
HAL Id: hal-01589630
https://hal.sorbonne-universite.fr/hal-01589630

Submitted on 18 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Circular oligomerization is an intrinsic property of
synaptotagmin

Jing S Wang, Feng S Li, Oscar D Bello, Charles Vaughn Sindelar, Frédéric
Pincet, James E. Rothman, Shyam S Krishnakumar

To cite this version:
Jing S Wang, Feng S Li, Oscar D Bello, Charles Vaughn Sindelar, Frédéric Pincet, et al..
Circular oligomerization is an intrinsic property of synaptotagmin. eLife, 2017, 6, pp.e27441.
�10.7554/eLife.27441�. �hal-01589630�

https://hal.sorbonne-universite.fr/hal-01589630
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


*For correspondence: shyam.

krishnakumar@yale.edu (SSK);

james.rothman@yale.edu (JER)

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 14

Received: 05 April 2017

Accepted: 11 August 2017

Published: 29 August 2017

Reviewing editor: Axel T

Brunger, Stanford University

Medical Center, United States

Copyright Wang et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Circular oligomerization is an intrinsic
property of synaptotagmin
Jing Wang1†, Feng Li1†, Oscar D Bello1,2, Charles Vaughn Sindelar3,
Frédéric Pincet1,4, Shyam S Krishnakumar1,2*, James E Rothman1,2*

1Departments of Cell Biology, Yale University School of Medicine, New Haven,
United States; 2Department of Clinical and Experimental Epilepsy, Institute of
Neurology, University College London, London, United Kingdom; 3Departments of
Molecular Biophysics and Biochemistry, Yale University School of Medicine, New
Haven, United States; 4Laboratoire de Physique Statistique, UMR CNRS 8550
Associée aux Universités Paris 6 et Paris 7, Paris, France

Abstract Previously, we showed that synaptotagmin1 (Syt1) forms Ca2+-sensitive ring-like

oligomers on membranes containing acidic lipids and proposed a potential role in regulating

neurotransmitter release (Zanetti et al., 2016). Here, we report that Syt1 assembles into similar

ring-like oligomers in solution when triggered by naturally occurring polyphosphates (PIP2 and

ATP) and magnesium ions (Mg2+). These soluble Syt1 rings were observed by electron microscopy

and independently demonstrated and quantified using fluorescence correlation spectroscopy.

Oligomerization is triggered when polyphosphates bind to the polylysine patch in C2B domain and

is stabilized by Mg2+, which neutralizes the Ca2+-binding aspartic acids that likely contribute to the

C2B interface in the oligomer. Overall, our data show that ring-like polymerization is an intrinsic

property of Syt1 with reasonable affinity that can be triggered by the vesicle docking C2B-PIP2

interaction and raise the possibility that Syt1 rings could pre-form on the synaptic vesicle to

facilitate docking.

DOI: https://doi.org/10.7554/eLife.27441.001

Introduction
Synaptic vesicle (SV) fusion at the neuronal synapse is mediated by the SNARE (soluble NSF attach-

ment protein receptor) complex, whose assembly is chaperoned by several other proteins to achieve

precision and synchronicity of neurotransmitter release (Südhof, 2013; Söllner et al., 1993a,

1993b). These include Munc18, Munc13, complexin, synaptotagmin1 (Syt1), a-SNAP, and NSF (Süd-

hof, 2013; Südhof and Rothman, 2009; Jahn and Fasshauer, 2012; Rizo and Xu, 2015). SV-associ-

ated protein Syt1 is of special interest because it is the primary calcium (Ca2+) sensor that triggers

the rapid, synchronous neurotransmitter release after Ca2+ are admitted into the pre-synaptic termi-

nal following an action potential (Brose et al., 1992; Fernández-Chacón et al., 2001;

Geppert et al., 1994). It is well-established that the Ca2+-induced reorientation of the cytoplasmic

C2 domains (C2A and C2B) of Syt1 into the membrane is driving force behind this process

(Rhee et al., 2005; Paddock et al., 2011; Hui et al., 2006; Krishnakumar et al., 2013), but the pre-

cise molecular details are still unclear. Under resting conditions, Syt1 is also involved in pre-fusion

docking and priming of SVs to the plasma membrane (PM). This involves the interaction of the poly-

basic patch of C2B domain with the negatively charged phospholipids, like phosphatidylinositol 4,5-

bisphosphate (PIP2) and phosphatidylserine (PS) in the PM (Wang et al., 2011; Bai et al., 2004;

Honigmann et al., 2013; Parisotto et al., 2012; Pérez-Lara et al., 2016; Martin, 2015), and inde-

pendent but concurrent binding to the t-SNAREs, Syntaxin and SNAP-25 (Zhou et al., 2015; de Wit

et al., 2009; Kedar et al., 2015; Mohrmann et al., 2013). Also, multiple lines of evidence (Hua and
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Charlton, 1999; Walter et al., 2010; Li et al., 2014; Giraudo et al., 2006) imply that prior to the

entry of Ca2+, the SNARE complex is approximately half-zippered but unable to complete its zipper-

ing to drive fusion and Syt1, along with Complexin, might be involved in maintaining this pre-fusion

activated state. Yet, the molecular mechanism by which Syt1 prevents such half-zippered SNAREpins

from completing before Ca2+ entry and the mechanisms by which Syt1 can release or activate (or a

combination) fusion after Ca2+ entry are unknown.

Recently, we described a novel organization of Syt1 on membranes which could mechanistically

explain the multiple roles of Syt1 in orchestrating synchronous neurotransmitter release

(Wang et al., 2014; Zanetti et al., 2016). We found that Syt1 self-assembles into ~30 nm sized rings

(~17 copies of Syt1) on lipid surfaces, which disassemble upon binding Ca2+ in the physiologically-

relevant range (Wang et al., 2014; Zanetti et al., 2016). This suggests a simple physical mechanism

for regulation of synaptic exocytosis. While no doubt over-simplified, it is easy to imagine how an

interposed protein ring at the docked SV-PM interface would act as a reversible barrier to fusion

that is blocking SV fusion until it is disassembled by Ca2+ influx thereby helping to synchronize neu-

rotransmitter release. Such a ring might further serve as platform to organize multiple SNAREpins to

act cooperatively to open the fusion pore faster.

While there is as yet no direct evidence that such rings exist in vivo at the SV-PM junction, none-

theless striking genetic and biochemical correlations provided by the ring structure (Wang et al.,

2014; Zanetti et al., 2016) and the fact that the ring-like oligomers are a conserved structural fea-

ture of many C2 domain proteins (Zanetti et al., 2016) strongly support the overall hypothesis.

Building upon our previous work (Zanetti et al., 2016), and our recent finding that Syt1 oligomers

can be triggered in solution by polyphosphates and Mg2+. In this research advance, we use fluores-

cence correlation spectroscopy to independently corroborate the Syt1 oligomeric structure and pro-

vide mechanistic insight into the Syt1 ring oligomer assembly.

Results

PIP2 or ATP and Mg2+promote Syt1 ring oligomers in solution
The minimal C2AB domains of Syt1 form circular oligomers on lipid surface and the electrostatic

interaction between the conserved lysine residues (K326/K327) within the polybasic patch/motif on

the C2B domain and the negatively-charged lipids, like PIP2 and PS, on the lipid surface was

required for its assembly (Wang et al., 2014; Zanetti et al., 2016). To understand if this electro-

static interaction in itself is the trigger to polymerize or if it merely serves to position the Syt1 on the

membrane to promote the ring formation, we examined if the Syt1 rings could be assembled in solu-

tion using acidic lipid substitutes. We incubated stringently purified C2AB domains of Syt1 (Syt1C2AB)

with soluble PIP2 (PIP2-diC4) under physiologically-relevant buffer condition (100 mM KCl, 1 mM

free Mg2+) and imaged the resultant structures using electron microscopy (EM). Negative stain anal-

ysis showed that in the presence of 50 mM PIP2-diC4, Syt1C2AB readily assembles into ring-like

oligomers in solution (Figure 1A). The density (~5 rings/ mm2) and the dimension (outer diameter

between 18–44 nm with an average size of ~32 nm) of these soluble ring oligomers were very similar

to the ring oligomers formed on the lipid surface (Figure 1B and C). Based on the helical indexing

of the Syt1C2AB tubes (Wang et al., 2014), we estimate that this corresponds to 12–26 copies of

Syt1 molecule, with an average of ~17 copies of Syt1. Notably, the soluble Syt1C2AB rings are abun-

dant and stable under physiological buffer conditions, unlike the sparse density observed on lipid

monolayers (Wang et al., 2014). This suggests that circular oligomerization is an intrinsic property of

Syt1 C2 domains, but hindered by the low concentration of the protein on the lipid monolayer sur-

face under these conditions.

Similar ring oligomers were observed with PIP2 analogues like inositol 1,4,5-trisphosphate (IP3,

50 mM) (Figure 1D) suggesting it was not a unique property of PIP2. Consequently, we tested the

effect of adenosine triphosphate (ATP), another polyvalent anion, which has been shown to directly

bind the C2B polybasic region and modulate the membrane interaction of Syt1 (Park et al., 2012;

Vennekate et al., 2012). As with soluble PIP2 and its analogues, we detected ring-like oligomers of

Syt1C2AB (Figure 1E) at physiological concentration of ATP (1 mM Mg-ATP), with density (~5 rings/m
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m2) comparable to soluble PIP2. Similar ring oligomers were also observed with 1 mM adenosine

diphosphate (ADP) suggesting that it is a shared property of polyvalent anions (Figure 1F).

No oligomeric structures were observed in the absence of polyvalent anions and the density of

the rings was drastically reduced (~5 rings/mm2 to ~0.4 rings/mm2) when the polybasic region of C2B

was mutated (K326A/K327A) (Figure 2A). This suggests that the known direct molecular interaction

of polyanions with the C2B polybasic motif (Park et al., 2012; Bai et al., 2004) and not a charge

shielding effect, produces the Syt1 ring-like oligomers. Magnesium ions (Mg2+) were also found to

be an important co-factor in stabilizing the Syt1C2AB rings in solution (Figure 2B and C). The number

of Syt1C2AB ring oligomers observed were substantially reduced (~60% reduction) when Mg2+ was

completely excluded (using Na-ATP or Na-PIP2) (Figure 2C). Given that the Mg2+ was not required

Figure 1. The C2AB domains of Syt1 oligomerize into ring-like structures in solution when triggered with naturally occurring polyphosphates and Mg2+.

Negative staining electron microscopy analysis shows that Syt1C2AB forms ring-like structures in buffer solution containing soluble PIP2 (PIP2-diC4) and 1

mM free Mg2+ (A), and these rings are very similar to those observed on monolayers containing 40% DOPS (B). (C) The average diameter of the

Syt1C2AB soluble ring-oligomers are slightly but not significantly larger (32 ± 3 nm) compared to the rings (28 ± 2 nm) formed on lipid monolayer. These

oligomeric rings were not unique to PIP2-diC4 and other polyvalent anions, like IP3 (D) and ATP (E) also induced the oligomerization of Syt1C2AB. The

prevalence and stability of the Syt1C2AB were similar for all the polyvalent anions tested (F). The scale bar represents 100 nm in the main figure and 50

nm for the insets (Panels A, B, D, E). Average values and standard deviations from a minimum of 3 independent experiments are shown.

DOI: https://doi.org/10.7554/eLife.27441.002
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to assemble the Syt1C2AB ring oligomers on acidic lipid surfaces (in fact Mg2+ lowered the number of

rings formed on lipid surfaces), it appears that Mg2+ plays an independent but auxiliary role in the

formation of Syt1C2AB ring oligomers in solution. We also attempted to isolate the soluble Syt1C2AB

rings (triggered with ATP and Mg2+) using glycerol density gradient. However, the soluble rings

were not stable under these experimental conditions and could be isolated only after mild fixation

(0.01% glutaraldehyde) (Figure 2—figure supplement 1). Taken together, our data suggest that the

specific interaction of the polyvalent anions to the conserved lysine residues within the C2B polyba-

sic motif triggers the Syt1 ring-like oligomer formation and the resultant oligomers are stabilized by

Mg2+.

Characterization of soluble Syt1 oligomers by Fluorescence Correlation
Spectroscopy
To independently validate and characterize Syt1C2AB oligomerization in solution, we used fluores-

cence correlation spectroscopy (FCS). FCS is based on correlation analysis of temporal fluctuations

of fluorescence intensity caused by diffusion of fluorescently labeled moiety through a small focal

volume (dimension less than 1 pL). Autocorrelation of the fluorescence can directly provide the aver-

age number of particles (concentration) and average diffusion times through the volume. And, cross-

correlation analysis between two fluorophores can be used to detect molecular association/dissocia-

tion and to determine the stoichiometry of molecular complexes (Elson, 2011; Magde et al., 1974;

Ries and Schwille, 2012). So, to check the oligomerization of Syt1C2AB in solution, we employed

dual-color fluorescence cross-correlation spectroscopy (FCCS) with Syt1C2AB labeled with Alexa488

or Alexa647 at residue 269 using cysteine-maleimide chemistry. The fluorescent labels were intro-

duced at the flexible linker region between C2A and C2B domains and negative stain EM analysis

Figure 2. (A) Molecular interaction of polyvalent anion with the C2B polybasic is strictly required for the oligomer formation. Negative stain EM

analysis shows that disrupting the polylysine motif on the C2B domain (K326A/K327A) prevents the oligomer formation even in the presence of

polyphosphates and Mg2+. (B and C) Mg2+ is a critical co-factor that stabilizes the ring oligomers triggered by polyphosphates (ATP or PIP2) as

complete removal of Mg2+ (Na.ATP or Na.PIP2) results in reduction in the density of the ring oligomers.

DOI: https://doi.org/10.7554/eLife.27441.003

The following figure supplement is available for figure 2:

Figure supplement 1. Glycerol density gradient was used to purify the soluble Syt1C2AB ring oligomers.

DOI: https://doi.org/10.7554/eLife.27441.004
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showed the fluorescent labels did not interfere the Syt1 ring formation (Figure 3—figure supple-

ment 1).

FCCS analysis was carried out under experimental conditions similar to the EM analysis, namely 5

mM of Syt1C2AB (~120 nM of Syt1C2AB -Alexa88, ~30–120 nM of Syt1C2AB -Alexa647 and ~4.9 mM of

unlabeled Syt1 C2AB) was incubated with or without ATP in buffers containing 20 mM KCl and 1 mM

free Mg2+. Both fluorophores were excited, and their intensities in the focal volume were monitored

simultaneously. In the presence of ATP and Mg2+, the temporal variations in the fluorescence inten-

sity of Alexa488 and Alexa647 labels followed a similar pattern, indicating that part of Syt1C2AB-

Alexa488 and Syt1C2AB-Alexa647 molecules move in or out the focal volume concurrently

(Figure 3A). Also, the cross-correlation function was larger than one at short time intervals

(Figure 3A), indicating that a portion of the two fluorophores diffused together that is, they were in

the same diffusional object. Overall, these data were consistent with the formation of Syt1C2AB

oligomers in solution. Further, we observed no cross correlation (Figure 3B) in the absence of ATP

and Mg2+, implying that these structures are not random association of Syt1C2AB molecules, but are

ATP-derived oligomers of Syt1C2AB.

To corroborate these findings, we estimated the diffusion properties of the fluorescent species.

Higher molecular weight of the Syt1C2AB oligomers would increase the diffusion time (transit time)

across the sample volume, and this could be determined by autocorrelation analysis. We used both

fluorophores to cross-check our results, but lowered the concentrations of each fluorescent species

(~25 nM of Syt1C2AB-Alexa488, ~25 nM of Syt1C2AB -Alexa647 and ~5 mM of unlabeled Syt1 C2AB),

such that two fluorophores are unlikely to be located in the same oligomer. This was confirmed by

the absence of cross correlation between the two fluorophores (Figure 3—figure supplement 2).

We then measured the auto correlation function of each fluorophore in presence of ATP and Mg2+.

We found that they could be best fitted using the two-component translational diffusion model with

a triplet state correction (Equation 1) and determined two diffusion coefficients corresponding to

the Syt1C2AB monomers and oligomers.
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where G is the auto correlation function, t is the time interval, A is amplitude, Ftri andttri are the frac-

tion and decay time of the triplet state, Fm andtm are the fraction and diffusional time of the compo-

nent 1, Fo andto are the fraction and diffusional time of the component 2, and s is the structural

parameter.

The major component (~80%) showed fast diffusion time (~600 ms) possibly corresponding to the

monomers and a smaller fraction (~20%) had a slow diffusion time of ~4000 ms consistent with Syt1-
C2AB oligomers (Figure 3C, Table 1). These data indicated that Syt1C2AB indeed formed oligomers in

solution when triggered with ATP and Mg2+. In contrast, in the absence of ATP and Mg2+, the auto

correlation function could be best fitted with the one component translational diffusion model with

triplet state correction (Equation 2)

G tð Þ ¼ 1þA 1þ
ftrie

� t
ttri

1�ftri

 !

1

1þ t
td

� �

1þ 1

s2
t
td

� �1=2
(2)

The diffusion time (td) obtained (~600 ms for both channels) were similar to the diffusion time of

the monomeric component obtained in the two component diffusion model, confirming that no olig-

omeric structure is formed in the absence of Mg2+ and ATP (Table 1).

To verify that the Syt1C2AB oligomerization observed in FCS analysis is indeed due to specific

association of ATP to the C2B polybasic region, we tested the polylysine mutant (wild type Syt1C2AB

-Alexa647 and unlabeled Syt1 C2AB K326A/K327A). For this mutant, in the presence of ATP and

Mg2+, the autocorrelation function was best described with one-component diffusion model with a

diffusion time of 599 ± 50 ms and a diffusion coefficient of 72 ± 7 mm2/s, which are similar to the

property of a Syt1 monomer (Figure 3—figure supplement 3). These data are consistent with the

EM analysis that the probability of forming Syt1 oligomeric structures is significantly decreased when

the polylysine patch on C2B domain was altered. We also tested and confirmed that similar
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Figure 3. Fluorescence correlation spectroscopy confirms the formation of Syt1C2AB oligomers in solution. Fluorescence cross-correlation spectroscopy

of the Syt1C2AB oligomerization reaction was measured using Alexa488 and Alexa647 labeled Syt1C2AB, mixed with unlabeled Syt1C2AB protein either in

the presence (A) or absence (B) of 1 mM ATP and Mg2+. The upper panels represent the count rates and the lower panels represent the auto-

correlation (blue and red markers for Alexa647 and Alexa488) and cross correlation (green markers) functions. The data were collected for a range of

fluorophores concentration (~30–120 nM) and we observe no cross-correlation even at higher label concentration in the absence of Mg2+/ATP (B) in

contrast to distinct cross-correlation in the presence of Mg2+/ATP (A) despite the lower label concentration. This shows that these structures are not

random association of Syt1C2AB molecules, but are ATP-derived oligomers of Syt1C2AB. (C) Fluorescence auto correlation spectroscopy of the

oligomerization reaction was carried out using dilute concentration of the labeled Syt1C2AB (~25 nM each of Alexa488 and Alexa647) mixed with

unlabeled Syt1C2AB in the presence of ATP and Mg2+ The auto correlation function was best fitted with the two-component translational diffusion

model with triplet state (blue and red solid lines for each dye), confirming the presence of the oligomeric component. Representative traces are shown

and the calculated parameters from a minimum of three independent trials are shown in Table 1.

DOI: https://doi.org/10.7554/eLife.27441.005

The following figure supplements are available for figure 3:

Figure supplement 1. Negative stain EM analysis shows that the fluorescent label (Alexa488) introduced at position 269 does not affect Syt1C2AB ability

to form ring oligomers on lipid monolayers containing 40% DOPS.

DOI: https://doi.org/10.7554/eLife.27441.006

Figure supplement 2. Fluorescent cross-correlation analysis confirms that under the low concentration of Alexa488 and Alexa647 used in the

autocorrelation analysis, the two fluorophores are not located in the same oligomer and thus, could be used independently to cross-verify the analysis.

Figure 3 continued on next page
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oligomers were formed with PIP2-diC4 and Mg2+ using both autocorrelation (diffusion time) and

cross-correlation analysis (Figure 3—figure supplement 4).

Physical parameters of soluble Syt1 ring oligomers
To fully characterize the Syt1C2AB oligomers detected in the FCS analysis, we determined the key

molecular parameters of Syt1 oligomers observed in the FCS lt. First, we estimated the average

copy number of Syt1 in the oligomer from the FCS autocorrelation analysis. To do this, we consid-

ered the probability of a diffusional object in the focal volume to contain dye 1:

p¼
C1

Ctotal

(3)

where C1 andCtotal are the input concentrations of Syt1C2AB–dye1 and all the Syt1C2AB (labeled +-

unlabeled), respectively. Therefore, if an oligomer containing dye 2 has N copies of Syt1C2AB mole-

cules, then the probability of it also containing dye 1 is

p12 ¼ 1� 1� pð ÞN�1 (4)

From the auto correlation functions, we can determine the concentration of oligomers that con-

tain dye 2, which can be defined as C2f2;o, where f2;o is the molar ratio of oligomers containing dye

2 versus all diffusional particles containing dye 2. Therefore, using f2;o and C2, p12 can be rewritten

as

p12 ¼ C12= C2f2;o

� �

(5)

where C12 is the concentration of diffusional objects that contain both Syt1-Alexa647 and Syt1-

Alexa488 and can be calculated using

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.27441.007

Figure supplement 3. Autocorrelation analysis of the oligomerization reaction of C2B polylysine motif mutant was carried out using the mixture of wild

type Syt1C2AB -Alexa647 and unlabeled Syt1 C2AB K326A/K327A.

DOI: https://doi.org/10.7554/eLife.27441.008

Figure supplement 4. Fluorescence cross-correlation and autocorrelation analysis shows the formation of Syt1C2AB oligomers with PIP2-diC4 and Mg2+.

DOI: https://doi.org/10.7554/eLife.27441.009

Figure supplement 5. Geometry of the torus model (Thaokar, 2008) used to estimate the hydrodynamic radius of the Syt1C2AB oligomers.

DOI: https://doi.org/10.7554/eLife.27441.010

Table 1. Fractions and molecular properties of diffusional particles of Syt1C2AB generated various conditions as measured by

fluorescence correlation spectroscopy.

Averages and standard errors from three independent trials are shown.

Proteins
Total protein
conc. (nM)

Mg2+ +
polyphosphate

Readout
channel

Component 1 Component 2

Fraction
(%)

Diffusion
time (ms)

Diffusion
coefficient
(mm2/s)

Fraction
(%)

Diffusion
time (ms)

Diffusion
coefficient
(mm2/s)

Syt1-Alexa488 ~30 No Alexa488 100 620 ± 35 70 ± 4 n/a n/a n/a

Syt1-Alexa647 ~30 No Alexa647 100 616 ± 22 70 ± 3 n/a n/a n/a

Syt1-Alexa488 + Syt1-
Alexa647 + unlabeled Syt1

~5000 No Alexa488 100 583 ± 20 74 ± 8 n/a n/a n/a

Alexa647 100 577 ± 20 75 ± 8 n/a n/a n/a

Syt1-Alexa488 + Syt1-
Alexa647 + unlabeled Syt1

~5000 Yes Alexa488 77 ± 2 527 ± 20 82 ± 4 23 ± 2 4168 ± 194 10 ± 1

Alexa647 76 ± 2 567 ± 26 77 ± 4 24 ± 2 3862 ± 196 11 ± 1

DOI: https://doi.org/10.7554/eLife.27441.011

Wang et al. eLife 2017;6:e27441. DOI: https://doi.org/10.7554/eLife.27441 7 of 17

Research advance Neuroscience

https://doi.org/10.7554/eLife.27441.011
https://doi.org/10.7554/eLife.27441


C12 ¼
Gx 0ð Þ� 1ð Þf1;of2;o

G1 0ð Þ� 1ð Þ G2 0ð Þ� 1ð ÞVeff

(6)

Where Gx 0ð Þ is the value of the cross-correlation function at zero time interval, G1 0ð Þ and

G2 0ð Þ are the values of the auto correlation functions of dye 1 and 2 at zero time interval, respec-

tively, and Veff is the effective focal volume. Combining Equations 4–6, we estimate the average

copy number (N) of Syt1 in the oligomers to be ~16 ± 2. This perfectly matches with the estimated

copies of Syt1 (~17 copies) in the ring-like oligomers from the EM analysis.

Next, we determined the hydrodynamic dimensions of the Syt1 monomeric and oligomeric com-

ponent from its diffusion properties. For the monomers, we considered them as global structures

and used Stokes-Einstein equation (Equation 7)

D¼
kBT

6phr
(7)

where D is the diffusion coefficient determined from the autocorrelation function, kB is Boltzmann

constant, T is the temperature, h is the viscosity of the solvent and r is the hydrodynamic radius. For

the oligomer, we used torus model (Figure 3—figure supplement 5) considering the ring-like oligo-

mer structure, wherein the hydrodynamic radius can be determined from the following equation:

D¼
kBT

8p2ha
ln

8a

r

� �

þ
1

2

� �

(8)

r is the radius of the sphere being rotated, and a is the distance from the center of the circle to the

axis of rotation (Thaokar, 2008). We estimate an average hydrodynamic radius of ~r = 3.1±0.2 nm

for the monomer and ~ (r + a)=24 ± 3 nm for Syt1 oligomer. Both of these values are in line with the

dimension of Syt1C2AB monomer (~4.3 nm from X-ray crystallography [Fuson et al., 2007]) and ring

oligomer (~32 nm from the EM analysis). Overall, the data suggest that Syt1 oligomers observed in

FCS analysis are the same circular oligomers visualized by EM, given the molecular properties of

both are perfectly aligned.

Finally, we used the FCS analysis to estimate the Syt1 oligomeric interaction. Because we

observed two types of diffusional particles (Syt1 monomer and oligomer with average copy number

N ~ 16) in the fluorescence correlation measurements, to determine the binding affinity, we consid-

ered a polymerization reaction that forms the oligomer (Syt1N):

N :Syt1$ Syt1N

The binding affinity constant (KD) can be written as

KDð ÞN�1¼
Syt1½ �N

Syt1N½ �

And the mass balance equation is,

Syt1½ � þN: Syt1N½ � ¼ Syt1½ �
0

where [Syt1]0 is the initial total input concentration of Syt1.

The molar fractions of the fluorescent dyes in the monomers (F1;m andF2;m) were determined

from the auto correlation functions of the Alexa647 and Alexa488 channels, respectively. As shown

in Table 1, the two dyes, Syt1-Alexa647 (dye 1) and Syt1-Alexa488 (dye 2), have similar distribution

in monomers and oligomers, that is F1;m ffi F2;m, where F1;m is the molar fraction of dye 1 in the form

of monomer. Therefore, we can reasonably assume that the unlabeled Syt1 molecules have same

distribution as Syt1-Alexa647 and Syt1-Alexa488. Then,

f1;m ffif2;m ffi
Syt1½ �

Syt1½ �þ Syt1N½ �
(9)

Combining these equations together, we can write the KD as
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KD ¼
f

1

N�1ð Þ

1;m

1�f1;m

� � 1

N�1ð Þ N 1�f1;m

� �

þf1;m

� �

Syt1½ �
0

(10)

The values of F1;m andF2;m were in good agreement and found to be ~0.77 (Table 1). From Equa-

tion 10, the affinity constant (KD) for the Syt1C2AB monomers to assemble into the oligomers was

estimated to be ~1 ± 0.3 mM. This corresponds to a free energy of ~�13.8 kBT for a monomer and

~�220 kBT for the oligomer with 16 copies of Syt1C2AB. This suggests that Syt1 ring oligomers could

reasonably assemble under the physiological conditions when triggered by naturally occurring

polyphosphates.

Syt1 soluble rings are insensitive to calcium
Syt1C2AB ring oligomers assembled on the membrane surface are sensitive to Ca2+ and are rapidly

disrupted by Ca2+ wash at physiological concentrations (Wang et al., 2014; Zanetti et al., 2016).

This sensitivity maps to the Ca2+ binding to the C2B domain and the subsequent insertion of the

flanking aliphatic residues into the membrane (Zanetti et al., 2016). In line with this, we find that

the soluble Syt1C2AB rings are insensitive to Ca2+ treatment (Figure 4). Negative stain EM analysis

showed the Syt1C2AB assembled into soluble ring-like oligomers in the presence of Ca2+/ATP similar

to those observed with ATP and Mg2+ (Figure 4A). In fact, Ca2+ was slightly better in stabilizing the

ring oligomers across the concentration range (0.25–1 mM) tested (Figure 4—figure supplement

1). Similarly, we detected the presence of oligomeric structures with ATP and Ca2+ in the FCS analy-

sis, and the diffusional properties of the oligomeric component was similar to that observed with

ATP and Mg2+ (Figure 4B). Hence, we conclude that the Ca2+-induced membrane interaction of the

C2B domain is essential for the dissociation of the Syt1 ring oligomers following the Ca2+ influx.

Remarkably, neutralizing the Ca2+ coordinating aspartic acids of the C2B domain (Syt13A, D309A/

D363A/D365A) stabilized the soluble ring oligomers. In fact, Syt13A formed stable ring oligomers in

the absence of divalent cations (with Na.ATP), with density comparable to those assembled with

ATP and Mg2+ (Figure 4C). This supports the idea that C2B Ca2+ loops are involved the ring oligo-

mer formation (Wang et al., 2014) and Mg2+ stabilizes the ring oligomers by charge shielding effect

that is by reducing the electrostatic repulsion between the Syt1 monomers by

Discussion
The data presented here establish that circular oligomerization is an intrinsic property of Syt1, and it

can assemble into stable ring-like oligomers independent of a membrane surface. However, this is

not a spontaneous association and strictly requires the structurally defined binding of physiologically

occurring polyphosphates anions like PIP2 or ATP to the polylysine motif on the C2B domain. In the

case of PIP2, it is known that this interaction firmly docks the vesicle to the PM both under in vitro

and in vivo conditions (Honigmann et al., 2013; Parisotto et al., 2012; Pérez-Lara et al., 2016).

Structural analysis of the Syt1 ring oligomers from helical reconstruction of the Syt1C2AB coated

membrane tubes (Wang et al., 2014) shows that the C2B calcium loops either contribute to or are

in close proximity to the C2B-C2B interface that assembles the oligomers. Corroborating this, we

find that neutralizing the Ca2+-coordinating aspartic acids by alanine mutation or by inclusion of

divalent cations (Mg2+/Ca2+) increase the prevalence and stability of the soluble Syt1 ring oligomers.

Given that the polybasic patch and the Ca2+-binding sites on C2B are located quite far apart, we

suggest that polyphosphate binding rigidifies the C2B fold thereby better structuring the surfaces

engaging in oligomerization. This long-range conformational coupling could explain the cooperative

binding of PIP2 and Ca2+ that has been reported for several C2 domain proteins, including Syt1

(Montaville et al., 2008; Torrecillas et al., 2004; van den Bogaart et al., 2012).

Our data raise the interesting possibility that under physiological conditions, the binding of cyto-

solic ATP to the C2B polybasic motif could initiate ring formation on the SV well before the docking

forming a ‘halo’-like structure (Figure 5). The average size of the ring oligomers observed by EM

and FCS analysis suggests that the nearly all Syt1 molecule in the SVs may be involved, but the pre-

cise number of the Syt1 involved is unclear. Pre-formed Syt ring oligomers could then be transferred

to PIP2 clusters at the PM to facilitate docking by virtue of the far greater affinity of a multi-valent

Syt oligomer. This would require PM-bound PIP2 displacing free ATP as a ligand to the polybasic
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patch, as previously demonstrated (Park et al., 2012; Vennekate et al., 2012). It is noteworthy that

in the same study, it was found that ATP is a better ligand than PS on the SV surface, and suggested

that ATP binding to C2B serves to prevent cis-binding of C2B to the SV thereby favoring ultimate

trans-binding to PIP2 in the PM (Park et al., 2012; Vennekate et al., 2012). In accordance, we find

Figure 4. Soluble Syt1C2AB oligomers are insensitive to Ca2+. (A) Negative stain analysis shows that the Syt1C2AB assembles into ring-like oligomers in

the presence of Ca2+ and ATP and these ring oligomers are similar in size and frequency to the rings assembled with Mg2+/ATP. (B) Fluorescence

autocorrelation analysis corroborates the insensitivity of the ring oligomers to Ca2+ as the auto correlation function of Syt1C2AB incubated with Ca2+ and

ATP is best described with the two-component translational diffusion model with triplet state revealing the presence of the oligomeric component. (C)

Neutralizing the Ca2+ coordinating aspartic acids in the C2B domain stabilizes the soluble ring oligomers even in absence of Mg2+ ions clarifying the

molecular role of Mg2+ in the soluble Syt1C2AB ring assembly. The stability of the ring oligomers under various conditions was quantified by density of

the rings on the EM grid (D). Average values and deviations from a minimum of 3 independent experiments are shown.

DOI: https://doi.org/10.7554/eLife.27441.012

The following figure supplements are available for figure 4:

Figure supplement 1. Negative stain EM analysis shows that both Mg2+ and Ca2+ act in a similar manner to stabilize the soluble Syt1C2AB ring-like

oligomers.

DOI: https://doi.org/10.7554/eLife.27441.013

Figure supplement 2. Fitting residues from fitting autocorrelation function for data shown in Figure 3C.

DOI: https://doi.org/10.7554/eLife.27441.014
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that the ATP drastically reduces the density of the Syt1 ring oligomers on lipid surface with PS only,

but had no effect when PIP2 was included (Zanetti et al., 2016). Here, we extend this concept to

suggest that this hierarchy of binding affinities may serve to pre-form a Syt1 ring as an additional

mechanism to facilitate SV docking to the PM by Syt1.

Figure 5. Model for the regulation of neurotransmitter release by the Syt1 ring oligomers. The Syt1 ring oligomer

formation may be triggered prior to vesicle docking that is halo-like structure by cytosolic ATP (green dots)

binding to the Syt1 C2B polylysine motif (blue dots). The ring oligomers are then transferred to the site of docking

wherein the ATP interaction is replaced with the PIP2 clusters (yellow dots) on the plasma membrane. This serves

to enhance the docking ability of the Syt1 and position the ring at the docking site prior to the engagement of the

SNARE proteins. The dimensions of the Syt1 ring, would permit the assembly of N-terminal domain of SNARE, but

impede the complete zippering either passively as a spacer/washer or actively by restraining the SNARE assembly

via specific interaction with t-SNAREs. Upon binding Ca2+ (red dots), the Ca2+ loops that is at the oligomeric

interface, re-orients and inserts into the membrane. This disrupts the Syt1 ring oligomer and removing the

impediment for fusion. In this fashion, the Syt1 ring oligomers could synchronize the release neurotransmitters to

the influx of Ca2+ following the action potential.

DOI: https://doi.org/10.7554/eLife.27441.015
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The formation of the Syt1 ring oligomer prior to the engagement of SNAREs would allow it to

generate and maintain the primed pre-fusion state. The dimensions of a Syt1 ring (diameter ~30 nm

and height ~4 nm) considering 15–20 copies of Syt1 in the SVs (Takamori et al., 2006;

Wilhelm et al., 2014) would permit the assembly of half zippered SNAREpins but could impede the

complete zippering. It is not clear if Syt1 rings function to clamp fusion passively, as a spacer, to sep-

arate the two bilayers, or actively by physically restraining SNARE assembly via direct binding to the

single SNARE complexes (Choi et al., 2010; Zhou et al., 2015). However, it is worth noting in our

Syt1 ring oligomer model, the recently defined SNARE binding interface on the C2B (Zanetti et al.,

2016) is accessible and free to interact in an active mechanism. Recent cryo-tomography studies of

synaptosomes show that docked vesicles are ~3–4 nm away from plasma membrane with protein

density at the interface. However, it does not allow for unambiguous identification of the protein(s)

identity or their organization at the docked site. (FernandezFernández-Busnadiego et al., 2011).

Besides stabilizing the pre-fusion state, the Syt1 ring oligomer could also synchronize the release

of neurotransmitter to Ca2+ influx. Ca2+ binding would trigger a rapid disintegration of the Syt1 olig-

omeric structure to permit the stalled SNAREpins to complete zippering and drive SV fusion. How-

ever, Ca2+ sensitivity is not an innate property of the Syt1 oligomers, but requires the presence of

lipid membranes. This reinforces our earlier finding that the Ca2+-dependent interaction of the C2B

domain with the membrane is key determinant in the ring disassembly (Zanetti et al., 2016). Ca2+-

induced conformational reorientation of the C2B loops into the membrane, which is the power

stroke and physiologically required for triggering synaptic transmission (Fernández-Chacón et al.,

2001; Rhee et al., 2005; Paddock et al., 2011), is incompatible with the ring-like structure, as it

would disrupt the oligomeric interface. Overall, it is now easy to imagine how Syt1 oligomers could

serve as template to organize assembling SNAREpins and related chaperones to enable the cooper-

ative and synchronous triggering of neurotransmitter release. However, further research is needed

to test the physiological relevance of these concepts.

Materials and methods
Adenosine phosphates (ATP, ADP) and Inositol hexaphosphate (IP6) were purchased from Sigma-

Aldrich (St Louis, MO). Inositol 1,4,5-trisphosphate (IP3), phosphatidylinositol 4,5-bisphosphate diC4

(PIP2-diC4) were purchased from Echelon biosciences (Salt Lake City, UT). 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) were pur-

chased from Avanti Polar lipids (Alabaster, AL). Thiol reactive fluorescent probes Alexa488-malei-

mide and Alexa647-maleimide were purchased from Thermo Scientific, Waltham, MA. The DNA

constructs used in this study - the wild-type C2AB domain (Syt1C2AB, residues 143–421) of rat Syna-

totagmin-1, C2B polylysine mutant (Syt1C2ABK326A, K327A), C2B Ca2+ binding mutant (Syt13A,

D309A, D363A, D365A) were generated and sequenced in our earlier works (Wang et al., 2014;

Zanetti et al., 2016). For site-specific labeling with fluorophores, cysteine was introduced in Syt1-
C2AB at residue 269, while naturally existing cysteine at residue 277 was removed (C277S) using the

Quickchange mutagenesis kit (Stratagene, Santa Clara, CA)

Purification of recombinant proteins
The Syt1C2AB wild-type and mutant proteins were expressed and purified as a GST-tagged protein

using a pGEX6 vector. The proteins were purified as described previously (Wang et al., 2014;

Zanetti et al., 2016). Briefly, Escherichia coli BL21 (DE3) expressing Syt constructs were grown to an

OD600 ~0.7–0.8, induced with 0.5 mM isopropyl b-D-1-thiogalactopyranoside (IPTG). The cells were

harvested after 3 hr at 37˚C and suspended in lysis buffer (25 mM HEPES, pH 7.4, 400 mM KCl, 1

mM MgCl2, 0.5 mM TCEP, 4% Triton X-100, protease inhibitors). The samples were lysed using cell

disrupter, and the lysate was supplemented with 0.1% polyethylamine before being clarified by cen-

trifugation (100,000 � g for 30 min). The supernatant was loaded onto glutathione-sepharose

(Thermo Scientific, Waltham, MA) beads (3 hr or overnight at 4˚C), and the beads were washed with

20 ml of lysis buffer, followed by 20 ml of 25 mM HEPES, 400 mM KCl buffer containing with 2 mM

ATP, 10 mM MgSO4, 1 mM DTT. Subsequently, the beads were re-suspended in 5 ml of lysis buffer

supplemented with 10 mg/mL DNaseI, 10 mg/mL RNaseA, and 10 ml of benzonase (2000 units) and

incubated at room temperature for 1 hr, followed by quick rinse with 10 ml of high salt buffer (25

mM HEPES, 1.1 M KCl, 1 mM DTT) to remove the nucleotide contamination. The beads were then
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washed with 20 ml of HEPES, 400 mM KCl buffer containing 0.5 mM EGTA to remove any trace cal-

cium ions. The proteins were eluted off the affinity beads in 25 mM HEPES, 100 mM KCl, 1 mM DTT

buffer using PreScission protease for GST-tagged constructs and further purified by Mono-S anionic

exchange (GE Healthcare, Marlborough, MA) chromatography. Size-exclusion chromatography

(Superdex75 10/300 GL) showed a single elution peak (~13 mL) consistent with a pure protein,

devoid of any contaminants.

Imaging of soluble Syt1 ring oligomers
Protein stock (50 mM) was diluted for 10 fold in MBS (20 mM MOPS, pH7.5, 100 mM KCl, 1 mM

EGTA, 1 mM Mg(AC)2, 1 mM Mg.ATP, 1 mM DTT, 4% trehalose) at room temperature for 10 min.

Alternatively, Mg.ATP can be substituted with 1 mM Mg.ADP, 50 uM IP3, 50 uM PIP2-diC4, 1 mM

Ca.ATP. Diluted protein solution is further centrifuged at 10,000 x g for 10 min at 4˚C to remove

large aggregates and the supernatant (~8 ml) was applied to a continuous carbon-coated EM grid,

which were glow-discharged for 10 s prior to application. After 1 min incubation, the grid was blot-

ted dry with Whatman #1 filter paper, stained with 1% uranyl acetate and air-dried. The negatively

stained specimens were examined on a transmission electron microscope (FEI Tecnai T12) operated

at an acceleration voltage of 120 keV. The defocus range used for our data was from 0.6 to 2.0 um.

Images were recorded under low-dose conditions (~20 e-/Å2) on a 4K � 4K CCD camera (UltraScan

4000; Gatan, Inc), at a nominal magnification of 42,000x. Micrographs were binned by a factor of 2

at a final sampling of 5.6 Å per pixel on the object scale. A minimum of three independent analyses

were used for each condition and average and standard error of the means (SEM) from this dataset

is shown. Typically, randomly selected 20–30 regions of 500 � 500 nm dimensions from each individ-

ual trial (a minimum of 100 regions) was used for the density analysis and a minimum of 200 ring

structures were used to estimate the size distribution.

Soluble ring purification
An aliquot of 10 ml Syt1C2AB stock was diluted in 90 ml MBS. After 10 min incubation at room temper-

ature with ATP and Mg2+, the protein solution mixed with 10 ml of buffer or buffer containing 0.01%

glutaraldehyde on ice for 10 min and then laid on top of a glycerol density gradient (100 ml layers of

10%, 15%, 20%, 25%, 30% glycerol (v/v), which were allowed to settle for 1 hr at 4˚C) and centri-

fuged at 100,000 x g for 16 hr at 4˚C. After the centrifugation, the samples were collected as 50 ml

aliquots (from top to the bottom) and directly imaged for negative staining EM. To increase the con-

centration of particles on the EM grid, samples were allowed to adsorb on the carbon surface for 1

hr in a humidity chamber on ice. An alternate sample under the same conditions except without the

fixative was tested in parallel.

Fluorescence Correlation Spectroscopy analysis
Fluorescence correlation spectroscopy experiments were performed using a Carl Zeiss LSM 510 con-

focal microscope with a correlator module. A 40x water immersion objective lens was used in all

experiments. All experiments were carried out with total (labeled + unlabeled) Syt1C2AB concentra-

tion of 5 mM of Syt1C2AB in 25 mM HEPES, 20 mM KCl, 1 mM Mg2+ buffer with or without 1 mM

Mg.ATP included. The concentration of Alexa488/Alexa647 labeled Syt1C2AB were adjusted as per

the experimental requirement. For cross correlation measurements, typically ~120 nM of Syt1C2AB-

Alexa488,~30–120 nM of Syt1C2AB-Alexa647 were mixed with ~4.9 mM of unlabeled Syt1C2AB at

room temperature for 15 min. The sample was then loaded into a glass bottom microwell dish (Mat-

Tek Corporation, Ashland, MA) for imaging. Under some cases, the sample was then rapidly diluted

(5x) with buffer and immediately subjected to imaging. For auto correlation experiments, concentra-

tions of each fluorescent species lowered to ~10–60 nM of Syt1C2AB-Alexa488,~10–60 nM of Syt1-
C2AB-Alexa647 and ~5 mM of unlabeled Syt1C2AB. Typically, the sample was pre-mixed in eppendorf

tubes, and then transferred into a glass bottom microwell dish (MatTek Corporation, Ashland, MA)

for imaging. Both fluorophores were directly excited using 488 nm and 633 nm lasers.

The auto-correlation function is defined as follows:
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GðtÞ ¼
I tð Þ:I tþ tð Þh i

I tð Þh i2
¼

T
R

T

0

I tð Þ:I tþ tð Þð Þdt

R

T

0

I tð Þð Þ2dt

where I(t) is the fluorescence intensity at time t, and <>denotes the time average, and t is the time

shift.

The definition for the cross correlation function is identical to the auto correlation function, with

the exception that the signal in one channel is compared to a signal in a second channel instead of

itself.

GX tð Þ ¼
IB tð Þ:IY tþ tð Þh i

IB tð Þ:IY tð Þh i

where the indices ‘B’ and ‘Y’ refer to the red and blue channel, respectively.

The total correlation is given by the following equation:

Gtot tð Þ ¼ 1þ dþCþA:k
Y

l

P

Gk;l tð Þ

where d is the offset, C is the background correction, and A is the amplitude. Gk, l(t) is the correla-

tion for a single process. The suffixes k and l are correlation terms for dependent and independent

processes, respectively, that are multiplied with or added to each other.

For a system with a single species of translationally diffusional particles, the above equation can

be simplified as

G tð Þ ¼ 1þA 1þ
Ftrie

� t
ttri

1�Ftri

 !

1

1þ t
td

� �

1þ 1

s2
t
td

� �1=2

where Ftri and ttri are the fraction and decay time of the triplet state. td is the diffusional time of the

particle, and s is the structural parameter.

If there are two species of particles diffusing in the focal volume, the correlation function can be

written as

G tð Þ ¼ 1þA 1þ
Ftrie

� t
ttri

1�Ftri

 !

F1

1þ t
t1

� �

1þ 1

s2
t
t1

� �1=2
þ

F2

1þ t
t2

� �

1þ 1

s2
t
t2

� �1=2

0

B

@

1

C

A

where F1 and t1 are the fraction and diffusional time of the component 1, F2 and t2 are the fraction

and diffusional time of the component 2. These equations can be used to determine the diffusional

properties of the particles. Fitting residues from fitting autocorrelation function for all FCS data are

shown in Figure 4—figure supplement 2.
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Sørensen JB, Verhage M. 2015. A post-docking role of synaptotagmin 1-C2B domain bottom residues r398/399
in mouse chromaffin cells. Journal of Neuroscience 35:14172–14182. DOI: https://doi.org/10.1523/
JNEUROSCI.1911-15.2015, PMID: 26490858
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