ψ0|H k

U |ψp〉 6= 0. In particular, a full basis can be
generated with order

⌈
n
2

⌉
. Let us denote by Bk the set of vectors reachable in kth order and

unreachable in (k − 1)th order. The full variational basis of Fock states is B =
⋃

kBk with Bk

pairwise disjoint, and Bk = ∅, for k>
⌈

n
2

⌉
.

For numerical diagonalization, a proper, not too large S⊂B has to be chosen. In [39],
S consists of vectors |ψ〉 with the least E|ψ〉 = 〈ψ |Hloc|ψ〉. In the first-order perturbation
method, we choose vectors from B1 with the largest values of

f1(ψ)= ln
|〈ψ0|ĤU |ψ〉|

E|ψ〉 − E|ψ0〉

. (A.2)

Disregarding vectors from
⋃

k>2Bk seems to be a crude approach, but still our numerical
calculations prove this ‘basic’ perturbative approach to be more efficient for low densities
than the least-energy-based selection. The perturbation theory provides a way to evaluate
a perturbative contribution of vectors from Bk, for arbitrary k, which, unfortunately, is
computationally involved (summation over intermediate states, degeneracy resolution). As we
do not calculate the ground-state energy within the perturbation theory treatment, but only
motivate the choice of a variational basis for numerical diagonalization, the following function,

f2(ψ)= ln sup
|ψ1〉∈B1

|〈ψ0|ĤU |ψ1〉〈ψ1|ĤU |ψ〉|

(E|ψ〉 − E|ψ0〉)(E|ψ1〉 − E|ψ0〉)
, (A.3)

is chosen to approximate the relevancy measure for vector |ψ〉. It minimizes the state’s |ψ〉

energy and maximizes the overlap.
A detailed comparison of the three methods: the least-energy, first-order perturbative

and ‘improved’ first-order perturbative approaches are presented in figure A.1. We have used
K = 10 000 vectors (plus additional second higher order vectors for the ‘improved’ method),
set s = s⊥ = 38 and compared the three methods as a function of n. Two regimes, perturbative
and nonperturbative, emerge, as expected. In the small and moderate n regime, the perturbative
approach gives a better estimate for the ground-state energy than the least-energy method [39].
The opposite tendency is visible in the nonperturbative regime.

Let us describe in detail how a choice of the basis with the largest f1 and f2 values is
performed. We have fixed the maximal number of Bloch bands included at B = 15. We use
the Markov chain Monte Carlo method, which is quite general and can be applied at any
order k of perturbation expansion. Bk is, in general, too large to evaluate function fk for all
elements (its size increases exponentially with the total number of particles). It is usually
possible just to scan the whole B1 set, so from this point on we assume that k > 2. To choose
K vectors with the largest fk values, we construct a random walk based on Metropolis’ Monte
Carlo algorithm. A state of the random walk is a finite k + 1-tuple of n-particle Fock states
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Figure A.1. Comparison of Un obtained from diagonalization of Hloc,
equation (A.1), with energy selected basis and with perturbatively chosen sets.
Each perturbative set consists of 10 000 vectors of first order and of 0, 100 and
800 vectors of second order (curves: black, red and green). The blue dashed
curve denotes the least-energy basis result. For small and moderate n, the
perturbative based basis is clearly superior to the least-energy set. The failure
of the perturbation theory approach for n sufficiently large is apparent, too.

V = (|ψ0〉, |ψ1〉, |ψ2〉, . . . , |ψk1〉, |ψ〉), for |ψi〉 ∈ Bi . For any such V , we define the following
generalization of (A.3):

gk(V)= ln
|〈ψ0|ĤU |ψ1〉〈ψ1|ĤU |ψ2〉|, . . . , 〈ψk−1|ĤU |ψ〉|

(E|ψ〉 − E|ψ0〉)(E|ψk−1〉 − E|ψ0〉), . . . , (E|ψ1〉 − E|ψ0〉)
,

(A.4)
fk(ψ)= sup

|ψ1〉∈B1,...,|ψk−1〉∈Bk−1

gk(V).

To obtain the random walk, we have to update V. First we choose at random a Fock
state |ψl〉 ∈ V to be updated. With equal probability, we update one or two particles of
|ψl〉 preserving the total parity of the state. One-particle update is done according to
|ψl〉→â(ix ,iy ,iz)â

†
(ix ,i ′

y ,iz)
|ψl〉, iy ≡ i ′

y (mod 2), whereas two-particle update is |ψl〉→â(ix ,iy ,iz)

â( jx , jy , jz)â
†
(ix ,i ′

y ,iz)
â†
( jx , j ′

y , jz)
|ψl〉, iy + jy ≡ i ′

y + j ′

y (mod 2). All vectors are normalized. The direc-
tion y is not special in any way: with equal probability any of x, y, z is chosen. After the
update a proposition V ′ is prepared. We automatically reject updates for which |ψl〉 6∈ Bl . If
that is not the case, the acceptance probability is determined as in Metropolis algorithm: it is
given by min{1, exp [β(gk(V ′)− gk(V))]}. The inverse temperature β is tuned to optimize the
sampling efficiency—we choose it by requiring the acceptance rate to be close to 0.3. After a
successful update, the last element of the tuple V ′, state |ψk〉 is accepted into the solution set
if its perturbative importance gk(V) is in the K lowest values recorded so far. The accepted
vector |ψk〉 is memorized as well as the importance value gk(V ′). If |ψk〉 had been generated
before, the memorized value of gk is updated (only if the new value is larger than the old one).
If, in a subsequent few thousand sweeps (empirical value), no vector makes it into the solution
set, nor are gk values updated, then the procedure is restarted. This ensures that all low-energy
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excitations are taken into account (the starting point is always the low-energy configuration).
Altogether, we make 2 × 109 Monte Carlo sweeps to generate basis of size 40 000 (as used for
the results presented in the main part of the paper).

If all Bloch bands were included, then the set of Fock space would be infinite. On the other
hand, only a finite number of them could satisfy the inequality: fk > ε. The values of fi for the
remaining states are very close to 0, and a singularity in density of states ∂ fk

∂En arises. Logarithm
is used to ‘smooth’ this singularity for numerical purposes. It does not affect the ordering, as ln
is increasing injection.
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[54] Albeverio S, Gesztesy F and Hoegh-Krohn R 1988 Solvable Models in Quantum Mechanics (Berlin: Springer)
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