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Abstract

Multivariate decoding methods, such as multivoxel pattern analysis (MVPA), are highly

effective at extracting information from brain imaging data. Yet, the precise nature of the

information that MVPA draws upon remains controversial. Most current theories emphasize

the enhanced sensitivity imparted by aggregating across voxels that have mixed and weak

selectivity. However, beyond the selectivity of individual voxels, neural variability is corre-

lated across voxels, and such noise correlations may contribute importantly to accurate

decoding. Indeed, a recent computational theory proposed that noise correlations enhance

multivariate decoding from heterogeneous neural populations. Here we extend this theory

from the scale of neurons to functional magnetic resonance imaging (fMRI) and show that

noise correlations between heterogeneous populations of voxels (i.e., voxels selective for

different stimulus variables) contribute to the success of MVPA. Specifically, decoding per-

formance is enhanced when voxels with high vs. low noise correlations (measured during

rest or in the background of the task) are selected during classifier training. Conversely, vox-

els that are strongly selective for one class in a GLM or that receive high classification

weights in MVPA tend to exhibit high noise correlations with voxels selective for the other

class being discriminated against. Furthermore, we use simulations to show that this is a

general property of fMRI data and that selectivity and noise correlations can have distin-

guishable influences on decoding. Taken together, our findings demonstrate that if there is

signal in the data, the resulting above-chance classification accuracy is modulated by the

magnitude of noise correlations.

Author summary

A central challenge in cognitive neuroscience is decoding mental representations from

patterns of brain activity. With functional magnetic resonance imaging (fMRI), multivari-

ate decoding methods like multivoxel pattern analysis (MVPA) have produced numerous
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discoveries about the brain. However, what information these methods draw upon

remains the subject of debate. Typically, each voxel is thought to contribute information

through its selectivity (i.e., how differently it responds to the classes being decoded), with

improved sensitivity reflecting the aggregation of selectivity across voxels. We show that

this interpretation downplays an important factor: MVPA is also highly attuned to noise

correlations between voxels with opposite selectivity. Across several analyses of an fMRI

dataset, we demonstrate a positive relationship between the magnitude of noise correla-

tions and multivariate decoding performance. Indeed, voxels more selective for one class,

or heavily weighted in MVPA, tend to be more strongly correlated with voxels selective

for the opposite class. Furthermore, using a model to simulate different levels of selectivity

and noise correlations, we find that the benefit of noise correlations for decoding is a gen-

eral property of fMRI data. These findings help elucidate the computational underpin-

nings of multivariate decoding in cognitive neuroscience and provide insight into the

nature of neural representations.

Introduction

The development of fMRI has made it possible to observe the human brain noninvasively as it

responds to stimuli or engages in cognitive tasks. For example, participants might be presented

with a series of stimuli drawn from two or more categories (e.g., faces and scenes), while the

blood oxygenation level-dependent (BOLD) contrast is measured over time from tens of thou-

sands of volumetric pixels (voxels). Different events in the experiment can then be linked to

changes in BOLD activity, permitting inferences about the neural basis of cognition (in the

example above, about category-selective object perception). However, this is a challenging

endeavor because both the physiological processes underlying BOLD activity and the measure-

ment of BOLD activity with fMRI are noisy, and because the resulting datasets can be large

and statistically complex [1, 2].

Traditionally, fMRI analyses have focused on the information contained in the timecourse

of individual voxels or regions. Such methods are “univariate” because they seek to relate

experimental events to single dimensions of BOLD variability, such as the activity averaged

across voxels in a region of interest (ROI). Univariate methods have long been the dominant

approach when using brain-imaging data to draw inferences about the neural basis of different

aspects of cognition [3], including: object perception [4], episodic memory [5], and cognitive

control [6, 7]. However, given that cognitive processes are often realized in highly distributed

[8] and dynamic [2] ways in the brain, and given that fMRI data have considerable spatial reso-

lution and thus natively live in a high-dimensional space [9], performance achievable with uni-

variate methods may be inherently limited.

A different class of analyses, multivariate pattern analysis (MVPA), was developed to exam-

ine such complex neural representations, treating patterns of BOLD activity across voxels and

their link to experimental events as a classification problem [1, 10]. MVPA involves training a

simple statistical model, in a supervised fashion, to extract regularities in patterns of BOLD

activity obtained from different experimental conditions. The trained model is then used to

classify or decode the condition under which previously unanalyzed test data were obtained.

MVPA has led to a wide range of discoveries about the human brain that often go beyond

those achievable by applying univariate methods to the same data, including about: perception

[11, 12], attention [13–15], memory [16–19], language processing [20, 21] and decision-mak-

ing [22, 23].

Noise correlations and decoding
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Although MVPA has been successful across a range of applications, why it is successful has

been harder to pin down [10, 24, 25]. One early and still prominent proposal is that MVPA is

sensitive to local biases in the manner in which sub-voxel information is represented across

populations of voxels [8, 11, 12]. For example, orientation information in the primary visual

cortex is represented in sub-millimeter columns [26, 27] and thus would be obscured at the

level of voxels, which typically span a couple of millimeters. However, because the distribution

of orientation columns across voxels is irregular, any given voxel may have a random over-

representation of, and thus a weak bias toward, a particular orientation. Prior studies have

argued that by aggregating such weak biases across a population of voxels, the orientation of a

stimulus can be reliably decoded using MVPA [11]. Another possibility is that MVPA allows

for the identification of information represented at a larger scale that spans multiple, spatially

disparate voxels. For instance, it is possible to decode stimulus orientation based on the sys-

tematic way in which areas of retinotopic visual cortex over-represent the orientation perpen-

dicular to the radius from the fovea [28].

Regardless of the scale of neural representations, the assumption underlying this prior work

is that considering patterns of activity across voxels rather than averaging over them (as in uni-

variate ROI analyses, for example) provides additional or different sensitivity. These theories

view neural representations as points in a high-dimensional activity space, with each voxel in

the pattern representing a potentially informative dimension. Although two stimulus catego-

ries may be hard to distinguish along any one dimension in this space, jointly considering

many voxels allows for better inference by exploiting more dimensions of information.

This interpretation of MVPA downplays an important factor known to influence the repre-

sentation of information in populations of neurons—that neural variability is correlated in
vivo [29–33]. Both experimental [29, 30, 32] and computational [34–36] studies have shown

that correlations in neural variability have a significant impact on the information content of

neural populations; see [37, 38] for reviews. More relevant for present purposes, accurate

decoding depends on taking such noise correlations into account [39, 40].

Given that noise correlations are important for neural decoding, they may also influence

decoding of fMRI data. Indeed, noise correlations amongst voxels are widespread in fMRI,

both during rest [41, 42] and in the background of tasks [43, 44], driven in part by anatomical

connections [45]. Yet, prevailing interpretations of why multivariate decoding is effective have

not sufficiently acknowledged the relevance of noise correlations to the decoding of informa-

tion from populations of voxels. This is not to say that the classification algorithms themselves

disregard correlations among voxels. Indeed, in most cases these algorithms are sensitive to

the presence of correlations [46], and decoding performance is influenced by them. Our argu-

ment is instead that prevailing interpretations of why MVPA is effective generally center on

the benefits of aggregating the information conveyed by patterns of mean activity across vox-

els, and overlook the influence of correlations. Even when theories have explicitly considered

the influence of correlations, they have generally considered signal correlations: moment-to-

moment correlations in the representation of task-dependent stimulus information across

multiple voxels in the population (i.e., overlap in the representation of the underlying signal

across multiple voxels). For instance, if two voxels contain the same signal across training pat-

terns, classification algorithms such as support vector machines (SVM) and regularized logistic

regression can assign one voxel a higher weight than the other [47].

Here we propose that noise correlations—which exist persistently before, during, and after

experimental events—help explain the effectiveness of MVPA. In contrast to signal correla-

tions, noise correlations reflect the extent to which noise in the activity of a voxel is correlated

with noise in the activity of other voxels in the population. The theory that motivates this

hypothesis is from a recent computational study [36]. This study showed that the impact of

Noise correlations and decoding
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noise correlations on multivariate decoding depends on whether the correlations are between

neurons from homogeneous vs. heterogeneous populations, with the latter being beneficial

and the former being detrimental. When considering homogeneous populations—neurons

that code for the same stimulus variable—decoding performance worsens as noise correlations

increase. That is, when neurons in a population are selective for the same stimulus, lower noise

correlations between them allow the decoder to exploit more dimensions of information.

Indeed, experimental [29, 30, 32] and computational studies [48] have found a relation

between lower noise correlations in homogeneous populations and increased information.

Importantly, in contrast to homogeneous populations, decoding performance for heteroge-

neous populations of neurons that code for different stimulus variables can improve as noise

correlations increase [36]. The intuition is that, given a constant amplitude of noise, the presence

of noise correlations between neurons coding for different stimulus variables allows a multivari-

ate decoder to recognize that the correlated (or shared) variance can be attributed to dimensions

that are irrelevant for discriminating between the variables, and can thus be ignored. This re-

duces the dimensionality of the classification problem and, more importantly, the amount of

overlap between the categorical distributions, thereby improving performance [49]. Indeed, a

recent theoretical study [46] similarly argued that weight vectors in decoding models, such as

MVPA, are influenced by both the signal and noise in brain imaging data, thereby suggesting a

similar influence of heterogeneous noise correlations on classification performance.

Here we extend this theory—developed [36] and supported [50–52] at the level of neurons

—to populations of voxels in fMRI (Fig 1). Two challenges arise from this extension: First, it is

impossible to know whether a given voxel contains a homogenous neuronal population and

even whether multiple voxels with similar selectivity can be considered truly homogenous.

Thus, we focus on the theoretical predictions associated with decoding from heterogeneous

populations (i.e., that noise correlations among voxels selective for different stimuli will

improve decoding of these stimuli). Second, the theory was developed to account for the influ-

ence of positive noise correlations. However, negative correlations can arise in fMRI (e.g.,

depending on preprocessing steps), so our analyses consider the influence of both positive and

negative noise correlations.

We find that MVPA decoding performance is influenced not only by the selectivity of indi-

vidual voxels but also by noise correlations between heterogeneous populations of voxels.

Across several analyses of an fMRI dataset, we demonstrate a positive relationship between the

magnitude of noise correlations and decoding performance, and we show that as expected

with such classifier algorithms [46, 49], MVPA exploits noise correlations by assigning higher

weights to voxels with higher noise correlations. We also show that selectivity and noise corre-

lations influence decoding in a complementary fashion—as long as there is signal in the data,

performance is modulated by the magnitude of noise correlations. Indeed, voxels that were

highly selective for one class also exhibited higher noise correlations with voxels selective for

the other class. Finally, using a simple model of BOLD activity, we simulate different levels of

selectivity and noise correlations in artificial data and show that the benefit of noise correla-

tions for decoding is a ubiquitous property of fMRI data beyond the example dataset.

Results

Overview

We used a subset of the data from an fMRI study on attentional control [53]. Seventeen partic-

ipants were presented with blocks of face or scene stimuli interleaved with blank periods dur-

ing two “localizer” runs. In addition, data were collected during two “rest” runs in which

participants only fixated a central point. Using one of the localizer runs, we fit a general linear

Noise correlations and decoding
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model (GLM) to the activity observed in ventral temporal cortex, and labeled each voxel as

either face-selective or scene-selective based on whether that voxel had greater activation in

response to the presentation of face vs. scene stimuli. Then, we used the rest runs to compute

noise correlations, since there were no stimuli or tasks in these runs. We were specifically

interested in heterogeneous noise correlations (i.e., noise correlations between voxels with dif-

ferent selectivity) and thus calculated, for every voxel, the average correlation between its time-

course and the timecourse of all voxels selective for the opposite category. Finally, to examine

how these noise correlations influenced decoding performance, we selected voxels from both

face- and scene-selective populations with either high or low noise correlations, and used the

other, separate localizer run to train and cross-validate a multi-way (face/scene/blank) classi-

fier based on the patterns of activity from these voxels.

Decoding performance

If MVPA is sensitive to noise correlations, then classification accuracy should be better for pat-

terns of activity from voxels that are strongly vs. weakly correlated with voxels selective for the

Fig 1. An illustration of the influence of noise correlations on face/scene MVPA decoding. (A) In a typical experiment, participants may be

presented with a series of stimuli drawn from two or more categories (e.g. faces and scenes), while fMRI BOLD activity (illustrated here by gray bars) is

measured in ventral temporal voxels, some of which exhibit a preference for faces (face-selective voxels), and others for scenes (scene-selective voxels).

(B) Multivariate decoding methods such as MVPA seek to find a decision boundary (gray dashed line) in the high-dimensional space of voxel activity

patterns (collapsed here, for illustrative purposes, to a 2-D space with activity across face-selective voxels on the ordinate, and activity across scene-

selective voxels on the abscissa). Due to variability in BOLD activity, each category is represented by a distribution in this space, and classification errors

result from overlap in these distributions (shaded region). When voxels selective for one of the categories have high noise correlations with voxels selective

for the other category (scenario illustrated on the right), activity distributions can be elongated in the direction parallel to the discrimination boundary,

resulting in reduced overlap (smaller shaded region) and improved classification accuracy.

https://doi.org/10.1371/journal.pcbi.1005674.g001

Noise correlations and decoding
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opposite category. As a first pass, we focused on voxels with the highest vs. lowest 1% of noise

correlations (Fig 2A) and found that classification was better for voxels with the highest noise

correlations (t16 = 7.24, p< 0.0001). This sorting was based on raw values (high more positive,

Fig 2. Noise correlations and MVPA decoding. (A) Classification accuracy was better for patterns of activity over voxels with high (top 1%) vs. low

(bottom 1%) noise correlations in the raw distribution, and the positive values from the raw distribution; the same pattern held for negative values from

the raw distribution, but with high and low defined as the top and bottom 6%, respectively (to accommodate the smaller sample of negative

correlations). Columns represent means and error bars represent SEM across participants. The number below each column is the average noise

correlation, across the voxels in the selected set and across all participants, provided for descriptive purposes. The dashed gray line denotes the

baseline “chance” level of classification accuracy obtained by permuting the class labels 10,000 times. The classifier was trained on three classes

(face, scene, and blank), but chance is not 33% because there were more blank samples. (B) Classification accuracy improved monotonically with an

increase in the magnitude of noise correlations. The solid purple line represents mean classification accuracy in every percentile of voxels, and the

ribbon represents SEM across participants. The solid gray line represents mean noise correlations in every percentile (for descriptive purposes, as

this was the basis of sorting), and the ribbon represents SEM across participants. The dashed purple line denotes the empirically defined chance

level of classification accuracy obtained from the permutation analysis. ***p < 0.001, **p < 0.01.

https://doi.org/10.1371/journal.pcbi.1005674.g002
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low more negative), but the same result was obtained when we analyzed positive correlations

(high more positive, low closer to zero; t16 = 4.12, p< 0.001) and negative correlations (high

closer to zero, low more negative [54]; t16 = 3.19, p< 0.01).

For a more continuous sense of this relationship, we divided voxels into percentiles of raw

noise correlations (Fig 2B). Classification accuracy improved monotonically as MVPA was

applied to voxel sets with greater noise correlations (slope vs. 0: t16 = 6.66, p< 0.0001). Taken

together, these results demonstrate a clear influence of the magnitude of heterogeneous noise

correlations on decoding performance.

Influence of bin size

We chose an arbitrary, small bin size of voxels (1%) in the analyses above. To examine how

this parameter affected our findings, we repeated the analysis of raw values with larger bin

sizes of high and low noise correlations: 6%, 12.5%, 25%, 37.5% and 50% (Fig 3). While overall

decoding performance improved with increasing bin size, decoding was consistently better for

patterns of activity from voxels with high vs. low noise correlations (ps< 0.02). A 2 (noise cor-

relation magnitude: high vs. low) x 6 (bin sizes) repeated-measures ANOVA revealed that the

difference was greater for smaller bin sizes: In addition to main effects of noise correlation

magnitude (F1,16 = 28.57, p< 0.0001) and bin size (F5,80 = 164.30, p< 0.0001), there was a reli-

able interaction between these variables (F5,80 = 14.12, p< 0.0001). This interaction is also

consistent with the monotonic relationship across percentiles reported above (Fig 2B): As bin

size increased, both the high and low sets included more voxels with intermediate magnitudes

of noise correlation, thereby bringing performance closer to the mean across magnitudes.

Influence of regularization

The analyses above use an L2-norm regularized logistic regression classifier for MVPA. Such

regularization helps avoid over-fitting—which was a risk given that the number of samples in

Fig 3. Number of voxels. Classification accuracy was consistently better for patterns of activity over an

increasing number of voxels with high (green) vs. low (blue) noise correlations, with a larger difference for

smaller bin sizes. Columns represent means and error bars represent SEM across participants. The dashed

gray line denotes permuted chance. ***p < 0.001, **p < 0.01, *p < 0.05.

https://doi.org/10.1371/journal.pcbi.1005674.g003
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the training set was much smaller than the number of voxels whose weights were learned—by

constraining the learning process. In the case of L2-norm regularization, the sum of squares of

the voxel weights is penalized (here, penalty parameter = 1). Because all voxels contribute to

this sum, this regularization induces interactions between voxels when determining weights. It

could be possible that the influence of noise correlations on decoding performance reflects

their effects on such interactions per se rather than the placement of the classifier boundary.

To evaluate this possibility, we repeated the bin size analysis with regularization turned off.

Classification accuracy decreased across the board (presumably because of over-fitting), but

we still found greater accuracy for high vs. low noise correlations (S1 Fig). This suggests that

the benefit of noise correlations was not an artifact of regularization.

Task-dependence of noise correlations

So far, we have calculated noise correlations from the rest runs and performed classification

on the localizer runs. In using a different run to compute noise correlations, we tacitly assumed

that they were stationary across rest and localizer runs. However, noise correlations may

depend on the task condition or may be most closely tied to decoding when actually obtained

from the data being decoded. To examine this possibility, we computed noise correlations

between voxels during the localizer run used for crossvalidation. This is challenging because

stimulus-evoked responses can induce signal correlations. Thus, we first regressed out these

responses (and global noise sources) and examined BOLD correlations in the residuals. This

“background connectivity” approach has been used successfully across a range of tasks to

study noise correlations [44, 55–57].

We again identified face- and scene-selective voxels from one localizer run, but then calcu-

lated heterogeneous noise correlations (i.e., in the residuals) and classified the other localizer

run. The pattern of results was nearly identical to that obtained when noise correlations were

calculated from the separate rest runs, as seen by repeating the bin size analysis (Fig 4A). Clas-

sification accuracy was again consistently better for high vs. low noise correlations (ps< 0.01),

and there were main effects of noise correlation magnitude (F1,16 = 18.28, p< 0.001) and bin

size (F5,80 = 152.77, p< 0.0001), and an interaction (F5,80 = 6.78, p< 0.0001). In fact, the het-

erogeneous noise correlation for a given voxel was fairly stable across rest and localizer runs

(Fig 4B). This was quantified with Spearman’s rank order correlation across voxels within par-

ticipant (mean rho = 0.21; t16 = 5.30, p< 0.0001). Given these results, and because the rest

dataset was fully separate, we returned to using the rest runs for calculating noise correlations

in the remaining analyses.

Comparison to random

We next compared the classification accuracy obtained by selecting voxels with high or low

noise correlations in the rest runs across the six bin sizes to classification accuracy obtained for

sets of voxels of equal size chosen randomly (irrespective of noise correlation). If MVPA auto-

matically exploits noise correlations in a given population of voxels, as long there are enough

voxels in the population with high noise correlations, MVPA should assign high weights to

these voxels and achieve similar performance to a classifier trained only on voxels with high

correlations.

For the smallest bin size of 1%, the high noise correlation set produced better decoding per-

formance than the random set (t16 = 2.38, p = 0.03), consistent with the notion that there were

not enough voxels with high noise correlations in the random set (Fig 5). However, starting at

the 6% bin size, decoding performance was indistinguishable between high noise correlation

and random sets (ps> 0.09). Critically, highlighting the efficiency of MVPA at exploiting

Noise correlations and decoding
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noise correlations, the random sets exceeded the low noise correlation sets at all bin sizes

(ps< 0.001). Taken together, these results suggest that a small number of voxels with high cor-

relations dominate MVPA decoding performance even when considering large sets of voxels.

Fig 4. Background noise correlations. (A) Noise correlations calculated from localizer runs had a similar effect on MVPA as noise correlations

computed from rest runs. Classification accuracy was again better for patterns of activity over voxels with high (green) vs. low (blue) noise correlations,

with a similar interaction by bin size. Columns represent means and error bars represent SEM across participants. The dashed gray line denotes

permuted chance. (B) The noise correlations calculated from rest runs were similar to the noise correlations calculated from localizer runs. Each dot

represents one voxel, with its two coordinates reflecting the heterogeneous noise correlation (i.e., average correlation with voxels with opposite

selectivity) from rest and localizer runs, respectively, averaged across participants for purposes of visualization. ***p < 0.001, **p < 0.01.

https://doi.org/10.1371/journal.pcbi.1005674.g004

Fig 5. Randomly selected voxels. Classification accuracy was similar for voxels selected for having high

noise correlations (green) vs. voxels selected randomly (red), except for the 1% bin size where the high noise

set outperformed the random set. Across all bin sizes, classification accuracy was the lowest for voxels

selected for having low noise correlations (blue). Columns represent means and error bars represent SEM

across participants. *p < 0.05.

https://doi.org/10.1371/journal.pcbi.1005674.g005
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Relationship between classifier weights and noise correlations

We assumed in the previous analysis that MVPA as typically applied (i.e., without explicitly

considering noise correlations during feature selection) performed as well as MVPA over vox-

els with high noise correlation because it automatically assigned these voxels higher weights.

Here we test this directly by carrying out MVPA over all ventral temporal voxels without fea-

ture selection and examining the relationship between assigned classifier weights and average

heterogeneous noise correlations. That is, if a voxel was determined to be face-selective in one

localizer run, how correlated was (a) its average noise correlation with scene voxels in the rest

runs, with (b) its weight assigned for the face category in a classifier trained on the second loca-

lizer run?

We first summarize this relationship using a median-split analysis on the noise correlations

(Fig 6), which revealed that voxels with higher noise correlations were assigned higher weights

(t16 = 3.96, p = 0.001). Another way to look at this relationship is to calculate the Spearman

rank order correlation between noise correlation and classifier weight across voxels. This cor-

relation was reliable across participants (mean rho = 0.045; t16 = 3.58, p = 0.002).

Influence of selectivity

The analyses above demonstrate that MVPA decoding performance is enhanced when voxels

with high vs. low noise correlations (measured during rest or in the background of the task)

are selected during classifier training, and that voxels which receive high classification weights

in MVPA tend to exhibit high noise correlations with voxels selective for the other class being

discriminated against. However, in addition to the magnitude of noise correlations, decoding

performance is also influenced by the selectivity of individual voxels (i.e., how differently a

voxel responds to the conditions being classified). In this section, we examine the relative

influence of selectivity on MVPA decoding performance.

We first consider the extent to which selectivity and noise correlations interact. For

instance, when we divided voxels in our dataset into percentiles of raw noise correlations, we

observed a monotonic improvement in MVPA decoding performance with an increase in the

Fig 6. Classifier weights. A median-split analysis revealed that voxels with higher noise correlations were

assigned higher weights than voxels with lower noise correlations. Columns represent means and error bars

represent SEM across participants. **p < 0.01.

https://doi.org/10.1371/journal.pcbi.1005674.g006
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magnitude of noise correlations (Fig 2B). How does selectivity vary across these sets of voxels?

To answer this question, we took the absolute value of the selectivity scores that had been used

to identify face and scene voxels in one localizer run (i.e., for determining which voxels should

count as having opposite selectivity when calculating heterogeneous noise correlations). As a

reminder, these scores reflect the face vs. scene contrast from the GLM, specifically the z-

scored difference of the parameter estimates modeling the average evoked response from face

and scene blocks, respectively. Average selectivity increased monotonically (Fig 7) as we

moved from voxels with low noise correlations to voxels with high noise correlations (slope vs.

0: t16 = 5.03, p< 0.001), and the Spearman rank order correlation between noise correlation

and selectivity across voxels was reliable (mean rho = 0.076; t16 = 4.17, p< 0.001). In other

words, voxels with higher selectivity for one of the two categories also had higher noise correla-

tions with voxels selective for the other category.

Given the link between selectivity and noise correlations across voxels in our empirical

dataset, we next sought to examine their cumulative influence on decoding. We selected voxels

with the top vs. bottom 12% of noise correlations, and within each set selected voxels with high

vs. low selectivity based on a median split of voxel selectivity from the GLM. We then exam-

ined MVPA classification accuracy for the patterns of activity from voxels in each of the result-

ing four bins with 6% of voxels (Fig 8).

Of particular note in this analysis is the comparison between low noise correlation/low

selectivity and high noise correlation/low selectivity, which had comparable levels of selectivity

(1st and 3rd columns of Fig 8A) but dramatically different classification accuracy (same col-

umns of Fig 8C). This suggests that as long as there is a minimum amount of signal conveyed

by selectivity, which allows for above-chance classification, noise correlations can be sufficient

to increase decoding performance (same columns of Fig 8B). This claim is further reinforced

by the comparison of low noise correlation/high selectivity to high noise correlation/low selec-

tivity. Although there was a dramatic difference in signal conveyed via selectivity (2nd and 3rd

columns of Fig 8A), classification accuracy did not differ and was in fact numerically in the

opposite direction (same columns of Fig 8C), suggesting that the selectivity difference was off-

set by the reverse difference in noise correlations (same columns of Fig 8B). Taken together,

Fig 7. Selectivity and noise correlations. Average selectivity increased monotonically as the magnitude of noise correlations

increased. The solid green line represents mean selectivity in every percentile of voxels, and the ribbon represents SEM across

participants. The solid gray line represents mean noise correlations in every percentile (for descriptive purposes, as this was the

basis of sorting), and the ribbon represents SEM across participants. Each percentile included the same voxels as in Fig 2B.

https://doi.org/10.1371/journal.pcbi.1005674.g007
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these results support the notion that when selectivity differences are present, noise correlations

can influence classification accuracy.

Model simulations

So far, we have used an existing fMRI dataset to demonstrate that MVPA is highly attuned to

noise correlations between voxels, and that decoding performance may be sensitive to the

information carried both by the selectivity of individual voxels and the noise correlations

between them. We next sought to expand upon these findings in two ways: First, as described

above, selectivity and noise correlations were inherently confounded in the empirical dataset.

How might we better examine the cumulative contributions of noise correlations and selectiv-

ity to decoding performance? Second, all of the findings reported above were based on one

fMRI dataset with particular characteristics. To what extent do our conclusions apply to other

datasets and reflect a general principle about the computational underpinnings of MVPA? To

address these issues, we developed a simple model of selective coding in the presence of noise

correlations, wherein we could independently vary voxel selectivity and heterogeneous noise

correlations. By performing MVPA over artificial BOLD activity generated from this model,

we could then simulate the influence of different parameters.

The model included a set of voxels roughly matched in number to the 1% bin size in our

earlier analyses. By construction, half of the voxels responded preferentially to face stimuli and

the other half to scene stimuli. The mean responses, variances, and correlations of all voxels in

Fig 8. Cumulative influence of selectivity and noise correlations. Classification accuracy for voxels selected for having

either low noise correlations and low or high selectivity (blue) or high noise correlations and low or high selectivity (green). Mean

selectivity (A) and noise correlations (B) across voxels in each set. (C) Noise correlations can influence classification

performance in a complementary manner to selectivity. The dashed gray line denotes chance. Columns represent means and

error bars represent SEM across participants. Significance of pairwise comparisons is depicted here. ***p < 0.001, **p < 0.01.

https://doi.org/10.1371/journal.pcbi.1005674.g008
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the model were drawn from the range observed in our empirical dataset, ensuring that the sim-

ulated voxels produced physiologically realistic activity. Following Azeredo da Silveira & Berry

(2014), we used a Gaussian approximation in each of 100 model “participants” to sample data

for time points from face and scene blocks (matched to the number of face and scene TRs in

the empirical dataset). To ensure that the resulting timecourses were temporally autocorrelated

like real BOLD activity [58], we convolved them with a canonical hemodynamic response

function (HRF). Finally, we performed cross-validated MVPA over the artificial patterns of

activity obtained from the simulated voxels.

We first sought to examine the influence of heterogeneous noise correlations on decoding

performance. Noise correlations across pairs of voxels varied according to whether the voxels

were drawn from the pool of face-selective voxels, the pool of scene-selective voxels, or one

from each of the pools. We performed 20 simulations manipulating the magnitude of across-

pool noise correlations linearly between 0 and 0.22 (i.e., the range of positive noise correlations

in the empirical dataset), while holding all other parameters constant. There was a monotonic

increase in classification accuracy as the magnitude of heterogeneous noise correlations

increased (blue curve in Fig 9A). This is precisely the pattern predicted by the computational

theory on which our study was based [36], and is similar to the pattern of results observed in

our empirical dataset. Notably, by allowing noise correlations to vary while the selectivity of

the voxels in the two pools was held constant, these results show that noise correlations are suf-

ficient to influence above-chance decoding performance.

To examine the influence of voxel selectivity, we repeated the analysis above but further

manipulated the strength of face and scene selectivity in the mean responses of voxels from

the two pools, over a fixed range of noise correlations. As expected, when voxel selectivity

decreased across three levels, overall decoding performance also decreased (Fig 9A). However,

at all levels, we observed the same monotonically increasing relationship between classification

accuracy and the magnitude of noise correlations. Notably, selectivity affected classification

accuracy even with near-zero noise correlations, but the effect of selectivity was stronger in the

regime of stronger noise correlations.

We next sought to examine the extent to which these results depend on the specific parame-

ters used in our simulations. For instance, in the simulations described thus far, the variance of

all voxels was matched to the median variance observed in our empirical dataset. Given that

overall noise in the system, correlated or otherwise, is ultimately a function of the variability in

the activity of individual voxels, we examined the extent to which our results depended on the

magnitude of voxelwise variance. Repeating our analysis across three levels of variance, span-

ning the range observed in our empirical dataset, we found a similar influence of noise correla-

tions on classification accuracy (Fig 9B). Specifically, as voxel variance increased, thereby

increasing noise in the system, overall decoding performance went down; however, at every

level of variance, we observed the same relationship between classification accuracy and the

magnitude of noise correlations.

Another modeling choice we made was to sample activity within the face- and scene-selec-

tive voxel pools based on homogeneous mean, variance, and correlation values matched to

population averages from our empirical dataset. We next examined the influence of introduc-

ing heterogeneity in the response properties of the simulated population of voxels. We general-

ized our model to include greater voxelwise diversity by randomly varying the population

covariance matrix according to a Gaussian distribution with SD equal to 10% of the original

value. We similarly varied the mean responses of individual voxels (while maintaining selectiv-

ity) in each population according to a Gaussian distribution with SD matched to the mean

within-population SD from our empirical dataset. We obtained the same pattern of results

from MVPA, with classification accuracy increasing monotonically as the magnitude of noise
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Fig 9. Model simulations. Classification accuracy improved monotonically with an increase in the magnitude of heterogeneous noise correlations in

simulated populations of face- and scene-selective voxels. Solid lines represent mean classification accuracy as the magnitude of noise correlations

increased, with all other parameters fixed. Ribbons represent SEM across model participants. (A) Overall classification accuracy dropped as voxel selectivity

decreased. However, across all selectivity profiles, classification accuracy improved monotonically with an increase in the magnitude of noise correlations.

(B) Overall classification accuracy dropped as voxel variance increased. However, across all levels of variance, classification accuracy improved

monotonically with an increase in the magnitude of noise correlations. (C) Increasing diversity in the response properties of individual voxels within the

simulated face- and scene-selective populations did not qualitatively change the pattern of results. Indeed, increasing population diversity led to a steeper

improvement in classification accuracy as a function of noise correlations. See Methods for the parameter values used in each simulation.

https://doi.org/10.1371/journal.pcbi.1005674.g009
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correlations increased (Fig 9C). Indeed, greater population diversity led to a steeper increase

in classification accuracy, consistent with the notion that heterogeneity can be beneficial, espe-

cially at higher levels of noise correlation.

Discussion

MVPA has proven useful for decoding information from brain imaging data [1, 10], with

insights often extending what has been learned from univariate methods. Although the effec-

tiveness of MVPA has been widely acknowledged, which aspects of neural representation

MVPA taps into are still debated [2, 10, 24, 25, 28]. Prior theories argued that MVPA benefits

from aggregating signals across voxels—either local biases in the mapping of micro-scale rep-

resentations onto voxels [11, 25] or more global, macro-scale representations that span multi-

ple voxels [28]. In both cases, the argument was that MVPA exploits the distribution of weak

or uncertain feature-selective signals to identify regularities that discriminate experimental

conditions.

Our findings show that this interpretation is incomplete: Instead of thinking of each voxel

as making a distinct contribution to the information represented collectively by the population

of voxels, MVPA is also highly attuned to noise correlations between voxels. This reflects the

mechanics of classification algorithms [49] and builds on neurophysiological studies showing

both that noise correlations impact the information content of neural populations [36–38] and

that accurate decoding of this information requires taking these noise correlations into

account [39, 40]. Specifically, our study was inspired by a recent computational theory [36],

which proposed that multivariate decoding is enhanced for heterogeneous neural populations

with high noise correlations. Extending this proposal to the problem of multivariate decoding

with fMRI data, we show that noise correlations between heterogeneous populations of voxels

influence MVPA. The same result was obtained across numerous analyses, with the magnitude

of noise correlations positively related to classification accuracy. Indeed, MVPA tends to assign

greater weights to voxels with high noise correlations. Furthermore, by constructing a simple

model that produces artificial BOLD data, we were able to simulate the complementary effects

of noise correlations and selectivity on decoding and show that our results generalize across

parameter settings.

Why do noise correlations influence multivariate decoding? Most common forms of

MVPA work by finding some kind of discrimination boundary or hyperplane in a high-

dimensional activity space (Fig 1). Due to variability in BOLD activity, each class to be discrim-

inated is represented by a multivariate distribution in this space, and classification errors result

from overlap in these distributions. The intuition is that sensitivity to the noise correlations

between voxels coding for different classes allows MVPA to ignore components of variance

shared between classes (and thus unhelpful for discriminating between them) by down-

weighting dimensions on which this variance loads. This reduces the effective dimensionality

of the classification problem, lessening over-fitting given the same amount of training data,

and minimizing the overlap between multivariate distributions, thereby improving discrimi-

nation between classes.

A recent study [46] similarly considered the influence of noise in BOLD activity on multi-

variate decoding methods. Specifically, it examined the strategies that are typically used to

draw inferences from brain imaging data, and sought to distinguish between “forward models”

(e.g., GLMs) evaluating the manner in which experimental variables are encoded in the brain,

and “backward models” (e.g., MVPA) seeking to read out experimental variables from brain

data. The authors showed that the presence of noise makes the weights from backward models

uninterpretable, because these weights are necessarily functions of both signal and noise in the
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data. In other words, the weight assigned to a given “channel” (or voxel in the case of fMRI)

need not only reflect how well it represents the signal of interest—it may be assigned a

high weight if the structure of noise in this channel also contributes to the classifier’s

effectiveness.

Our study complements and builds upon this and other prior work. Inspired by a computa-

tional theory in the literature [36], and in line with [46], we argue that MVPA is effective pre-

cisely because it is sensitive to both the signal and noise (i.e., selectivity and noise correlations)

in patterns of activity across populations of voxels, and the weights assigned to voxels are func-

tions of both of these variables. Our findings go beyond these prior theoretical proposals by

providing empirical evidence from a real fMRI dataset and by simulating fMRI data with a

range of characteristics. We demonstrate that if a voxel has high noise correlations with voxels

selective for the other class, then considering this voxel’s activity allows the classifier to find a

better decision boundary (by providing an excellent marker for the noise), thus resulting in

the classifier assigning this voxel a higher weight. Furthermore, our analysis scheme highlights

a previously overlooked empirical result: The representation of information in human ventral

temporal cortex seems to be dominated by a small subset of voxels that are both highly selec-

tive for one of the task-relevant categories, and also exhibit high noise correlations with voxels

selective for the other category. Thus, at least with the dataset considered here, sensitivity to

both selectivity and noise correlations makes MVPA particularly effective at extracting the rel-

evant information. Finally, using a model to simulate different levels of signal and noise in the

data, we show that the benefit of noise correlations for decoding is a broadly applicable prop-

erty of fMRI data, and illustrate how various network parameters influence this finding. Taken

together, although other studies have proposed similar ideas from a theoretical perspective, to

our knowledge no prior study has validated them at this level of detail, using both empirical

and simulated data, and shown how they play out in practice in the context of a widely used

multivariate decoding strategy.

In this study, we focused on the classification of face and scene information from ventral

temporal cortex as a canonical example of the kind of problem for which MVPA has proven

effective. Moreover, this dataset was well suited to an initial exploration of the influence of

noise correlations because it contained multiple rest and task runs for each participant allow-

ing for independent definitions of selectivity and noise correlations. We expect that our con-

clusions will apply to multivariate decoding with brain imaging data more generally. Indeed,

the findings from our model—where we observed a similar pattern of results with artificial

datasets generated from simulated populations of voxels with a range of physiologically realis-

tic selectivity profiles and noise correlation structures—provide an initial validation of the gen-

eral applicability of our conclusions. Nevertheless, it will be important for future studies to

apply the approach outlined here to other datasets and brain regions.

Another caveat relates to our inability to draw conclusions at the level of neurons from

fMRI data. Each voxel in fMRI likely reflects the activity in thousands of neurons, with the

exact sampling of neural responses by voxels inaccessible to analysis. Furthermore, the BOLD

signal obtained from each voxel reflects a change in blood oxygenation across a broader swath

of brain tissue than the neural activity that precipitated this influx of metabolic resources, blur-

ring the link between BOLD contrast and local neural activity. As such, we cannot directly link

noise correlations in voxels to noise correlations in neurons, nor draw definitive inferences at

the neuronal level from our fMRI results. Nevertheless, at a different level of analysis, our find-

ings support the computational theory that noise correlations can be helpful for extracting

information from the brain. As such, although often overlooked, noise correlations should be

considered when interpreting the basis and meaning of MVPA.
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Materials and methods

Participants

Nineteen naïve adults with normal or corrected-to-normal vision participated for monetary

compensation. Two participants were excluded because of excessive head motion. The Prince-

ton University Institutional Review Board approved the study protocol and all participants

provided informed consent.

Functional runs

Each participant completed two face/scene “localizer” runs, each of which consisted of an

alternating on-off block design, with 18-s blocks of stimulation interleaved with 18-s blocks of

“blank” passive fixation. Stimulation blocks contained 12 1-s presentations of either face or

scene images (the order of face and scene blocks was counter-balanced across participants),

each separated by a 500-ms inter-stimulus interval. Face images consisted of 24 photographs

from the NimStim dataset (http://www.macbrain.org/resources.htm, neutral expressions) and

scene images consisted of 24 photographs of single houses collected from the internet and

stock photograph discs [59]. Images were presented in grayscale, cropped using a circular

mask, and subtended 6˚ of visual angle in radius. In one run, face and scene stimuli were pre-

sented in the left visual field, and in the other run, face and scene stimuli were presented in the

right visual field. Each run began with a 9-s fixation period and included a total of 12 blocks of

stimulation (6 face, 6 scene), which lasted 7m 21s. During blank periods, participants were pre-

sented only with a central, white point to fixate (radius = 0.2˚). Data from two “rest” runs were

also collected for each participant, during a second session. Each rest run had the same dura-

tion as the localizer runs, but with only the central fixation point. Participants were instructed

to passively view the fixation point without performing any overt task.

Image acquisition

fMRI data were acquired with a 3T scanner (Siemens Skyra) using a 16-channel head coil.

Functional images for both the localizer and rest runs were acquired with a T2� gradient-echo

echo-planar imaging sequence (repetition time [TR] = 1.5 s; echo time [TE] = 28 ms; flip angle

[FA] = 64˚; matrix = 64 x 64; resolution = 3 x 3 x 3.5 mm), with 27 interleaved axial slices

aligned to the anterior/posterior-commissure line. TRs during the localizer were time-locked

with the presentation of photos. In addition, a high-resolution T1 MPRAGE anatomical scan

was acquired for spatial registration. To improve registration, an additional T1 FLASH ana-

tomical scan was acquired at the end of each session, co-planar to the functional scans. To cor-

rect for B0-field inhomogeneity, phase and magnitude field maps were collected at the end of

all sessions, co-planar to the functional scans and with the same resolution.

Image analysis

fMRI data were analyzed using FSL (http://fsl.fmrib.ox.ac.uk/fsl/) and Matlab (MathWorks).

All functional images were skull-stripped to improve registration, and registered to the ana-

tomical images, and the MNI standard brain. The volumes from the initial 9-s fixation period

were removed and the remaining volumes were corrected for slice-acquisition time and head

motion, high-pass filtered (100-s period cutoff) and spatially smoothed (5 mm FWHM).

Despite potentially blurring the spatial activity patterns used for classification, we applied

spatial smoothing for two reasons: First, we wanted our preprocessing and analysis steps to

replicate as closely as possible a standard fMRI study in order to quantify how noise correla-

tions influence decoding performance in a situation frequently encountered in cognitive
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neuroscience. Second, there is debate about the benefits/costs of spatial smoothing for MVPA

(benefit being reduced noise, cost being dampened patterns), but the evidence suggests that

smoothing with the amount we used is likely beneficial to performance, especially for categorical

distinctions [60]. Nevertheless, it will be important in the future to further investigate the impact

of smoothing on noise correlations (and how this impacts their utility for feature selection).

Labeling voxels based on selectivity

Data from the localizer and rest runs were masked to include the temporal occipital fusiform

cortex and the parahippocampal gyrus (posterior division), defined anatomically from the

Harvard-Oxford cortical atlas in standard MNI space. These regions were chosen because of

their general preference for face and scene stimuli, respectively. This mask produced a median

of 5875 voxels, which varied less than 2% across participants because of small changes in head

position. To identify voxels as face- or scene-selective, we fit a GLM to the BOLD activity

observed across the masked ventral temporal voxels during one of the localizer runs (counter-

balanced across participants). The GLM contained two main regressors, one for face blocks

and the other for scene blocks, as well as six nuisance covariates (one for each motion direc-

tion). For each main regressor, a boxcar function lasting the duration of each block was placed

at the block onset time, and it was then convolved with a double-gamma hemodynamic

response function. The resulting voxelwise parameter estimates for these regressors reflect the

average evoked response in each condition. Auto-correlation in the timeseries was corrected

with FILM pre-whitening. We labeled voxels as face-selective if the z-scored parameter esti-

mate for the face regressor was greater than the z-scored parameter estimate for the scene

regressor, and scene-selective if the opposite was true.

Calculating noise correlations

We then used the timeseries of BOLD activity for these voxels from the two rest runs to com-

pute their average heterogeneous noise correlations. For each voxel, we calculated the Pearson

correlation over time of that voxel with all voxels with the opposite label (e.g., for a face-selec-

tive voxel, its correlations with all scene-selective voxels were averaged). Correlations were

computed separately for each rest run and averaged across the two runs. Since there were no

stimuli or tasks during the rest runs, resulting connectivity can be interpreted as stimulus- or

task-independent covariation of variability, i.e. noise correlations.

Background connectivity

In addition to computing noise correlations from rest runs, we also computed noise correla-

tions from the localizer run used for crossvalidation (counter-balanced across participants).

We followed a background connectivity approach [2, 44]. After preprocessing, the BOLD

activity in the localizer run was scrubbed of nuisance and stimulus-evoked variance using two

GLMs. The first (nuisance) model contained regressors for the global mean activity, six motion

correction parameters obtained from preprocessing, and the activity from four seeds in white

matter and from four seeds in the ventricles. Residuals from the nuisance model served as

input to the second (evoked) model. As described earlier, each localizer run consisted of 6

identically structured blocks per category. To precisely capture the averaged evoked response

for each category, we created 48 finite impulse response (FIR) regressors—one for each volume

of a full 72-s cycle of two blocks (face-blank-scene-blank). Each regressor had a constant height

of 1 at one specific volume of every block, and height of 0 elsewhere. That is, one regressor

modeled the average evoked response in the first volume of all face blocks, another the second

volume, and so forth. We used an FIR model because it avoids a priori assumptions about the
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shape and timing of the hemodynamic response. Correlations computed over the residuals

from the evoked model, just as described above for the rest runs, allowed us to assess heteroge-

neous noise correlations orthogonal to global noise sources and stimulus-evoked responses.

MVPA

For classification analyses, we used the Princeton Multi-Voxel Pattern Analysis

Toolbox (www.pni.princeton.edu/mvpa). Specifically, we used subject-specific logistic regres-

sion classifiers penalized using L2-norm regularization (penalty = 1; preliminary analyses

showed negligible influence of this parameter on the qualitative pattern of our results). We

performed three-way (face/scene/blank) classification by learning weights for three logistic

regression models during the training phase (discriminating TRs as face vs. not, scene vs. not,

and blank vs. not, respectively) and then generating guesses during the test phase by labeling

each TR according to the model with maximal output evidence. We verified in preliminary

analyses that including the blank blocks and performing multi-way classification (as opposed

to binary face vs. scene classification) did not affect the pattern of results.

To quantify classification accuracy, we averaged the results of 6-fold cross-validation. The

classifier in each fold was trained on 5/6th of the data and tested on the left-out 1/6th of the

data. Because only one localizer run was used for this cross-validation (the other was used to

independently define selectivity), these divisions of the data into training and test sets occurred

in the same fMRI run. Data from the same run can have dependencies, both locally when activ-

ity in the previous block spills over into the current block, and globally as a result of non-task

factors like head motion or arousal. Despite this, our within-run approach was unbiased. With

respect to local dependencies, all conditions being classified were present in each run and

alternated between each other, and thus any spill-over (into a period with a different label)

would hurt performance. With respect to global dependencies, because again the full design

existed within each run (and training/test sets), any general factors would apply to all condi-

tions and not systematically support classification between conditions. Chance classification

accuracy was calculated empirically by randomly permuting the category labels across TRs in

the localizer run before performing MVPA (block-level scrambling produced identical results).

This process was repeated 10,000 times for each participant, and the average classifier accuracy

across permutations and participants provided the baseline level of performance that would be

expected due to chance.

Model simulations

We developed a simple model of face/scene selectivity in BOLD data from human ventral tem-

poral cortex to examine the separate influence of noise correlations and selectivity on MVPA.

We simulated a set of 30 face-selective voxels and 30 scene-selective voxels. Mean activity in

each of the face-selective voxels took on a larger value in response to a face stimulus (MFF)

than in response to a scene stimulus (MFS), and vice versa for scene-selective voxels (MSF and

MSS). Based on the empirical dataset, these parameters were set at baseline to (in arbitrary

units): MFF = 708, MFS = 705, MSS = 740 and MSF = 735. Pairwise correlations in the activity of

voxels took on different values within the face-selective pool of voxels (cFF), within the scene-

selective pool of voxels (cSS), and across the two pools (cFS, cSF). These parameters were set at

baseline to: cFF = 0.2, cSS = 0.2, and cFS = cSF = 0. The activity of voxels in both pools had the

same effective variance (σ2), set at baseline to σ = 12. For each of 100 simulated participants,

we independently sampled voxel data from these distributions for 72 face and 72 scene time-

points. The resulting voxel timecourses were convolved with a canonical hemodynamic

response function.
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Model parameters were modulated to examine the influence of selectivity and noise cor-

relations on classification accuracy. These parameters are listed below for each of the simula-

tions, grouped by the subpanel of the figure containing the results: (1) Fig 9A: cFS and cSF were

linearly varied between 0 and 0.22; “high selectivity”, MFF, MFS, MSS and MSF were set to the

baseline values; “med selectivity”, MFF = 708, MFS = 706, MSS = 740 and MSF = 736; “low selec-

tivity”, MFF = 707, MFS = 706, MSS = 739 and MSF = 736. All other parameters were set to base-

line values. (2) Fig 9B: cFS and cSF were linearly varied between 0 and 0.22; “low variance”, σ =

9; “med variance”, σ was set to the baseline value; “high variance”, σ = 15. All other parameters

were set to baseline values. (3) Fig 9C: For each model participant and voxel, we randomly

drew from a Gaussian distribution with vanishing mean and standard deviation of 100, and

added this value to the baseline mean response of the voxel; we also randomly varied the popu-

lation covariance matrix according to a Gaussian distribution with vanishing mean and stan-

dard deviation equal to 10% of the baseline value of the corresponding matrix element.

Supporting information

S1 Fig. MVPA without regularization. Classification accuracy decreased across the board

when regularization was turned off, but remained better for voxels with high (green) vs. low

(blue) noise correlations, with a similar interaction by bin size. Columns represent means and

error bars represent SEM across participants. The dashed gray line denotes permuted chance.
���p< 0.001, ��p< 0.01.
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