Quantifying WCET reduction of parallel applications by introducing slack time to limit resource contention
Sebastien Martinez, Damien Hardy, Isabelle Puaut

To cite this version:

HAL Id: hal-01590532
https://hal.sorbonne-universite.fr/hal-01590532
Submitted on 19 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Quantifying WCET reduction of parallel applications by introducing slack time to limit resource contention

Sebastien Martinez  
University of Rennes 1/IRISA  
sebastien.martinez@telecom-bretagne.eu

Damien Hardy  
University of Rennes 1/IRISA  
damien.hardy@irisa.fr

Isabelle Puaut  
University of Rennes 1/IRISA  
isabelle.puaut@irisa.fr

Abstract—In parallel applications, concurrently running tasks cause contention when accessing shared memory. In this paper, we experimentally evaluate how much the Worst-Case Execution Time (WCET) of a parallel application, already mapped and scheduled, can be reduced by the introduction of slack time in the schedule to limit contention. The initial schedule is a time-triggered non-preemptive schedule, that does not try to avoid contention, generated with a heuristic technique. The introduction of slack time is performed using an optimal technique using Integer Linear Programming (ILP), to evaluate how much at best can be gained by the introduction of slack time. Experimental results using synthetic task graphs and a Kalray-like architecture with round-robin bus arbitration show that avoiding contention reduces WCETs, albeit by a small percentage. The highest reductions are observed on applications with the highest memory demand, and when the application is scheduled on the highest number of cores.

I. INTRODUCTION

Calculating the Worst-Case Execution Time (WCET) of parallel applications executing on multi-cores requires to put particular attention to shared hardware resources (shared bus, memory or input/output subsystems). Concurrent accesses to shared resources may force tasks to wait for their availability as other tasks may concurrently be using these resources. As a consequence, the WCET of a task, estimated in isolation without any parallel task competing for shared resources, is no longer an upper bound of the time required for the task to complete. An overhead considering concurrent accesses to shared resources must be added to the WCET of each task to obtain a safe upper bound. The resource contention overhead depends on the task itself, but also on the execution platform and on the concurrent tasks, which make its calculation complex and tightly linked to the way tasks are scheduled.

The execution platform defines the resource arbitration policy when concurrent accesses to shared resources occur and therefore impacts the overhead on each task. For example, for round-robin bus arbitration, a bus access by one core is delayed by at most \( N_c - 1 \) potential pending accesses from tasks running on the other cores, with \( N_c \) the number of cores. Moreover, to calculate an upper bound on the execution time of a task, it is also necessary to identify which other task may be executed concurrently with it. Although this identification of concurrent tasks may be very pessimistic when no knowledge of the application and scheduling is available, some knowledge of the scheduling helps reducing the pessimism, in particular when considering static time-triggered schedules.

In this paper, our objective is to evaluate if the introduction of slack time in a static time-triggered schedule, to avoid interferences between tasks, is beneficial, and to quantify the improvement.

![Fig. 1. Example of slack time introduction](image.png)

Figure 1 depicts a motivating example. The left part shows a schedule generated off-line by a scheduler not trying to minimize interferences between tasks. On the left part, tasks \( \tau_0, \tau_1 \) and \( \tau_2 \) are executed concurrently. To take contention into account, a worst case overhead (shaded area), induced by concurrent accesses to the shared memory, is added to the tasks WCET. On the right part of the figure, slack time is introduced before task \( \tau_0 \), such that it now runs concurrently only with \( \tau_2 \). By avoiding contention with \( \tau_1 \), the overhead on \( \tau_0 \) is reduced and the overhead on \( \tau_1 \) is removed, thereby reducing the global execution time of the application.

In order to evaluate the interest of introducing slack time in time-triggered schedules to mitigate interferences, we developed an Integer Linear Programming (ILP) system that calculates the optimal slack time to be introduced before each task to minimize the application’s WCET, that we compare with the initial WCET (i.e. WCET without contention reduction).

This work focuses on programs modeled as Directed Acyclic Graphs (DAGs) in which nodes represent tasks and edges represent precedence relations between them. Experiments are conducted on synthetic task graphs, with representative WCETs and memory demand parameters. The original schedules are generated using a contention-agnostic heuristic based on list scheduling, augmented to consider contentions using the algorithm described in [1]. Experimental results show an improvement from 0.01% to 20% depending on the application’s memory demand and the number of cores, the highest reductions occurring for the highest memory demands and number of cores.
Our interest here being to quantify the gain resulting from the introduction of slack time, the solution we developed was designed to compute the optimal solution (best location in the initial schedule where to introduce slack time). It appears that time required to calculate the optimal schedule does not scale well with the number of tasks in the initial schedule. Designing more time-efficient solutions is left for future work.

Although designed and evaluated for a single application modeled as a DAG, the proposed technique can be used for more general task models (multiple applications, independent tasks, periodic tasks) provided that a static time-triggered schedule exists.

The rest of the paper is organized as follows. Sections II and III present respectively the architecture and task models. Section IV details the ILP system used for optimally inserting slack time in time-triggered schedules to reduce contention. Section V details the experimental protocol we followed and analyzes the obtained results. Section VI uses a more precise, but more computation expensive, contention model to estimate a bias on the obtained results due to the selected model. Section VII presents related work. Finally, Section VIII concludes the paper.

II. PLATFORM MODEL

This paper considers an execution platform based on the Kalray MPPA-256 [2] processor. The latter is composed of compute clusters, each consisting of 16 processing elements plus one resource manager, sharing the same memory subsystem. Compute clusters are interconnected by a torus Network on Chip (NoC). In a compute cluster of the Bostan version of the MPPA-256, the shared memory is divided into 16 banks, each accessed through its own bus. Accesses to the buses by the processing elements are arbitrated by a round-robin policy, allowing each processing element to make one access to the shared memory before releasing the resource and letting the other processing elements access it. In the Bostan version of the MPPA-256, one access through the bus to the shared memory costs up to 10 cycles and loading a 64 bytes block from shared memory costs up to 17 cycles (9 cycles with 8 bytes fetched on each consecutive cycle [2]). Without contention, an access to the shared memory by a processing element takes up to 17 cycles while contention may cause a single access to take up to 167 cycles (1 access delayed by one access by each other 15 processing elements).

The platform considered in this study is an abstraction of a single MPPA-256 compute cluster. The parallel application is mapped on a variable number of cores (denoted by $N_c \leq 16$). A shared memory subsystem is accessed through one single bus, arbitrated by a round-robin policy, as depicted on Figure 2. All cores have access to a common time base. The maximum cost (in cycles) of an access to the shared memory (without contention) is denoted by $S$ and the cost (in cycles) of an access through the bus is denoted by $C$. In the MPPA-256, $S = 17$ and $C = 10$. This platform was selected not only because of the context of the work (collaborative research project involving Kalray) but also because and most importantly because of the predictability of the MPPA-256 architecture and its timing-compositionality [3].

III. TASK MODEL

This paper adopts the following task model: a program is modeled by a Directed Acyclic Graph (DAG) with tasks as nodes and dependency relations between tasks as edges. For each task, two properties are considered: its Isolated Worst-Case Execution Time (IWCET) and its highest memory demand. The IWCET of a task is its worst-case execution time when executed alone on one core of the platform, without any concurrent task running on the other core. Its highest memory demand is an upper bound on the number of shared memory accesses the task can make. The IWCET of a task includes the time taken by accesses to the shared memory, including the constant $S$ of the execution platform. Tasks do not have individual deadlines. Without loss of generality, we focus in this paper on a single instance of an application modeled by a DAG. The proposed technique can be used for more general task models (multiple applications, periodic tasks, independent tasks) as long as a static time-triggered schedule is available.

IV. MINIMIZING CONTENTION INDUCED OVERHEADS

We consider a non-preemptive time-triggered schedule, assigning $N$ tasks from a single task graph to $N_c$ cores and defining start and finish dates for each of them (e.g., left schedule on Figure 1). We assume this schedule respects dependencies: the start date of a task is always higher than or equal to the finish date of all its dependencies. We call that schedule the initial schedule.

We define an Integer Linear Programming (ILP) system for producing a new contention-aware schedule with minimal WCET by optimally delaying the start dates of some tasks, in order to limit contention in some parts of the schedule. Two types of information are extracted from the initial schedule: (i) the mapping of tasks to cores and (ii) the ordering of tasks on each core. The produced schedule keeps these mappings and orderings and defines new start and finish dates for each task, minimizing contention induced overhead. The produced schedule is optimal: it corresponds to an optimal introduction of slack time, achieving minimal WCET of the whole schedule (i.e., the finish date of the latest finishing task is minimized). The notations used in the ILP system are summarized in Figure 3.
A. Objective function

Our objective is to minimize the WCET of the produced schedule (denoted by $x$), which is the finish date of the latest finishing task in the produced schedule. We define the objective of the ILP system as:

\[
\text{Minimize } x \text{ where } x \geq f_j \quad \forall j \in [0, N - 1]
\]

B. Variables

Figure 3 details the variables, constants and their definitions. The main variables are $s_j$, $f_j$ (start and finish times of task $\tau_j$), and $x$ which altogether describe the produced schedule and its duration. The other variables are used as intermediary for calculating the values of the main variables.

C. Constraints

In our modeling of the problem, the total execution time of a task is equal to its IWCET plus the overhead induced by shared memory contention. This gives the following constraint for each task:

\[
\forall j \in [0, N - 1] \quad f_j = s_j + IWCET_j + o_j
\]  

\[
\forall \{j, k\} \in \mathcal{O}, \quad q_j^k - M p_j^k \leq f_j - s_k - M q_j^k + p_j^k
\]

\[
\forall \{j, k\} \in \mathcal{P}, \quad p_j^k + q_j^k = 1
\]

D. Contention induced overhead

In our modeling of the problem, any two tasks executed in parallel cause shared memory contention. To calculate the overhead induced on a task $\tau_j$, we consider the round-robin arbiter of the shared memory bus in the execution platform. Each access through the bus takes a fixed number of cycles denoted by $C$ as previously depicted in Figure 2. When several cores request an access to the bus at the same time, the arbiter lets them make one access before letting the other cores access.
the bus. Therefore, one access to the shared memory may be delayed for up to \((N_c - 1) \times C\) cycles because of contention.

Let us consider the example on Figure 4. Task \(\tau_j\) is executed in parallel with \(\tau_3\), \(\tau_0\) and \(\tau_1\). In the worst case, all the tasks make their maximum number of accesses to the shared memory. On core 2, \(\tau_3\) accesses the shared memory up to \(B_3\) times and, on core 0, \(\tau_0\) and \(\tau_1\) make up to \(B_0 + B_1\) accesses. As a consequence, \(\tau_j\) mapped on core 1 undergoes up to \(\min(B_j, B_3)\) delays from core 2 and up to \(\min(B_j, B_0 + B_1)\) delays from core 0. The overhead on \(\tau_j\) induced by shared memory contention is therefore

\[
o_j = C \times (\min(B_j, B_3) + \min(B_j, B_0 + B_1)).
\]

We define \(o_j^k \forall k \in \{0, N_c - 1\}\), the overhead induced on \(\tau_j\) by accesses from core \(k\) and we generalize the previous example to write the following constraints.

\[
\forall j \in \{0, N-1\}, \text{assuming } \tau_j \text{ is mapped on core } k_j,
\begin{align*}
\forall k \in \{0, N_c - 1\} \setminus \{k_j\}, & \quad o_j^k = C \times \sum_{t=0}^{N-1} \delta_{j,t} \times B_{t} - y_j^k \times M' \\
\forall k \in \{0, N_c - 1\} \setminus \{k_j\}, & \quad o_j^k \geq C \times \sum_{t=0}^{N-1} \delta_{j,t} \times B_{t} - y_j^k \\
\forall k \in \{0, N_c - 1\} \setminus \{k_j\}, & \quad o_j^k \leq C \times \sum_{t=0}^{N-1} \delta_{j,t} \times B_{t} \\
\forall k \in \{0, N_c - 1\} \setminus \{k_j\}, & \quad o_j^k = 0 \\
o_j = \sum_{k=0}^{N_c-1} o_j^k & \quad (5)
\end{align*}
\]

With \(M'\) a big-M constant, upper bound on the sum of all \(B_i\). The first four lines of the equation linearize the \(\min\) function in the expression of the overhead induced on \(\tau_j\) by concurrent tasks mapped on core \(k\). The first two lines express lower bounds on \(o_j^k\) while the next two lines express upper bounds. The last two lines of the equation express that the total overhead on \(\tau_j\) is the sum of the overhead induced by each core and that core \(k_j\) on which \(\tau_j\) is mapped induces no overhead.

The contention model used in this section implicitly assumes that tasks, when executing in parallel, interfere to the full extent of their memory demand, and is thus pessimistic. A tighter but harder to analyze contention model is presented in Section VI.

V. EXPERIMENTS

This section evaluates the interest of slack time introduction in static time-triggered schedules and estimates the best WCET gains that can be expected from that method. It first details the experimental protocol, then presents and analyzes the obtained results.

A. Experimental protocol

The experimental protocol is depicted in Figure 5. It begins by the generation of 100 task graphs using the TGFF task generator [4] (step (a)) and the random generation of the WCET and highest memory demand of each tasks (step (b)). On step (c), the task graph is scheduled using a contention-agnostic list scheduling algorithm. The schedule is then updated by the algorithm designed by Rihani et al. [1] to take contention into account (step (d)). On step (e), the updated schedule and the task graph are used as inputs of the ILP system described in Section IV for producing a schedule of minimal global WCET. On step (f), the minimal WCET obtained at the end of step (e) is then compared with the non-optimized WCET obtained at the end of step (d).

On step (a) and (b), 100 task graphs of 30 to 70 tasks with WCETs varying between 10,000 and 300,000 cycles are generated. The number of parallel branches varies between 1 and 31 with an arithmetic mean of 16. These parameters correspond to the number of tasks and the WCETs observed in parallel programs (here we used the WCET ranges observed on the StreamIt benchmarks [5]). The highest memory demand \(B_{\tau}\) of each task is generated randomly, based on each task’s WCET. We define \(r_{\tau}\) the memory ratio of task \(\tau\) as the percentage of its WCET dedicated to accessing the shared memory, without contention and assuming \(\tau\) makes its maximum number of accesses \((B_{\tau})\).

\[
r_{\tau} = \frac{S \times B_{\tau}}{IWCET_{\tau}} \quad \text{with } S \text{ the worst case cost (in cycles)} \) (6)
\]

of an access to shared memory

Each of the 100 task graphs is instantiated 10 times with different bounds on \(r_{\tau}\) in percent: \([0.1 - 1]\), \([1 - 2]\), \([2 - 4]\), \([4 - 6]\), \([6 - 8]\), \([8 - 10]\), \([10 - 15]\), \([15 - 20]\), \([20 - 25]\), \([25 - 30]\). The intervals are narrow for small values of \(r_{\tau}\) and wider for larger values of \(r_{\tau}\). For each task \(\tau\) and each interval, a value of \(r_{\tau}\) is randomly generated within the bounds an \(B_{\tau}\) is calculated using equation 6 with \(S = 17\) (which is the value of \(S\) in the MPPA-256).

A separate control group is created, to obtain experimental results for tasks with more heterogeneous memory ratios. The control group contains the 100 aforementioned task graphs, with a value of \(r_{\tau}\) randomly generated in interval \([0.1 - 30]\).

The bounds on \(r_{\tau}\) were determined using the static WCET analysis tool Heptane [6] on benchmarks from the Mälardalen WCET benchmark suite\(^1\) with the cache sizes of the MPPA-256 (32KB for the instruction cache, 8KB for the data cache), and with smaller cache sizes to simulate memory intensive programs.

On step (c), a Highest Level First (HLF) list scheduling algorithm is used to schedule each instance of the task graphs on 2, 4, 8 and 16 cores. Given a task graph, the algorithm defines the weight of each task as the sum of its WCET and the weight of the heaviest \((i.e. \text{of highest weight})\) task

\(^1\)http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
that depends on it. Tasks are sorted by decreasing weight
then scheduled one by one, without backtracking, on the
core that allows the earliest start date. The HLF algorithm is
contention-agnostic and guarantees that no task starts before
all its predecessors are finished.

On step (d), we use the algorithm by Rihani et al. [1] to
produce a contention-aware schedule. The algorithm iteratively
updates the schedule by calculating the overhead on each task
induced by contention, then updating the start and finish date
of each task. The algorithm safely estimates contention over-
heads, but when doing so does not try to reduce contentions,
leaving room for further optimizations by our technique.

On step (e), we use the Cplex ILP solver on the system
described in Section IV with \( C = 10 \), which is the number
of cycles it takes to access the shared memory bus in the
MPPA-256. The ILP system is used on each of the 4400
generated schedules with a time limit of four hours. The results
presented in the next subsection were obtained after six days of
computation on a computing grid, and represent 1033 different
configurations.

On step (f), for each scheduled instance of the task
tables, we compare the global WCET obtained after step (d)
\( WCET_d \) and the optimal global WCET obtained after
step (e) \( WCET_e \). We define the gain \( g_p \) as follows:

\[
g_p = \frac{WCET_e - WCET_d}{WCET_d} \tag{7}
\]

Please note that because the ILP system uses the same
model as Rihani et al. for shared memory contention, \( g_p \)
is never negative. In the worst case, \( WCET_e \) is already the
minimal \( WCET \) and \( g_p = 0 \).

B. Results

Figure 6 presents statistics, in percentage, on the gains
measured for different bounds on \( r_\tau \) and the different numbers
of cores (arithmetic mean, standard deviation \( \sigma \), minimum and
maximum gain). In general, for a given set of parameters, the
mean gain is low compared to the maximum gain observed.
This can be explained by a consequent number of schedules
that do not benefit from slack time introduction. We also
observe that when \( r_\tau \) and \( N_c \) increase, the mean gain and the
standard deviation have higher values. While some schedules
still benefit poorly from slack time introduction, more sched-
ules reach higher gains. For example, when \( 2\% \leq r_\tau \leq 4\% \)
and \( N_c = 16 \), the mean gain is 0.91% and \( \sigma = 1.01\% \) for
a maximal gain of 4.43% whereas, when \( 20\% \leq r_\tau \leq 35\% \)
and \( N_c = 16 \), the mean gain is 5.22% and \( \sigma = 4.21\% \) for a
maximal gain of 11.3%.

A lower mean gain with a lower value of \( \sigma \) indicate that the
majority of observed gains are close to the mean gain which is
low. The majority of schedules benefit poorly from slack time
introduction and reach lower gains. This is observed for lower
values of \( r_\tau \) and \( N_c \). A higher mean gain with a higher value
of \( \sigma \) indicate that a wider range of gains was observed. As
\( r_\tau \) and \( N_c \) increase, more schedules benefit from slack time
introduction, and while some of them reach higher gains, some
of them also reach smaller gains.

Figures 7 (respectively 8) presents the evolution of gains
when increasing the number of cores (respectively the memory
ratio). They also show that the mean gain increase with \( N_c \)
(respectively \( r_\tau \)). However, their values stay low compared
to Figure 6. This can be explained by the impact of \( r_\tau \)
(respectively \( N_c \)). For example, on figure 8, the statistics for
15% \( \leq r_\tau \leq 20\% \) consider schedules on any number of cores.
A large number of schedules on 2 or 4 cores benefit poorly
from slack time introduction while some schedules on 8 or 16
cores reach higher gains. As a result, the mean gain and the
standard deviation stay low.

Figure 9 presents the statistics for the control group, cor-
responding to all task graphs, with heterogeneous values of
\( r_\tau \). As observed on Figures 6 and 7, the mean gain and \( \sigma \)
increase with \( N_c \). Although their values do not reach values
obtained on Figure 6, with homogeneous values of \( r_\tau \), they
show a positive impact of slack time introduction in general
and confirm that the gains increase when \( N_c \) increases.

Results show that task graphs with greater memory ratios,
scheduled on more cores have a higher probability of benefit-
ning from slack time introduction and also can expect a higher
gain. The more cores used by the schedule, the more tasks run
concurrently and cause contention. The higher the memory
ratio, the higher the impact of contention on the WCET
of a task. Indeed, in our execution platform, the overhead
induced by contentions on a given task can be approximated
as an additive function of the highest memory demand of the
time, both tasks make up to \( \left\lceil \frac{f_{j,k} - s_{j,k}}{S} \right\rceil \) accesses. We define \( d_{j,k} = \left\lceil \frac{f_{j,k} - s_{j,k}}{S} \right\rceil \) the maximum number of accesses on which \( \tau_j \) and \( \tau_k \) may interfere. All the new variables used in this section are summarized in Figure 10.

A. ILP model update

Considering the more precise contention model, we define a new ILP model for calculating optimal slack time introduction. It has the same objective function as the previous ILP model and uses constraints from equations 1 and 2. Using the \( \mathcal{P} \) set defined in subsection IV-C, the following constraints define the variables we just presented. Please note that \( d_{j,k} \) may have a negative value when tasks \( \tau_j \) and \( \tau_k \) are not executed concurrently.

\[
\begin{align*}
\forall \{j,k\} & \in \mathcal{P}, \quad s_{j,k} = \max(s_j, s_k) \\
\forall \{j,k\} & \in \mathcal{P}, \quad f_{j,k} = \min(f_j - C \cdot to_j^k, f_k - C \cdot to_k^j) \\
\forall \{j,k\} & \in \mathcal{P}, \quad f_{j,k} - s_{j,k} + 0.999 \cdot C \geq C \cdot d_{j,k}^o \\
\forall \{j,k\} & \in \mathcal{P}, \quad d_{j,k} = \min(B_j, B_k, \max(0, d_{j,k}^o)) \\
\forall \{j,k\} & \notin \mathcal{P}, \quad d_{j,k} = 0
\end{align*}
\]

The linearization of functions \( \min \) and \( \max \) is not detailed here to keep constraints simple. The first two lines of the equation define the start date and the end date of the common execution interval of \( \tau_j \) and \( \tau_k \). The definition of \( f_{j,k} \) excludes the overheads the tasks cause each other because the interval \( f_{j,k} - s_{j,k} \) is used in the next two lines of the equation to calculate \( d_{j,k}^o \). By definition, \( d_{j,k}^o \) is greater than \( \frac{f_{j,k} - s_{j,k}}{C} \) and to ensure that \( d_{j,k}^o \) is rounded up, we provide the upper bound \( \frac{f_{j,k} - s_{j,k}}{C} + 0.999 \). If \( \tau_j \) and \( \tau_k \) are not executed concurrently, \( \frac{f_{j,k} - s_{j,k}}{C} \) is negative and so is \( d_{j,k}^o \). As a consequence, a lower
<table>
<thead>
<tr>
<th>$a \leq \tau_r \leq b$</th>
<th>Gain statistics (in percentage)</th>
<th>$a \leq \tau_r \leq b$</th>
<th>Gain statistics (in percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1% - 1%</td>
<td>mean</td>
<td>$\sigma$</td>
<td>min</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>0.15</td>
<td>0</td>
</tr>
<tr>
<td>1% - 2%</td>
<td>0.14</td>
<td>0.24</td>
<td>0</td>
</tr>
<tr>
<td>2% - 4%</td>
<td>0.35</td>
<td>0.67</td>
<td>0</td>
</tr>
<tr>
<td>4% - 6%</td>
<td>0.38</td>
<td>0.69</td>
<td>0</td>
</tr>
<tr>
<td>6% - 8%</td>
<td>0.42</td>
<td>0.75</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 8. Gain statistics per memory ratio (all values of $N_c$ considered)

![Gain statistics table]

Fig. 9. Gain statistics of the control group (0.1% ≤ $\tau_r$ ≤ 30%)

bound to 0 to the maximal number of accesses on which $\tau_j$ and $\tau_k$ mutually interfere is necessary. We define $d_{j,k} = \min(B_j, B_k, \max(d_{o,j,k}))$ that is upper bounded by $0$ and upper-bounded by the maximum memory demand of each task. Finally, if $\tau_j$ and $\tau_k$ may never be executed concurrently ($\{j, k\} \notin \mathcal{P}$), $d_{j,k} = 0$.

Using the calculated $d_{j,k} \forall\{j, k\}$ a more precise estimation of the overhead of the tasks can be achieved. The constraints on $a_j$ can be expressed by replacing $B_i$ by $d_{j,t}$ in equation 5.

$$\forall j \in [0, N - 1], \text{assuming } \tau_j \text{ is mapped on core } k_j$$

$$\forall k \in [0, N_c - 1] \setminus \{k_j\}, \quad o_j^k \geq C * \sum_{t=0}^{N-1} d_{j,t} - y_{j,t}^k * \mathcal{M}$$

$$\forall k \in [0, N_c - 1] \setminus \{k_j\}, \quad o_j^k \geq C * B_j * y_{j,t}^k$$

$$\forall k \in [0, N_c - 1] \setminus \{k_j\}, \quad o_j^k \leq C * \sum_{t=0}^{N-1} d_{j,t} * B_t$$

$$o_j^{k_j} = 0$$

$$o_j = \sum_{k=0}^{N_c-1} o_j^k$$

(9)

With $\mathcal{M}'$ a big-$M$ constant, upper bound on the sum of all $B_i$.

The number $t_0^k$ of accesses of $\tau_j$ delayed by $\tau_k$ is bounded by the maximal number of mutually interfering accesses $d_{j,k}$. Summing $t_0^k$ for each task interfering with $\tau_j$ and multiplying the result by $C$ gives the total overhead of $\tau_j$ ($o_j$). Please note that $t_0^j$ and $t_0^k$ are not necessarily equal. Indeed, on Figure 11, $\tau_0$ and $\tau_k$ interfere with $\tau_j$ and $o_j = \min(d_{j,0} + d_{j,k}, B_j)$ while $o_k = \min(d_{o,j,k}, B_k) = d_{j,k}$. If $o_j = d_{j,0} + d_{j,k}$ then $t_0^j = d_{j,0}$ and $t_0^k = d_{j,k}$. If $o_j = B_j$ and $B_j < d_{j,0} + d_{j,k}$ then $\tau_0$ interferes with $t_0^j = \min(d_{j,0}, B_j)$ accesses of $\tau_j$ and $\tau_k$ interferes with $t_0^k = B_j - t_0^j$ accesses which is inferior to $d_{j,k} = t_0^j$.

We define $\mathcal{J}(\tau) = \{j : \tau_j \text{ is mapped on the same core as } \tau \text{ and is ordered after it}\}$, and define the following constraints on $t_0^j$.

$$o_j = C \sum_{k:j,k \in \mathcal{J}(\tau)} t_o^k$$

$$t_o^j \leq d_{j,k} \leq t_o^j \leq d_{j,k}$$

$$t_o^j \geq 0, \quad t_o^j \geq 0$$

$$\forall\{j, k\} \in \mathcal{P},$$

$$t_o^j \geq d_{j,k} - y_{j,t}^k * \mathcal{M}''$$

$$\forall t \in \mathcal{J}(\tau_k),$$

$$t_o^j \leq (1 - y_{j,t}^k) * \mathcal{M}''$$

$$t_o^j \geq d_{j,k} - y_{j,t}^k * \mathcal{M}''$$

$$\forall t \in \mathcal{J}(\tau_j),$$

$$t_o^j \leq (1 - y_{j,t}^k) * \mathcal{M}''$$

(10)

With $\mathcal{M}''$ a big-$M$ constant, upper bound on all $B_j$.

The last four lines of Equation 10 generalize the situation previously discussed. For a given task $\tau_j$, assigned to a different core than $\tau_j$, each task will interfere with the maximum number of accesses of $\tau_j$. The first ordered interfering task on this core will interfere with $\min\{d_{j,k}, 0\}, B_j$ accesses. If $t_o^k = d_{j,k}$ then the second ordered task will interfere with $t_o^j = \min\{d_{j,k}, B_j - t_o^j\}$ and so on. If a task interferes with a number of accesses $t_o^j$ inferior to $d_{j,k}$ then all the following tasks will not interfere with $\tau_j$:

$$\forall k \in \mathcal{J}(\tau_k), t_o^j = 0.$$

B. Estimating the bias

Using the same experimental protocol as in Section V, we measure gain statistics using the more precise contention model. We use an adaptation of Rihani et al. algorithm [1] to this model to calculate the global WCET without optimization and the updated ILP model to calculate the global WCET with optimization.

Because the updated ILP is more complex, calculating optimal slack time introduction on the same task graphs as in Section V takes too long. We therefore use smaller task graphs of 10 to 20 tasks with WCET varying between 1000 and 3000. The number of parallel branches varies between 1 and 10 with an arithmetic mean of 5. Instances with varying $r_r$ were successfully optimized within four hours of calculation (corresponding to a total of eight days of computation).

The obtained gain statistics are compared to gain statistics obtained using the pessimistic contention model in Figure 12. The last column on the figure presents an overestimation factor defined as $m = \frac{\text{precise mean gain}}{\text{precise mean gain}}$.

The gain statistics for both contention models are similar. The mean gain obtained with the pessimistic model is generally superior to the mean gain obtained with the precise model.
The gains observed in Figure 6 are still significant after overestimation by over 30% compared to the precise contention, especially in the case of high memory demand. Although it can underestimate by over 30% compared to the pessimistic model. In some cases, this allows the precise model to find a lower global WCET than the pessimistic model.

The precise model also allows the introduction of smaller slack time for the pessimistic model without slack time introduction. When the memory ratio is high, the pessimistic model overestimates contention induced overheads compared to the precise model. As a consequence, the overestimation factor remains low. When the memory ratio is low, the overestimation factor is under 10%. As the memory ratio increases, m tends to increase while the number of cores does not seem to affect it. Higher bounds on \( r_c \) can bring the overestimation factor up to 30% and more.

When analyzing the schedules produced by both contention models we observe that the global WCET calculated with both contention models are either equal or close (they generally differ by less than 100 cycles). The difference between gains observed can be explained by the overestimation of contention of the pessimistic model while calculating the global WCET without slack time introduction. When the memory ratio is low, the calculated overheads induced by contention are close to the overheads obtained with the precise model. As a consequence, the overestimation factor remains low. When the memory ratio is high, the pessimistic model overestimates contention induced overheads compared to the precise model. It calculates a higher value for the global WCET without slack time introduction, while finding an optimal global WCET with slack time introduction, similar to the precise model. As a consequence, \( m \) has higher values.

The purpose of slack time introduction is to avoid contention by scheduling some tasks so that they do not interfere anymore. Both pessimistic and precise models achieve this goal. The precise model also allows the introduction of smaller slack time in order to reduce inferences: the tasks still interfere but on fewer accesses. In some cases, this allows the precise model to find a lower global WCET than the pessimistic model.

The pessimistic contention model tends to overestimate the overhead on interfering tasks, which has consequences especially in the case of high memory demand. Although it can overestimate by over 30% compared to the precise contention model, the gains observed in Figure 6 are still significant after taking the overestimation factor into account. For example, on Figure 6, in the case \( 25\% \leq r_c \leq 30\% \), the mean gain is 1.75% or 1.29% when considering the overestimation factor of 35.8% observed for this situation. Comparison of the results given by both contention models show a bias on the results presented in Section V which presents overestimated gains. Such an observation does not invalidate the analysis using the pessimistic model and does not question the interest of slack time introduction. Moreover, the pessimistic model gives a good estimation of the optimal global WCET that can be achieved through slack time introduction.

### VII. Related Work

This section presents work on scheduling techniques for multi-core platforms handling shared memory contentions.

Real-time scheduling techniques for multi-cores are surveyed in [7]. According to their taxonomy the class of schedules manipulated in this work are partitioned, time-triggered and non preemptive, and the schedules are generated off-line.

Multi-core platforms feature hardware resources (caches, buses, main memory) that may be concurrently accessed by tasks executing on the different cores. A contention analysis has to be defined to determine the delays to gain access to the shared resources (see [8] for a survey).

There are many approaches proposed recently to analyze contention delays to access shared resources. For architectures with caches, Dasari et al. [9] assume task mapping known and estimate contention delays for a variety of bus arbiters. Rihani et al. [1] assume both task mapping on cores and execution ordering known, and adds contention delays to tasks that execute in parallel in the schedule. Kim et Yun [10], [11] tightly bound interference delays on DRAM banks. Our interest in this work is not to have the tighter upper bounds on interferences due to shared resources, but rather to show if modifications of an existing schedule could be used to reduce the interference delay. In particular, the request-driven approach presented in [11] would refine the access time part of our delay to access the DRAM, considered constant in our approach (constant \( S \)).

Some scheduling techniques consider concurrent access to shared resources to take their scheduling decisions. Xiakang et al. [12] proposed a method for managing contention online based on task profiling. During an offline phase, each task is executed in isolation and in concurrence with other

### Variables

| \( s_{j,k} \) | Start date of the common execution interval of \( \tau_j \) and \( \tau_k \) |
| \( f_{j,k} \) | End date of the common execution interval of \( \tau_j \) and \( \tau_k \) (without considering mutual caused overhead) |
| \( t_{o_{j}} \) | Number of accesses of \( \tau_j \) delayed by \( \tau_k \) |
| \( d_{j,k} \) | Maximum number of mutually interfering accesses of \( \tau_j \) and \( \tau_k \) |
| \( d_{d_{j,k}} \) | Maximum number of mutually interfering accesses of \( \tau_j \) and \( \tau_k \) |

\[ d_{j,k} = \min(B_j,B_k,\max(d_{j,k}^p,0)) \]

### Boolean variables

\[ y_{d_{j}} \] Indicates that \( t_{o_{j}} < d_{j,k} \)

---

**Fig. 10. Notations introduced in the updated ILP model**

**Fig. 11. A more precise contention model**

but stays close to that value, as shown in the last lines of the table figure 12 corresponding to the control group. When the memory ratio is low, the overestimation factor is under 10%. As the memory ratio increases, \( m \) tends to increase while the number of cores does not seem to affect it. Higher bounds on \( r_c \) can bring the overestimation factor up to 30% and more.
<table>
<thead>
<tr>
<th>Parameters</th>
<th>$N_r$</th>
<th>Gain statistics (in %)</th>
<th>$m$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \leq r \leq b$</td>
<td>$N_r$</td>
<td>Precise contention model</td>
<td>Pessimistic contention model</td>
</tr>
</tbody>
</table>
| $0.1\% - 1\%$ | 2 | 0.01 0.02 0.11 0.01 0.02 0.11 | 0 | \%
| $0.1\% - 1\%$ | 4 | 0.02 0.04 0.19 0.02 0.04 0.18 | 0.10 | \%
| $0.1\% - 1\%$ | 8 | 0.02 0.05 0.23 0.02 0.05 0.23 | -0.2 | \%
| $0.1\% - 1\%$ | 16 | 0.03 0.08 0.61 0.03 0.08 0.61 | 0 | \%
| $1\% - 2\%$ | 2 | 0.03 0.03 0.20 0.03 0.04 0.25 | 4.07 | \%
| $1\% - 2\%$ | 4 | 0.09 0.11 0.46 0.10 0.12 0.47 | 8.31 | \%
| $1\% - 2\%$ | 8 | 0.19 0.17 0.86 0.20 0.18 0.86 | 6.36 | \%
| $1\% - 2\%$ | 16 | 0.31 0.27 1.03 0.33 0.28 1.03 | 5.10 | \%
| $2\% - 4\%$ | 2 | 0.04 0.06 0.35 0.05 0.06 0.35 | 5.16 | \%
| $2\% - 4\%$ | 4 | 0.17 0.19 1.02 0.17 0.20 1.02 | 4.90 | \%
| $2\% - 4\%$ | 8 | 0.41 0.32 1.31 0.42 0.32 1.31 | 3.57 | \%
| $2\% - 4\%$ | 16 | 0.57 0.46 1.82 0.58 0.47 2.10 | 2.93 | \%
| $4\% - 6\%$ | 2 | 0.08 0.09 0.43 0.08 0.09 0.43 | 2.25 | \%
| $4\% - 6\%$ | 4 | 0.25 0.26 1.11 0.28 0.27 1.16 | 8.28 | \%
| $4\% - 6\%$ | 8 | 0.73 0.56 3.08 0.79 0.63 3.57 | 8.64 | \%
| $4\% - 6\%$ | 16 | 0.90 0.77 3.45 0.98 0.80 3.45 | 8.37 | \%
| $6\% - 8\%$ | 2 | 0.11 0.12 0.52 0.12 0.13 0.52 | 8.51 | \%
| $6\% - 8\%$ | 4 | 0.41 0.48 2.12 0.47 0.52 2.12 | 15.1 | \%
| $6\% - 8\%$ | 8 | 1.04 0.89 3.15 1.12 0.90 3.15 | 8.15 | \%
| $6\% - 8\%$ | 16 | 1.27 1.21 4.70 1.35 1.20 4.70 | 6.10 | \%
| $8\% - 10\%$ | 2 | 0.12 0.13 0.63 0.13 0.16 0.90 | 10.2 | \%
| $8\% - 10\%$ | 4 | 0.50 0.58 2.23 0.60 0.62 2.34 | 18.5 | \%
| $8\% - 10\%$ | 8 | 1.40 1.20 5.20 1.50 1.25 5.75 | 7.25 | \%
| $8\% - 10\%$ | 16 | 1.64 1.53 6.14 1.76 1.59 6.36 | 7.28 | \%
| $10\% - 15\%$ | 2 | 0.23 0.26 1.48 0.25 0.27 1.48 | 7.53 | \%
| $10\% - 15\%$ | 4 | 0.76 0.77 3.74 0.79 0.80 3.74 | 4.53 | \%
| $10\% - 15\%$ | 8 | 1.70 1.31 4.14 1.87 1.39 5.13 | 10.1 | \%
| $10\% - 15\%$ | 16 | 1.94 1.69 7.33 2.18 1.85 7.33 | 12.5 | \%
| $15\% - 20\%$ | 2 | 0.22 0.24 1.13 0.29 0.33 1.44 | 30.2 | \%
| $15\% - 20\%$ | 4 | 1.02 1.08 3.98 1.09 1.16 3.98 | 6.87 | \%
| $15\% - 20\%$ | 8 | 2.42 2.45 10.6 2.64 2.71 12.1 | 9.13 | \%
| $15\% - 20\%$ | 16 | 2.53 2.58 10.6 2.84 2.92 12.1 | 12.1 | \%
| $20\% - 25\%$ | 2 | 0.29 0.33 1.43 0.35 0.38 1.43 | 20.6 | \%
| $20\% - 25\%$ | 4 | 0.89 1.03 3.35 0.97 1.17 4.72 | 9.81 | \%
| $20\% - 25\%$ | 8 | 1.97 1.80 5.84 2.41 2.08 6.68 | 21.9 | \%
| $20\% - 25\%$ | 16 | 2.00 1.98 5.85 2.54 2.35 8.06 | 27.0 | \%
| $25\% - 30\%$ | 2 | 0.29 0.30 1.54 0.37 0.44 1.98 | 27.9 | \%
| $25\% - 30\%$ | 4 | 0.83 0.97 3.47 1.45 1.68 6.77 | 75.0 | \%
| $25\% - 30\%$ | 8 | 2.90 3.16 12.4 3.95 3.50 12.4 | 35.8 | \%
| $25\% - 30\%$ | 16 | 2.76 3.23 12.4 3.66 3.43 12.4 | 32.7 | \%

**Control group**

| $0.1\% - 30\%$ | 2 | 0.49 0.55 3.39 0.52 0.59 3.39 | 0.06 | \%
| $0.1\% - 30\%$ | 4 | 1.02 1.02 3.88 1.15 1.07 3.92 | 0.12 | \%
| $0.1\% - 30\%$ | 8 | 1.99 1.84 7.21 2.09 1.91 7.54 | 0.04 | \%
| $0.1\% - 30\%$ | 16 | 2.42 2.28 7.72 2.52 2.40 7.72 | 0.04 | \%

Fig. 12. Comparison of gain statistics with the precise and the pessimistic memory model.
tasks, in order to measure its pressure on shared resources. During the online phase, the scheduler uses these measures to enforce a fixed value for the maximum pressure accepted. Controlling which tasks may be executed concurrently based on their shared resource demand is also the key idea of this paper although it follows a different approach. The proposed technique is a best-effort strategy, no real-time guarantee is provided to the executed tasks.

Rihani et al. [1] designed an algorithm for updating a contention-free static time-triggered schedule by calculating the overheads induced on the tasks by shared memory contention. The schedule is iteratively modified to identify tasks that are executed concurrently and calculate their WCET with contention. In contrast to their work, we do not transform a contention-free schedule to account for interference, but examine if modifications of an initial contention-aware schedule may reduce the cost of interference. We used their algorithm to calculate the WCET of non-optimized schedules.

Becker et al. [13] proposed an execution framework for avoiding contention by taking advantage of memory privatization features available in processors such as the Kalray MPPA-256. Tasks are divided into three sub-tasks: read which copies input data from a public memory bank to a private memory bank, execute which only accesses the private memory bank and write which copies output data to the shared memory bank. Using a specific scheduling policy it is possible to completely avoid contention. Giannopoulou et al. [14] proposed methods for mapping and scheduling task sets of mixed criticality on processors such as the Kalray MPPA-256 by limiting contention on two shared resources: shared memory and inter cluster communications. Alhammad et al. [15] proposed a heuristic for mapping and scheduling fork/join task graphs on many-core processors, minimizing the total execution time by avoiding contention. Compared to the aforementioned works, our intent is not to completely avoid contention in the produced scheduled, but rather to see if limiting contention on existing schedules is beneficial regarding schedule length.

Rouxel et al. propose in [16] contention-aware task mapping and scheduling techniques for multi-core platforms. Kim et al. propose in [17] a scheduling technique that allocates tasks to cores and partitions memory among tasks to reduce the memory interference delays. Compared to these works, that accounts for contention during schedule generation, we proceed in two steps. Our intent is to identify by how much an existing schedule can be shortened by avoiding some of the contention that exists in an existing schedule. Quantifying the quality of our proposed two step method as compared to global approaches is left for future work.

VIII. CONCLUSION AND FUTURE WORK

Calculating the WCET of a parallel program requires estimating the impact of shared resources contention on the WCET of its tasks. Using an empiric approach, this paper showed that introducing slack time on the schedule to limit contention can reduce the program WCET by a percentage depending on the memory demand of the tasks and on the number of cores used by the schedule. In the case of memory intensive tasks spread on 16 cores, we could improve the program WCET by up to 20%. While the adopted contention model is pessimistic, its overestimation was measured and its results still are a fair estimation of the gains that can be expected from slack time introduction, providing references for the development of future heuristics. However, finding an optimal schedule guaranteeing minimal WCET is complex, and in the case of complex task graphs with many independent branches, the ILP systems presented in this paper can take a full day of computation to calculate an optimal solution. For that reason, we intend on designing a heuristic approach for inserting slack time in a schedule, using the precise memory model.

REFERENCES


