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The time evolution of a viscous helical vortex is investigated by direct numerical simulations of the Navier–
Stokes equations where helical symmetry is enforced. Using conservation laws in the framework of helical
symmetry, we elaborate an initial condition consisting in a finite core vortex, the time evolution of which leads to
a generic quasi-equilibrium state independent of the initial core size. Numerical results at different helical pitch
values provide an accurate characterization in time for such helical states, for which specific techniques have
been introduced: helix radius, angular velocity, streamfunction/velocity/vorticity relationships, core properties
(size, self-similarity and ellipticity). Viscosity is shown to be at the origin of a small helical velocity component
which we relate to the helical vorticity component. Finally, changes in time of the flow topology are studied
using the helical streamfunction and three-dimensional Lagrangian orbits.
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I. INTRODUCTION

Flows behind rotating bladed devices are often dominated by interlaced helical vortices developing from
blade tips. Such vortex systems are commonly found in the wake of marine propellers, wind turbines or
helicopters. Important issues such as noise reduction, helicopter descent flight safety or wind farm optimiza-
tion have generated a large amount of studies aiming at predicting vortex emission, jet or wake spreading,
instability growth and turbulent mixing in this context. Experiments, as well as some numerical works,
investigate the production of the wake by the rotor blades, the spatial three-dimensional evolution and in-
stability growth [1–10]. By contrast, most theoretical studies adopt a local approach where the underlying
vortex system is assumed to be purely helical: this amounts to consider the flow in a cut plane orthogonal
to the helix axis and assume invariance by translating and rotating the solution along that axis to yield the
complete three-dimensional flow. In this framework, equilibrium states have been investigated [11–15], as
well as their instabilities [16–22]. Among the studies devoted to equilibria, some concern thin-core heli-
cal vortices where the main task is to remove the singular behaviour of curved filaments to compute the
self-induced velocities and deduce, for instance, the angular velocity of the full vortex system, or the topol-
ogy of streamlines [23]. Vortices with arbitrary core sizes have been numerically investigated by Lucas &
Dritschel [24]: using the helically symmetric Euler equations for a given helical pitch, they determine patch
vortex solutions steady in some rotating frame, imposing geometrical constraints on the centroid location
and the vortex core size. The goal of the present paper is to extend the study of helically symmetric vortices
of arbitrary core size to the viscous context.
In a recent study [25], the internal structure of helical vortex configurations has been determined using
asymptotic analysis. A viscous axisymmetric vortex core structure of the Batchelor-vortex type was assumed
at leading order; the dipolar (core shift) and quadrupolar corrections (elliptical deformation) due to local
curvature and nonlocal external strain were then quantified. Such theory successfully described helical
vortex states when compared to numerical results obtained using a Navier–Stokes solver with built-in helical
symmetry [26]. In the present work, we use this built-in helical symmetry solver to compute the time
evolution of a helical vortex with different helical pitches. We thus bring additional information, namely the
velocity/vorticity profiles selected by viscous effects and their time evolution. Some of these aspects were
already considered for systems of two [27] or three [28] helical vortices. We herein focus on the case of one
single helical vortex in quasi-equilibrium state, and investigate the relationships between streamfunction,
helical velocity and vorticity, as well as the vortex core properties (size, self-similarity and ellipticity) and
flow topology.
The paper is structured as follows: in section II, the concept of helical symmetric flow is recalled together
with the equations governing such flows. The numerical implementation as well as the vortex characteriza-
tion method are also briefly provided. In section III, conservation laws for helical vortices in the inviscid
and viscous frameworks are given. The rest of the paper is more specific to the study of a single helical vor-
tex: section IV focuses on initial conditions and describes the relaxation towards a generic quasi-equilibrium
state. The characterization of the quasi-equilibrium itself is accounted for in section V. The original method-
ology used for vortex characterization is presented in detail in the appendices.

II. HELICAL SYMMETRIC FLOWS

The flows presented here all display a helical symmetry of helical pitch 2πL (L is hereafter called the reduced
pitch): they are invariant through any combined translation of length ∆ along the z-axis and rotation of angle
∆/L about the same axis. In standard cylindrical coordinates (r,θ ,z), scalar (resp. vector) fields are helically
symmetric if these scalar fields (resp. the cylindrical components of these vectors) depend on space only
through r and ϕ ≡ θ − z/L. For instance, the helically symmetric velocity field uuu(r,θ ,z, t) can be expressed
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FIG. 1: Local polar (blue) and helical (red) basis.

as follows:

uuu = ur(r,ϕ, t)eeer(θ)+uθ (r,ϕ, t)eeeθ (θ)+uz(r,ϕ, t)eeez . (1)

It is also convenient to introduce a local orthonormal Serret–Frénet basis related to helical lines i.e. lines of
constant ϕ (figure 1). This basis (eeeB,eeer,eeeϕ) is defined by

eeeB(r,θ) = α(r)
[
eeez +

r
L

eeeθ (θ)
]
, eeeϕ(r,θ) = α(r)

[
eeeθ (θ)−

r
L

eeez

]
, (2)

with a normalisation factor α(r) =
(
1+ r2/L2

)−1/2 ≤ 1. In this basis, the velocity field is decomposed as:

uuu = ur(r,ϕ, t)eeer(θ)+uϕ(r,ϕ, t)eeeϕ(r,θ)+uB(r,ϕ, t)eeeB(r,θ) . (3)

Such decomposition is also applied on the vorticity field ωωω .

A. Governing equations for helically symmetric flows

For helically symmetric flows, the incompressible Navier–Stokes equations can be rewritten in a way that
directly takes into account this symmetry. The divergenceless character of both velocity and vorticity is
automatically taken care of by introducing the helical component of velocity uB(r,ϕ, t), of vorticity ωB(r,ϕ, t)
and a streamfunction Ψ(r,ϕ, t) such that [24]

uuu = uB(r,ϕ, t) eeeB +α(r)∇∇∇Ψ(r,ϕ, t)×eeeB , (4)

ωωω = ωB(r,ϕ, t) eeeB +α(r)∇∇∇
(

uB(r,ϕ, t)
α(r)

)
×eeeB . (5)
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Fields uB, ωB and Ψ are related via a generalisation of the two-dimensional Ψ–ω relationship in the helical
context:

LΨ =−ωB +
2α2

L
uB , (6)

where L stands for the modified Laplace operator

L(·) = 1
rα

∂

∂ r

(
rα

2 ∂ (·)
∂ r

)
+

1
r2α

∂ 2(·)
∂ϕ2 . (7)

In addition, the motion is completely described by two coupled dynamical equations for uB and ωB:{
∂tuB +NLu = V Tu

∂tωB +NLω = V Tω ,
(8)

where ∂t stands for the time derivative. In the above equations, the nonlinear and viscous terms are expressed
as

NLu ≡ (ωωω×uuu) ·eeeB , NLω ≡ [∇∇∇× (ωωω×uuu)] ·eeeB , V Tu ≡ ν

[
L(

uB

α
)− 2α2

L
ωB

]
, (9)

V Tω ≡−ν [∇∇∇× (∇∇∇×ωωω)] ·eeeB = ν

[
L(

ωB

α
)−
(

2α2

L

)2

ωB +
2α2

L
L(

uB

α
)

]
, (10)

where ν stands for the kinematic viscosity of the fluid. Contrary to what occurs in the two-dimensional
framework, the viscous terms V Tu and V Tω here couple the components uB and ωB. It is also convenient to
introduce the quantity uH defined by

uH ≡
uB

α
−
(

U∞
z +

Γ

2πL

)
(11)

where U∞
z denotes the axial velocity far from the z-axis and Γ the total flow circulation. Indeed, this latter

quantity vanishes far from the vorticity region since uB/α = (uz + ruθ/L) behaves as U∞
z +Γ/(2πL) when

r→ ∞. When uH is uniform in space, it is bound by definition to vanish everywhere.

A numerical code has been written to implement the time advance of equations (8) based on a Ψ−ω

formulation generalized to the helical symmetry framework. This code is briefly outlined below but extensive
details can be found in Ref. [26]. Quantities are represented in variables r and ϕ . The code uses Fourier series
along the ϕ direction where a 2π-periodicity holds, and second order finite differences in the radial direction.
The time advance is performed on each “azimuthal” mode using a second-order backward discretisation of
the temporal derivative. Viscous terms are treated implicitly. Nonlinear terms appear explicitly through a
second order Adams–Bashforth extrapolation. They are evaluated in the physical space, which involves the
inverse Fourier transform of velocity and vorticity components, a standard 2/3 desaliasing procedure and a
direct Fourier transform of nonlinear terms. The numerical domain has a radial extension of approximately
3 helix radii: the outer boundary is located at radial distance Rext = 3 made dimensionless with quantity
R? as stated below in §IV A. The domain is meshed by Nr ×Nθ = 500× 384 grid points. The condition
U∞

z = 0 is imposed: this selects a specific reference frame which might differ from the laboratory frame in
experiments.
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B. The helical solutions in the Π⊥ plane
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FIG. 2: Definition of planes Π0 and Π⊥, as well as of local bases and coordinates used for vortex
characterization. The dark spots represent the vortex core cut by either plane. Note that the sketch is done

for negative values of η and ψ .

In order to characterize a helically symmetric flow solution, one may cut the system by any (r,θ) plane
perpendicular to the z-axis, or by any meridional (r,z) plane. Indeed, quantities such as helical velocity
and vorticity components numerically obtained from the DNS at discrete points (ri,ϕ j), may equally be
viewed at points (ri,θ j = ϕ j) in the plane z = 0 (hereafter called Π0) or at points (ri,z j =−Lϕ j) in the plane
θ = 0 (hereafter called Πz). Yet, neither Π0 nor Πz are convenient cut planes in the helical context because
the characterization of vortex cores there may be affected by a geometrical bias. For instance, a vortex
possessing an axisymmetric core structure yields a non-circular pattern if the plane intercepts the vortex
axis in a non-orthogonal fashion. In order to alleviate this problem, a more appropriate plane called Π⊥ is
introduced, which cuts the vortex “perpendicularly” at some point A where the helical vorticity component
reaches its maximum, situated at distance rA(t) from the origin. At a given time t, plane Π⊥ is then defined
as the plane containing point A and normal to the helical line passing through A, i.e. normal to the vector
eeeBA ≡ eeeB (rA,θA) (figure 2). Any point M in the Π⊥ plane is defined by Cartesian coordinates (ξ ,η):

AM = ξeeerA +ηeeeϕA , (12)

where eeerA and eeeϕA are the two other vectors of the Serret–Frénet basis (2) at point A. One can also use polar
coordinates (ρ,ψ) centered on A, such that ξ = ρ cosψ , η = ρ sinψ and the local polar basis (eeeρ ,eeeψ) is
given by eeeρ = cosψ eeerA + sinψ eeeϕA and eeeψ =−sinψ eeerA + cosψ eeeϕA .
In order to characterize the vortex in the Π⊥ plane, fields are determined in this plane using a discrete polar
grid: ρp is evenly spaced (p = 0 · · ·Nρ−1) between 0 and a few typical vortex core sizes, and ψq = 2πq/Nψ

(q = 0 · · ·Nψ − 1). To do so, the numerical data obtained on the (ri,ϕ j) grid is transfered to the (ρp,ψq)
grid in the Π⊥ plane. This involves geometrical transforms and accurate interpolations which are explained
in detail in appendix A. Figures 3a and b display examples of vortex cores in the plane Π⊥: the vortex
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FIG. 3: Helical vortex of reduced pitch (a) L = 1 and (b) L = 0.25: isocontours of ωBA in the plane Π⊥.
Both vortices have comparable core sizes.

core is generally not purely axisymmetric and this dynamical feature due to vortex curvature becomes more
significant at low L.

In the plane Π⊥, the vorticity field is separated into a component orthogonal to the plane Π⊥, namely
ωBA ≡ ωωω ·eeeBA (except at point A, ωBA is different from ωB), and two in-plane polar components ωρ ≡ ωωω ·eeeρ

and ωψ ≡ ωωω ·eeeψ . The core structure is studied by decomposing these vorticity components in multipolar
contributions i.e. using a discrete Fourier transform in the azimuthal direction ψ . For instance, quantity
ωBA(ρp,ψq) is decomposed in azimuthal modes of wavenumber m:

ω
(m)
BA (ρp) =

1
Nψ

Nψ−1

∑
q=0

ωBA (ρp,ψq)e−imψq . (13)

Such decomposition has been successfully applied to characterize the instantaneous deformation of helical
vortices by comparison with the theoretical results of an asymptotic study [25]. Here, it is applied to charac-
terize vorticity ω

(0)
BA (r, t) as well as velocity uH

(0)(r, t) profiles, core radius and ellipticity (see discussion in
appendix B 2 and results in section V).

III. CONSERVATION PROPERTIES FOR VISCOUS OR INVISCID HELICAL FLOWS

In this section, some invariant quantities and conservation properties are derived from the inviscid or viscous
dynamics of helical flows.
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A. Global quantities for viscous flow: some exact relations

Global quantities are obtained by integration in any Π0 plane over a disk S having a radius Rext large enough
to encompass the region of nonzero vorticity. Quantities uH , ωB and ωz are assumed to tend to zero rapidly
enough as r→ ∞, so that the global quantities presented hereafter are convergent integrals, i.e. independent
of the selected value of Rext. Here we introduce two exact global viscous invariants and a global quantity
which evolves linearly in time.
The total circulation

Γ =
∫∫

S
ωz rdrdθ (14)

is known to be a global viscous invariant. Let us insert the equality for ωz valid in the helical symmetry
context

ωz = α(ωB−
r
L

ωϕ) with ωϕ =−α
∂uH

∂ r
(15)

into equation (14). After an integration by parts, one is led to

Γ = K1−
2
L

K2 where K1 ≡
∫∫

S
αωB rdrdθ , K2 ≡

∫∫
S

α
4uH rdrdθ . (16)

The axial momentum Pz per axial length unit

Pz =
∫∫

S
rωθ rdrdθ with ωθ = α(ωϕ +

r
L

ωB) . (17)

is another global viscous invariant [29, 30]. In the context of helical symmetry, this invariant reads:

Pz = 2K2 +
1
L

K3 , where K3 ≡
∫∫

S
r2

αωB rdrdθ . (18)

Upon eliminating K2 from (16) and (18), an integral equation for ωB only is found:∫∫
S

ωB

α
rdrdθ = Γ+

Pz

L
= const. (19)

A third global quantity is also of interest: the global angular momentum Lz per axial length unit

Lz ≡
∫∫

S
r2

ωz rdrdθ . (20)

In the context of helical symmetry, Lz can be written in terms of integrals of ωB and uH as:

Lz = 2LK2 +K3−2LK4 , where K4 ≡
∫∫

S
uH rdrdθ . (21)

It can be shown from the Navier–Stokes equations that this quantity is not an invariant but evolves according
to

Lz(t) = Lz(0)+4Γνt . (22)



8

Relations (18), (21) and (22) can be combined to yield the following time evolution for the integral of uH :∫∫
S

uH rdrdθ =
1
2

[
Pz−

Lz(0)
L

]
︸ ︷︷ ︸

const.

−2Γ

L
νt . (23)

For flows with zero total circulation (Γ = 0), the global angular momentum Lz is conserved [29], in which
case, due to property (23), the integral K4 of uH becomes time-independent.

B. Exact local conservation laws in the inviscid framework

Apart from global quantities, it is worth mentioning two exact local conservation laws for helically symmet-
ric flows. For inviscid flows [24], quantity uH is materially conserved [see equations (8) and (9)]:

∂tuH +ur
∂uH

∂ r
+

uϕ

αr
∂uH

∂ϕ
= 0. (24)

Using (4), the above equation may be re-written as

∂tuH + J(uH ,Ψ) = 0, where J( f ,g)≡ 1
r

[
∂ f
∂ r

∂g
∂ϕ
− ∂ f

∂ϕ

∂g
∂ r

]
. (25)

This implies that a helical flow with uH = 0 everywhere remains so in time if ν = 0. In such flows, vorticity
remains everywhere tangent to helical lines since vorticity components ωr and ωϕ are uniformly zero (see
equations (5) and (11)).
In the inviscid framework, it was further showed [24] that quantity αωB evolves according to

∂t(αωB)+ J(αωB,Ψ)+
2α4

L
J(uH ,Ψ)+

2α4

L2 uH
∂uH

∂ϕ
= 0. (26)

Contrary to what happens for ωz in the two-dimensional case (obtained in the limit L = ∞), quantity αωB is
not conserved on a general basis. However, when uH is uniformly zero, αωB is materially conserved:

∂t(αωB)+ J(αωB,Ψ) = 0 when uH = 0 . (27)

Similarly to the case of vortex rings, this equation possesses a geometrical interpretation in terms of an
infinitesimal helical vortex tube of radius r(t) and transversal section δA(t). When uH = 0, volume con-
servation of one helix turn imposes that δA(t)

√
r2 +L2 is constant, and circulation invariance imposes that

ωBδA(t) is constant as well. Both relations lead to the material conservation of αωB if uH = 0.

C. Approximate local conservation laws in the viscous framework

When viscosity is present, the equations for uH and αωB respectively read

∂tuH + J(uH ,Ψ) =
ν

α
L(uH)−

2ν

L
αωB (28)
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and

∂t(αωB)+ J(αωB,Ψ)+
2α4

L
J(uH ,Ψ)+

2α4

L2 uH
∂uH

∂ϕ

= ν

[
1
α
L(αωB)+

4rα2

L2
∂

∂ r
(αωB)+

2α3

L
L(uH)

]
.

(29)

The last term on the r.h.s. of equation (28) implies that, contrary to the inviscid case, uH cannot remain zero
if uH |t=0 = 0, in presence of helical vorticity. It is possible, however, to find an approximate time evolution
in the viscous case. Indeed, when uH |t=0 = 0, equation (23) imposes Pz = Lz/L and thus suggests that uH

might depend linearly on νt. Following this idea, we neglect for the initial time period the uH terms in the
dynamic equation (29) for αωB, leading to

∂t(αωB)+ J(αωB,Ψ)≈ ν

[
1
α
L(αωB)+

4rα2

L2
∂

∂ r
(αωB)

]
. (30)

If ωB is associated to a vortex of core size a� R?, it is possible to evaluate the order of magnitude of the
two terms in the r.h.s. of (30):

• for L� R?, α is of order L/R? and

ν

α
L(αωB)∼ νωB

L
R? a2 and

4νrα2

L2
∂

∂ r
(αωB)∼ νωB

L
R2
? a

. (31)

The second term is negligible with respect to the first one since a� R?.

• for L� R? or L = O(R?), α is of order 1 and thus

ν

α
L(αωB)∼ νωB

1
a2 and

4νrα2

L2
∂

∂ r
(αωB)∼ νωB

R?
L2 a

. (32)

The second term can be neglected with respect to the first one if a� L2/R?. This always holds for
L� R? or L = O(R?) since again a� R?.

When a� R?, the first term in the r.h.s. of (30) is thus dominant with respect to the second one, and αωB

satisfies

∂t(αωB)+ J(αωB,Ψ)≈ ν

α
L(αωB). (33)

It can be easily checked that the exact equation (28) and approximate equation (33) together with the initial
condition uH |t=0 = 0 are simultaneously satisfied if the following relationship holds between αωB(r,ϕ, t)
and uH(r,ϕ, t):

uH =−2νt
L

αωB . (34)

Relation (34) is thus approximate and valid whenever uH remains small. Note that it is also consistent with
the exact integral relation (23). This idea can be extended to a solution in which the initial condition reads
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as

uH |t=0 =−
δ 2

2L
αωB|t=0 , (35)

where δ is a length such that δ/L� 1. In that case, the same approximation leads to the solution

uH(r,ϕ, t) =−
δ 2 +4νt

2L
αωB(r,ϕ, t) . (36)

This ansatz is indeed observed in the numerical results of § V C.

IV. HELICAL VORTEX: REACHING QUASI-EQUILIBRIUM

A. Initial conditions

For a two-dimensional vortex, a known solution of the Navier–Stokes equations is

ωz =
Γ

πa2 exp[−ρ
2/a2(t)] , with a(t) = (a2

0 +4νt)1/2 .

This solution can be seen as the viscous speading of a vortex generated by a Dirac singularity at time
t? =− 1

4 a2
0/ν < 0. Introducing the shifted time τ ≡ t− t? makes the diffusion law independent on the initial

core size a0. Let us now extend this idea to obtain a single helical vortex solution generated from a singular
helical filament. This singular filament is characterized by its circulation Γ, its reduced pitch L and the helix
radius R?. Contrary to the two-dimensional case, no analytical viscous solution is available corresponding to
the viscous spreading of a singular helical vortex. Nevertheless conservation properties derived in section III
are useful to elaborate the specific initial conditions that may lead to generic quasi-equilibrium states. In
particular, such solutions should preserve circulation Γ and axial momentum Pz.
At short times, vorticity is concentrated around point A in a region of the plane Π⊥ the extent of which
is much smaller than L and R?. It is thus reasonable to assume that the two-dimensional diffusion law is
satisfied in the Π⊥ plane. This implies that (i) the initial vorticity profile in the Π⊥ plane may be assumed
to be Gaussian:

ωB|t=0 =C0 exp[−(ρ/a0)
2] ; (37)

(ii) this solution is the outcome of a helical singular vortex at time t? =− 1
4 a2

0/ν . This also implies that the
velocity component uH is linked to ωB by the ansatz (35) with δ = a0, namely:

uH |t=0 =−
a2

0
2L

αωB|t=0 . (38)

At this stage, the normalisation constant C0 in (37) is yet to be determined. This is also the case for the helix
radius rA(t = 0) since rA is unsteady and a priori different from R?. In order to determine both quantities, one
uses the following properties: (i) the prescribed circulation Γ and axial momentum Pz are conserved during
the time evolution, (ii) when t → t?, i.e. in the limit of the singular filament, rA(t)→ R? and Pz = R2

?Γ/L.
Using both remarks, C0 and rA(t = 0) can be computed: guess values are assumed, then C0 and rA(t = 0) are
iteratively adjusted until circulation and axial momentum evaluated through formulas (16) and (18) converge
to their prescribed values Γ and R2

?Γ/L.
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From now on, variables are made nondimensional using R? as a lengthscale, Γ/R? as a timescale. Simu-
lations a priori depend on three dimensionless parameters: the Reynolds number Γ/ν , the dimensionless
reduced pitch L and the dimensionless core size a0. We will show in the subsequent subsection that the
dependence on a0 can indeed be removed by using the time shift τ = t− t? as postulated above.

B. Transient evolution

The present paper focuses on the time evolution of a single helical vortex starting from the specific initial
conditions (37)–(38). This initial profile, purely axisymmetric in the Π⊥ plane, is a priori not an Euler
equilibrium. Such situation is reminiscent of the evolution of an initial polygonal array of identical, well
separated two-dimensional Gaussian vortices. In such flows, apart from the solid-like rotation, each vortex
evolves due to diffusion, but also due to the presence of an external strain arising from mutual interactions.
This occurs in two stages, as observed for co-rotative [31] and counter-rotating [32] vortices: a first rapid
relaxation in which damped Kelvin waves are observed to propagate on the vortices, and a second phase
in which a quasi-equilibrium is reached that slowly diffuses. In this latter stage, it is found that the time
evolution of each vortex does not depend on a0 if expressed as a function of τ .

Similarly to what happens for such a vortex array, a helical vortex is subjected to rotation and strain, though
it is now self-induced. Based on this analogy, the present section shows that this two-step process also
prevails for a single helical vortex.

The rapid relaxation is presented for a helical vortex of pitch L = 0.25, of initial core size a0 = 0.06, at
Re = 5000. The evolution is similar at other pitch values and Reynolds numbers. The time evolution of
the helical vortex is displayed in figure 4 where the vorticity component ωBA is presented in the Π⊥ plane.
Snapshots show how the initial axisymmetric vorticity distribution becomes asymmetric within the core,
while the very weak peripheral vorticity region displays a complex evolution associated to the damping of
inertial waves by viscosity. The vortex adapts its structure to the self-induced strain field originating from
local curvature as well as induction due to remote vorticity.

The above process leads to a quasi-equilibrium. The genericity of this state with respect to the initial
condition is illustrated in figure 5a and b. Results are identical when computations for pitches L = 0.25
and L = 1 are started with two different initial core sizes a0 = 0.05,0.1 (corresponding to the values
τ =−t? = 3.12,12.5). In figure 5a, the time evolution of rA is plotted as a function of the shifted time τ . For
a given L, all the curves end up collapsing after a short transient period (due to Kelvin waves and character-
ized by the wiggles). Note that, even if the initial oscillations tend to increase in amplitude and duration as
the initial core size is increased or the pitch L is decreased, they remain limited. Moreover, one may estimate
the vortex core size at each time of the process. How this quantity is computed is precisely explained in
appendix B. The core size in figure 5b follows the same curve for two initial core sizes. The curve is very
close to the two-dimensional diffusion law for short times τ , and then departs from it (for this latter point,
see § V A). A contrario, when a0 is too large (figure 5c), there is a slight shift with respect to the curves
emanating from the small initial core sizes, which could be accounted for by correcting the evaluation of t?.
This point is even more underlined when L is small and self-interactions become stronger.

The point vortex diffusion hypothesis coupled to the ansatz (35) for uH thus leads to a generic quasi-
equilibrium state: the long-time dynamics do not depend on the initial core size a0 when small. In the
following, we use the initial core size a0 = 0.1. The number of control parameters is thus reduced to only
two: the reduced pitch L and the Reynolds number Re.
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FIG. 4: Helical vortex of pitch L = 0.25 at Re = 5000 for a0 = 0.06. Vorticity contours in the Π⊥ plane
during the relaxation process, for times t̄ ≡ tΓ/

(
2πa2

0
)
= 0,10, · · · ,80. Contour levels are

ωBA/ω
(0)
BA (0) = 0.5,10−1,10−2, · · · ,10−6.

V. QUASI-EQUILIBRIUM OF A HELICAL VORTEX

The lack of explicit solutions of the helical Navier–Stokes equations justifies that helical vortex quasi-
equilibria computed by DNS need to be accurately described. As the geometry of such flows is rather
involved, specific characterization techniques are employed to determine helix radius, angular velocity. In
addition to core radius, ellipticity can be also computed since vortex core are not purely axisymmetric (see
figures 3b and d). All these quantities are defined in the appendix B as well as the numerical procedures
used to compute them. In the present section, generic quasi-equilibrium states obtained for various pitches
between L = 0.25 and L = 3 at fixed Reynolds number Re = 5000 are characterized.
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FIG. 6: Helical vortex for different values of L between 0.25 and 3. Time evolution of the squared core size
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A. Core radius & self-similarity

The core size a of a helical vortex is computed using the technique based on the fit of the axisymmetric
part of the helical vorticity in plane Π⊥ (for details see appendix B 2). When L > 1, the two-dimensional
diffusion law is a fair approximation for the core size evolution, as can be seen in figure 6. When L < 1, the
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core size increases less than its two-dimensional counterpart. The strong increase of a observed for L= 0.25,
around τ = 130, corresponds to situations where coils significantly overlap (a≥ 0.32> L) making the notion
of individual core size inadequate.
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FIG. 7: Helical vortex of pitch L = 0.5 at Re = 5000. (a) Axisymmetric part of the helical vorticity ω
(0)
BA (ρ)

at times τ = 22.5,32.5, . . . ,172.5 (amplitude decreases with time). (b) Same profiles normalized in
amplitude by the maximum value at each time, as a function of the similarity variable ρ̄ = ρ/a. Black

dashed line: ω̃
(0)
BA (ρ̄) = e−ρ̄2

.

Figure 7a displays the spreading of ω
(0)
BA (i.e. the axisymmetric part of vorticity component ωωω ·eeeBA ) in time.

When rescaled as follows:

ω̃
(0)
BA =

ω
(0)
BA (ρ̄,τ)

ω
(0)
BA (0,τ)

, ρ̄ =
ρ

a(τ)
, (39)

these profiles collapse onto a Gaussian curve ω̃
(0)
BA (ρ̄) = exp(−ρ̄2) (figure 7b). This self-similarity has

been predicted for viscous curved thin core vortices by Callegari & Ting [33] and observed on numerically
computed rotor wakes by Ali & Abid [7].

Furthermore, the profiles of u(0)H (i.e. the axisymmetric part of quantity uH) spread in time with the same
selfsimilar radial variable ρ̄ (figure 8). Contrary to ω

(0)
BA , the amplitude of the velocity deficit u(0)H (ρ = 0,τ)

remains approximately constant in time (see value −0.14 for L = 0.5 in figure 8a). This can be accounted
for using equation (34) coupled to the selfsimilarity (39) with a2(τ)≈ 4τ/Re. The value u(0)H (ρ = 0) can be
obtained with the following analytical argument: in the limit a→ 0, the radius rA tends to 1, ω

(0)
B tends to

exp[−(ρ/a)2]/(πa2), and, according to equation (34), u(0)H tends to −α exp[−(ρ/a)2]/(2πL). This implies
that

u(0)H (ρ = 0)→− 1
2π
√

1+L2
. (40)
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In the present case, L = 0.5 yields uH(0)≈−0.142.

B. Helix radius rA and angular velocity Ω

The temporal evolution of the helix radius rA is plotted in figure 9 for different values of L at Re = 5000. For
all values of L considered, the helix radius first increases, reaches a maximum and then decreases. During
the period of increase, the rate drA/dt is found to increase as L is decreased, and seems to reach an asymptote
value for small L. This value is found to be 7.1 · 10−4, smaller than the theoretical value prevailing for a
vortex ring 4.5902739/Re≈ 9.2 ·10−4 at asymptotically large Re [34]. In vortex rings, this radial drift was
related to the conservation of axial momentum [34]. For helical vortices, a similar argument based on the
conservation of integral (17) together with the equation (22) for Lz(t) may hold, but its derivation probably
necessitates to study the precise dipolar and quadrupolar structure of the fields, which is far beyond the scope
of the paper.
For small L, the maximum is reached at a critical time where the vortex successive coils are about to overlap,
as depicted in figure 10a and b. For larger L, the same argument does not apply (see figure 10c and d): in
this case, rA should tend to zero for large times since the asymptotic state is a columnar vortex centered on
the z-axis. As a consequence, a maximum of rA is also expected.
The slow time evolution of angular velocity Ω is plotted in figure 9c and is compared to the value obtained
with the cut-off theory [29]. This theory predicts a frequency Ωc given by:

Ωc (a,L) =−
Γ

2π L2

[(
1+ r2

A/L2) I (rA/L,δ/L)−K (rA/L,δ/L)
]
, (41)
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with

K =
L2

r2
A

{
1− θ0

[2r2
A [1− cosθ0]/L2 +θ 2

0 ]
1/2

}
(42)

I =
∫

∞

θ0

[1− cosθ ]

{θ 2 +2 r2
A [1− cos(θ)]/L2}3/2 dθ . (43)

Here the terms I and K result from the self induced velocity due to the distant part of the vortex filament,
θ0 is a cut-off angle defined using the core size a, the reduced pitch L and a cut-off parameter for Gaussian
vorticity distribution without axial flow δ = 0.8735:

θ0 =
aδ

|L|
√

1+ r2
A/L2

. (44)

In (41)–(44), the value of rA is given by the DNS, and a is approximated by a two-dimensional diffusion
law. Figure 9c shows a good agreement for all values of L except after the critical instant where rA reaches a
maximum. This is expected since these dynamics cannot be captured by the filament model any longer and
the two-dimensional diffusion law breaks down.

C. Univoque relationship between uH or αωB and ΨR

Snapshots of uH (see figure 11b and d) show that isovalues of this quantity are closely related to isocontours
of the streamfunction in the rotating frame of reference ΨR ≡Ψ+ 1

2 r2Ω. This indicates that the flow is close
to an Euler equilibrium. Indeed, assume a single helical vortex possesses an inviscid equilibrium solution
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FIG. 10: Helical vortex at Re = 5000 of reduced pitch (a)–(b) L = 0.25 at τ = 92.5, and (c)–(d) L = 1 at
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ΨR ≡Ψ+ 1
2 r2Ω (Ω is the angular velocity of the vortex) superimposed on top of quantity αωB; (b) and (d)

representation in the meridional plane Πz.

rotating at angular velocity Ω: such a solution is of the form uH(r,ϕ, t) = uH(r,ϕ−Ωt) so that

∂tuH =−Ω
∂uH

∂ϕ
. (45)

Exact inviscid relation (25) then reduces to J(uH ,ΨR) = 0, which implies that uH is a univoque function of
ΨR:

uH = F(ΨR). (46)

Snapshots of αωB (see figures 10 and 11 a and c) show that isovalues of αωB are also related to streamlines
of ΨR. Again this implies that the flow is close to an Euler equilibrium. For the specific case uH = 0,
inviscid rotating equilibria satisfy J(αωB,ΨR) = 0 as implied by equation (27), and this imposes αωB to be
a univoque function of ΨR as well:

αωB = G(ΨR) when uH = 0 . (47)
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FIG. 11: Helical vortex of pitch L = 0.5 at Re = 5000 for times (a)-(b): τ = 62.5 and (c)-(d): τ = 162.5. (a)
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(d): helical velocity uH (in color) with isocontours (white lines) of ΨR. Representation in the Π0-plane.

This exact relation for uH = 0 becomes approximate for non-uniform uH distributions. Indeed inviscid equi-
libria should satisfy in that case equation (26) together with equation (46), yielding

J(αωB,ΨR)+
2α4

L2 u(R)H
∂uH

∂ϕ
= 0, (48)

where u(R)H = uH−LΩ is the value of uH in the rotating frame. If the second term in equation (48) is discarded,
e.g. when uH is small, one recovers equation (47).

Both conclusions are further confirmed by the scatterplots in figure 12a and b: the points (αωB,ΨR) and
(uH ,αωB) are aligned on a single curve for any fixed time. For an Euler flow, the functional relationship
would be steady. Here, this state is called quasi-equilibrium since it evolves in time because of viscous
diffusion, leading to a slow time dependence of the functional relationship as well. Figure 12b confirms a
linear dependence between uH and αωB as predicted by equation (34). Such relationships were also verified
for the case of two helical vortices during their quasi-equilibrium stage of evolution [27].
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(b) Time evolution of ε measured through the DNS.

D. Strain and ellipticity

Quasi-equilibrium solutions are not purely axisymmetric (see figures 3b and d). In appendix B 3, it is
explained how streamline ellipticity µ(ρ) can be numerically computed. This quantity slightly varies with
ρ within the core (see figure 19 in appendix B). In this section, we use the ellipticity in the center of the
vortex core µ0 ≡ µ(ρ = 0) as a measure of the core ellipticity and focus hereafter on its time evolution.
On figure 13a, the time evolution of the measured ellipticity µ0 is plotted for various values of L. As L is
decreased, it is found that the ellipticity increases. For a single helical vortex, an asymptotic analysis was
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performed in Ref. [25] providing an expression for the streamfunction near the vortex center (written below
with the non-dimensional units used in Ref. [25])

Ψ(ρ,ψ) =−ρ2

2
+ ε

2S(2)ρ2 cos2ψ + · · · for ρ → 0 , (49)

where the parameter ε is defined as

ε ≡ a
rA

1
1+L2/r2

A
(50)

and S(2) is a dimensionless quantity. From expression (49), it is easy to compute the ellipticity of streamlines
near the vortex center using relation (B10) of appendix B 3 which yields

µ0 ≈−ε
2S(2) . (51)

The dimensionless quantity S(2) is the sum of two contributions

S(2) = SNH +2.525 S. (52)

The first term SNH is due to local curvature effects and is computed in Ref. [25]. In the present work we use
in our computation the value with zero axial velocity SNH = −0.2. The second term is related to a strain
rate 2S which is not externally imposed here but self-induced, due the other parts of the vortex. In Ref. [25],
the value of S(ε,L/rA) for a single helical vortex is explicited in their equation (4.16) as a function of ε and
L/rA. Since parameter ε is assumed small in this asymptotic analysis, the vortex core size has to remain
small with respect the radius rA and the reduced pitch L. This condition is met here especially at large L, as
shown in figure 13b where the time evolution of ε is plotted. Note that the case of a two-dimensional vortex
with a Gaussian vorticity profile subjected to an external strain field γ is recovered from (51)–(52) by setting
SNH = 0 and ε2S = γ/2 [35].
Equations (51) and (52) lead to an analytical model for µ0 which is plotted in figure 13a for various values of
L. For large L, the self-induced strain field is almost null and so is the ellipticity. For small L, the agreement
is fair, but not close. As mentioned by an anonymous referee, taking into account the angular rotation of
single helical vortex may reduce the discrepancy between model and DNS results. Indeed, it is known that
rotation affects ellipticity for two-dimensional vortices in an external rotating strain [36]. The asymptotic
analysis performed [25] for helical vortices however does not introduce the role of rotation on the two terms
of equation (52). Introducing the role of rotation on the curvature and strain terms would necessitate an
asymptotic work by itself that we leave for a future study.

E. Flow topology in the rotating frame

As time evolves, the vortex core size increases, which may induce a modification of the flow topology in
the co-rotating frame. In this respect, one may focus on the orbits, i.e. lines of constant ΨR projected onto
the planes Π0 and Πz at each time and, more specifically, to the number and position of critical points. This
extends the work of Ref. [23] to nonsingular vorticity distributions and quasi-steady viscous equilibria.
In figure 14, the isovalues of ΨR at fixed pitch L= 0.5 are plotted in Π0 (left graphs) for increasing times, thus
for increasing core sizes. Without loss of generality, the vortex has been rotated so that its center (red dot) lies
at θ = 0. For small a (figure 14a), there is only one critical point, corresponding to the vortex center. When
a is close to L (figure 14b), an elliptic (blue) and a saddle (green) point now appear, both situated at θ = π ,
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FIG. 14: (a)–(e) Streamline topology in the rotating frame for a helical vortex with different core sizes a at
fixed L = 0.5. For each value of a, streamlines are represented in planes Π0 (left) and Πz (right). Critical

points are pinpointed as solid circles. (f) Sketch of the three flow regions defined by the homoclinic orbits.

opposite to the vortex center. These points impose a structure to the flow. Based on the homoclinic orbits of
the saddle in Π0 three regions can be defined, as sketched in figure 14f: (i) a region 1 enclosed by the inner
homoclinic orbit containing the additional elliptic point, (ii) a region 2 located outside the outer homoclinic
orbit and (iii) a region 3 that contains the vortex center and complements the two other regions. These three
regions have their counterpart in the plane Πz (right graphs in figure 14): the vortex centerline cuts Πz at
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z = (0,±2,±4, · · ·)πL, while elliptic and saddle points are located at z = (±1,±3, · · ·)πL. Additional points
(yellow dots in figure 14) emerge at r = 0 and z = (± 1

2 ,± 3
2 , · · ·)πL. They are associated to the streamline in

the Π0 plane passing through the origin. A helical streamtube (region 1) thus appears at a certain distance of
the axis. As a is increased, the elliptic and saddle point progressively move apart radially, which increases
the area of region 1. The topology is modified when a crosses the value 0.54 (see figures 14c and d): region 1
in the plane Π0 now contains the origin, and, more importantly, in the Πz plane, region 3 gets away from
the z-axis which is now fully contained in region 1. When a/L is large enough, region 3 tends to form a
cylindrical shear layer, which consequently induces a jet/wake near the axis, that is in region 1.

(a) L = 0.5 (b) L = 0.4

-2 -1 0 1 2
-2

-1

0

1

2

0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

0 1 2
-2

-1

0

1

2

(c) L = 0.3
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FIG. 15: Rotating frame: streamline topology for one helical vortex of core size a = 0.3 and for different L.
Representation in planes Π0 (left) and Πz (right). Critical points are pinpointed as solid circles.

When L is decreased keeping the core radius a fixed, the streamline topology evolves in a similar manner as
the one described when a is increased at fixed L. This is shown in figure 15, where iso-contours of ΨR are
plotted for a = 0.3 and different pitches L = 0.5,0.4,0.3.
In order to better characterize the flow topology at each time, one may also provide three-dimensional
Lagrangian orbits in the frozen flow corresponding to the quasi-steady state at that time. This is performed by
time-integrating the true three-dimensional dynamics of Lagrangian particles in the reference frame rotating
with the vortex. Note that these orbits are bound to stick to helical surfaces of constant ΨR, but they are not
themselves helically symmetric.
Hereafter, we examine such orbits for the three cases listed in table I.
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case L a
a 0.5 0.06
b 0.5 0.25
c 0.25 0.25

TABLE I: Case definition for the study of Lagrangian orbits.

For cases a and b, the flow topology is similar to that of figure 15a, while for case c, additional critical points
are present as in figure 15c. For each case, three different trajectories have been considered (see figure 16):
in the vicinity of the vortex core (left), in the vicinity of the z-axis (center), and in the outer potential region
(right). Orbits initiated near the vortex core loop around the vortex with a spatial periodicity which depends
on the core size, the pitch and their distance to the vortex core center. When initiated in the outer potential
region, the orbits are “modulated” helical trajectories with small pitch, which are weakly influenced by the
geometrical parameters of the vortex. When initiated near the z-axis, two scenarios occur. For cases a and b
(see figures 16a and b center graph), there is no critical point, and orbits alternatively loop around the vortex
core and progress along a path in the vicinity of the z−axis. For case c (see figure 16c center graph), orbits
are quenched between the critical points hence in the vicinity of the z axis. The emergence of such orbits
in the inner region is to be linked to the fact that, at smaller L values, the vorticity distribution more and
more resembles a cylindrical vortex sheet, which is known to induce an axial velocity component inside the
cylinder.

VI. CONCLUDING REMARKS

Quasi-equilibria of helical vortex systems have been numerically investigated in the helical symmetry con-
text. In particular, generic quasi-equilibrium state of one helical vortex has been obtained stemming from
a singular helical line vortex. Accurate tools were developed for characterization showing several features.
First the helical vorticity component in the plane locally orthogonal to the vortex centerline is found to
be self-similar and to have a Gaussian distribution with radius a(τ) ≈ (4τ/Re)1/2 and decaying amplitude
1/(πa2(τ)). Second the helical velocity component is coupled to the helical vorticity through viscous ef-
fects leading to a relationship uH = 2ταωB/(L Re). Consequently a small Gaussian velocity deficit occurs
along helical lines and radially spreads at the same rate as vorticity but with a roughly constant amplitude
−[2π(1+L2)]−1. The helical vortex locally endows the profile of a Batchelor vortex. In addition the ratio
q(τ) ≈ −(1+ L2)/a(τ) between the typical azimuthal velocity 1/(2πa) and the constant helical velocity
amplitude takes large negative values since the vortex core is assumed small. The helix radius also increases
in time but no simple argument was found to explain this precise behaviour. Finally we analyzed the flow
topology in the co-rotating frame. To do so, we presented the structure of the helical streamfunction, more
precisely the emergence of critical points, as well as three-dimensional Lagrangian orbits. The above results
could be potentially extended to arrays of multiple helical vortices, as partially done in [27].
For the specific value L = 1, and presumably for pitches in the vicinity of this value, a quasi-equilibrium
could not be reached (see figure 9b): such state seems to be unstable with respect to perturbations with helical
symmetry. A similar behaviour was previously reported for a helical patch [24]. Whether both observations
are linked or not is left for future investigations.
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(a)

(b)

(c)

FIG. 16: Lagragian orbits (solid black lines) in the co-rotating frame, around a helical vortex (green tube)
for case (a) L = 0.5, a = 0.06, (b) L = 0.5, a = 0.25, (c) L = 0.25, a = 0.25. The orbit is initiated in the
vicinity of the vortex core (left), in the vicinity of the z-axis (center), and in the potential outer region

(right).
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Appendix A: Retrieving quantities in plane Π⊥ from Π0

This appendix explains how quantities needeed in plane Π⊥ for vortex characterization are retrieved from
numerical data provided in plane Π0. Since scalars and vortex components are invariant along lines of
constant ϕ , this amounts to locate, for any point M of Cartesian coordinates (ξ ,η) in plane Π⊥, the point
M0 in the plane Π0 situated on the same helical line than M, as depicted in figure 2. In the cylindrical frame,
the coordinates of M and M0 are denoted as (rM,θM,zM) and (rM0 ,θM0 ,0) respectively. The position vector
OMOMOM is first expressed through two different ways, namely from the equation of the helical line:

OMOMOM = zM eeez + rM cosθM eeex + rM sinθM eeey (A1)

where

θM = θM0 + zM/L and rM = rM0 , (A2)

or by inserting the vortex center A:

OMOMOM =OAOAOA+ξeeerA +ηeeeϕA = (rA +ξ )eeerA +ηeeeϕA . (A3)

The height zM can readily be determined:

zM =OMOMOM ·eeez =−αA
rA

L
η , with αA ≡

(
1+

r2
A

L2

)−1/2

(A4)

so that

rMeeer =OMOMOM− zM eeez = (rA +ξ )eeerA +ηα
2
AeeeϕA +ηα

2
A

rA

L
eeeBA , (A5)

and, after some straightforward algebra:

rM =
[
(rA +ξ )2 +α

2
Aη

2]1/2
, (A6)

rM cosθM = (rA +ξ )cosθA−ηαA sinθA , (A7)
rM sinθM = (rA +ξ )sinθA +ηαA cosθA . (A8)

For vortex characterization, a regular polar mesh with nodes (ρp,ψq) is created in plane Π⊥. Relations
(A6)–(A8) with ξ = ρp cosψq and η = ρp sinψq lead to determine rM and θM which, together with (A2),
give access to the coordinates of the image points M0 in Π0. Since these latter points do not coincide with the
nodes at which the numerical data are provided, it is found necessary to use a 5th-order accurate interpolation
based on Tchebychev polynomials. This is performed for all vorticity and velocity components. The in-plane
vorticity components ωρ =ωωω ·eeeρ and ωψ =ωωω ·eeeψ as well as the component ωBA =ωωω ·eeeBA normal to Π⊥ are
then determined, with (eeeρ ,eeeψ) being the local polar basis in Π⊥. Using the components of eeeBA , eeeρ and eeeψ
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on the basis (eeeB,eeeϕ ,eeer) eventually leads to the following expressions

ωBA = ωBαMαA

[
1+

rMrA

L2 cos(θM−θA)
]

+ ωϕ αMαA

[ rA

L
cos(θM−θA)−

rM

L

]
(A9)

+ ωrαA
rA

L
sin(θM−θA) ,

ωρ = ωB

[
αMrM

L
sin(θA−θM)cosψ +αMαA sinψ

(
− rA

L
+

rM

L
cos(θM−θA)

)]
+ ωr [cos(θM−θA)cosψ +αA sin(θM−θA)sinψ] (A10)

+ ωϕ

[
αM sin(θA−θM)cosψ +αMαA

rMrA

L2 + cos(θM−θA)sinψ

]
,

ωψ = ωB

[
−αMrM

L
sin(θA−θM)sinψ +αMαA cosψ

(
− rA

L
+

rM

L
cos(θM−θA)

)]
+ ωr [−cos(θM−θA)sinψ +αA sin(θM−θA)cosψ] (A11)

+ ωϕ

[
−αM sin(θA−θM)sinψ +αMαA

rMrA

L2 + cos(θM−θA)cosψ

]
.

Appendix B: Vortex characterization

This appendix explains the specific characterization techniques used to determine helix radius, angular ve-
locity, core radius and ellipticity.

1. Helix radius rA and angular velocity Ω

In the plane Π0, the precise value of the helix radius rA is obtained using a local quadratic interpolation of
ωB around the mesh point of maximum ωB(ri,θ j), from which the coordinates (rA,θA) of the maximum of
the interpolating paraboloid can be accurately deduced.
Configurations of one helical vortex or a regular array of identical vortices may be inviscid equilibria when
considered in a frame rotating at some constant angular velocity Ω. This rotation is due to both the self-
induced vortex velocity and the mutual induction between vortices. When viscous diffusion acts, it gives rise
to a slowly evolving state that we call quasi-equilibrium with changing angular velocity, helix radius and core
size. A first method for evaluating the instantaneous angular velocity Ω(t) is to track the azimuthal location
of the vortex center θ

−
A and θ

+
A for times t− and t+ respectively and to set Ω(t) = (θ+

A −θ
−
A )/(t+− t−) at

time t = 1
2 (t−+ t+). Such a procedure is inaccurate because determining θ

±
A may be quite sensitive to the

actual position of the vortex center within the numerical cell. Instead we use the vorticity component ωB

in the whole plane Π0 at times t− and t+. The rotation angle δθ of the vortex along the azimuth between
times t− and t+ is determined so as to achieve the best correlation between ωB(r,θ +δθ , t−) and ωB(r,θ , t+).
Technically, the positive integral

I(δθ)≡
∫∫

S
|ωB(r,θ , t+)−ωB(r,θ +δθ , t−)|2dS (B1)
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is minimized with respect to δθ using an iterative procedure (note that quantity ωB(r,θ + δθ , t−) is ac-
curately obtained from ωB(r,θ , t−) by simple multiplications of azimuthal modes ω

(m)
B by eimδθ ). This

approach is justified since for inviscid equilibria, I(δθ) vanishes for δθ = (t+− t−)Ω. For viscous quasi-
equilibria, I(δθ) is assumed to reach a minimum when δθ = (t+ − t−)Ω(t), which yields Ω(t) for t =
1
2 (t−+ t+).

2. Vortex core radius

In order to evaluate the core size, we focus on the axisymmetric part of expansion (13) in the plane Π⊥. A
Gaussian fit is assumed for the monopolar component ω

(0)
BA :

f (ρ;C,a) =Ce−(ρ/a)2
, (B2)

and parameters C and a are evaluated so that distribution (B2) achieves the best fit on the interval [0,ρcut]
in which vorticity is significant (see below for a discussion on the appropriate values of ρcut). Quantity a
quantifies the vortex core radius.
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FIG. 17: Helical vortex of reduced pitch (a) L = 1 and (b) L = 0.25: monopolar vorticity component
ω

(0)
BA (ρ) (continuous line) and its Gaussian fit (dashed line).

The Gaussian profile is an excellent fit for a helical vortex of pitch L = 1, as can be seen on figure 17a. For
lower pitches (see figure 17b at L = 0.25), the fit deteriorates at the periphery of the vortex. For smaller
values of L (typically when L < 0.5), the plane Π⊥ cuts several adjacent turns of the vortex (see figure 3b).
As a consequence, the vorticity of adjacent turns may overlap. This means that ρcut should thus be chosen
such that contributions due to adjacent turns are not taken into account, that is ρcut cannot exceed half the
spacing between turns πLd, where factor d = R/

√
R2 +L2 arises from the angle between planes Π⊥ and Πz.

In addition, ρcut cannot be smaller that 2a so that most part of vorticity distribution be fitted. This imposes
a major constraint, especially when the core size a is large: 2a ≤ ρcut ≤ πLd. For the case L = 0.25 in
figure 17b, one has 2a ≈ 0.6, ρcut = 0.6 and πLd = 0.75. For large L, the plane Π⊥ intercepts the helical
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vortex only once (figure 17a), thus the evaluation of the core radius is not sensitive to ρcut if large enough.
Typically, ρcut is chosen larger than 4a when L≥ 0.5.
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a
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FIG. 18: Helical vortex of reduced pitch L = 1 (solid) and L = 0.25 (dashed). Fitted core size a (top curves
in red) and dispersion radius ad (blue) as functions of ρcut/(πLd). The fitted core size a is found much less

sensitive to ρcut than the dispersion radius.

Note that the definition of the core size is not unique: for two-dimensional vortices, moments of vorticity
are commonly used. In analogy with the two-dimensional case, one could alternatively employ the vorticity
moments of ωBA(ρ,ψ) about the center point A in the Π⊥ plane:

a2
d =

∫∫
ρ

2
ωBA(ρ,ψ)ρdρdψ∫∫

ωBA(ρ,ψ)ρdρdψ

=

∫
ρcut

0
ρ

3
ω

(0)
BA (ρ)dρ∫

ρcut

0
ρω

(0)
BA (ρ)dρ

. (B3)

This definition, however, is very sensitive to the presence of vorticity far from the center because of the
ρ3 factor in the integral. It is shown that, especially at low L, the results for ad strongly depend on the
cutoff radius ρcut, as depicted in figure 18. This makes the core size definition based on vorticity moments
inadequate for helical vortices.

3. Vortex core ellipticity

In figures 3b and d, it is seen that as one moves away from the vortex center A, i.e. as ρ is increased, vorticity
contours are shifting their center towards the left along eeerA and are also changing their ellipticity with a major
axis directed along eeeϕA and a minor axis directed along eeerA . This is coherent with the asymptotic analysis
performed in [25] in which the streamfunction ΨR in the co-rotating frame is assumed to be the expanded
in term of ε defined in equation (50). At leading order ε0, the structure is monopolar, i.e. a local columnar
axisymmetrical vortex. The main dipolar correction which induces the center shift towards the center of
curvature of the filament, i.e. along eeerA , arises at first order in ε . Quadrupolar corrections quantify the
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ellipticity of the streamlines, i.e. the elliptical deformation of the vortex under the effect of strain. They are
generated as well as other dipolar and monopolar corrections, at second order in ε2. Focusing on quadrupolar
and dipolar corrections at lower orders, the expansion in [25] implies that

ΨR(ρ,ψ) = Ψ
(0)
R (ρ)+ εΨ

(1)
R (ρ)cosψ + ε

2
Ψ

(2)
R (ρ)cos2ψ + · · · (B4)

We extend the methodology used in [35] to evaluate the shape of streamlines in the co-rotating reference
frame. From the above expansion, one may assume that streamline of level ΨR is located at

ρ = ρ
(0)+ ερ

(1) cosψ + ε
2
ρ
(2) cos2ψ + · · · (B5)

where the real quantities ρ(0), ρ(1) and ρ(2) depend only on ΨR. If higher multipolar contributions are
discarded in (B5), this corresponds to an ellipse with a center shifted of ερ(1) along the eeerA axis with a
semi-axis directed along eeerA of length A(ρ(0)) = ρ(0)+ ε2ρ(2) and the second semi-axis directed along eeeϕA

of length B(ρ(0)) = ρ(0)− ε2ρ(2). Ellipticity is hence

µ(ρ(0)) =
|A−B|
A+B

= ε
2 |ρ(2)|

ρ(0) . (B6)

Introducing expansion (B5) in expansion (B4) at order ε , one gets

ΨR(ρ,ψ) = Ψ
(0)
R (ρ(0))+ ε[ΨR

(1)+ρ
(1) dΨ

(0)
R

dρ
(ρ(0))]cosψ + · · · (B7)

leading to a shift

ερ
(1) =−εΨR

(1)(ρ(0))

dΨ
(0)
R

dρ
(ρ(0))

evaluated at ρ
(0) . (B8)

At order ε2, putting to zero the term in cos2ψ , one gets the relation

ρ
(2) =− Ψ

(2)
R

dΨ
(0)
R

dρ

+
1
2

Ψ
(1)
R[

dΨ
(0)
R

dρ

]2

(
dΨ

(1)
R

dρ
− Ψ

(1)
R
2

d2Ψ
(0)
R

dρ2

)
evaluated at ρ

(0) . (B9)

As an example, let us consider a helical vortex at pitches L = 1 and L = 0.25. Figure 19a displays the shift of
the center of elliptical streamlines as a function of ρ(0)/a. From the negative sign of ρ(1) it is confirmed that
the center shifts towards the center of curvature as ρ(0) increases. In figure 19b, the ellipticity µ is plotted as
a function of ρ(0)/a. It is found that µ slightly varies with ρ(0) and is found to increase with radial distance,
as expected since vorticity levels gradually decrease. In the paper, quantity µ0 ≡ µ(0) is used as a measure
of the core ellipticity. It is obtained from (B6) and (B9) using l’Hôpital’s rule twice, yielding

µ0 =
ε2

2

∣∣∣∣∣d2Ψ
(2)
R

dρ2

∣∣∣∣∣/
∣∣∣∣∣d2Ψ

(0)
R

dρ2

∣∣∣∣∣ evaluated at ρ = 0 . (B10)
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FIG. 19: Helical vortex for L = 0.25 and L = 1 at Re = 5000. Two different core radii are considered:
a = 0.22 corresponding to τ = 62.5, and a = 0.30 to τ = 112.5. (a) Shift ερ(1) of elliptical streamlines as a

function of ρ(0)/a. (b) Ellipticity µ as a function of ρ(0)/a.

From the negative sign of ρ(2), is is seen that the major axis of elliptical streamlines is aligned with the
vector eeeϕA , hence orthogonal to the r-direction.
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