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Logarithmic terms are quantum corrections to black hole entropy determined completely from classical 
data, thus providing a strong check for candidate theories of quantum gravity purely from physics in the 
infrared. We compute these terms in the entropy associated to the horizon of a magnetically charged 
extremal black hole in AdS4 × S7 using the quantum entropy function and discuss the possibility of 
matching against recently derived microscopic expressions.
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(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127
1. Introduction

Providing a microscopic interpretation to the Bekenstein Hawk-
ing formula in the context of certain classes of supersymmetric 
extremal black holes in flat space has been a main success of 
string theory as a theory of quantum gravity [1–6]. The expression 
for the microscopic entropy obtained by explicit enumeration and 
counting of black hole microstates in these cases contains the area 
law as the leading formula, but also contains higher-derivative and 
quantum corrections to it. We refer the reader to [7] for a review 
of these developments as well as more exhaustive references. Im-
portantly, since extremal black holes expectedly possess an AdS2
factor in the near horizon geometry, one may use the AdS2/CFT1
correspondence to provide an alternative, but equivalent, definition 
of the quantum entropy of extremal black holes in string theory. 
This proposal is known as the quantum entropy function, and for 
extremal black holes carrying charges �q ≡ qi [8,9],

dhor
(�q) ≡

〈
exp

[
i

∮
qidθAi

θ

]〉 f inite

AdS2

, (1)

where dhor is the full quantum degeneracy associated with the 
black hole horizon, and Ai

θ is the component of the ith gauge field 
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along the boundary of the AdS2. In this picture the entropy asso-
ciated to the horizon degrees of freedom of an extremal blackhole 
is essentially the free energy corresponding to the partition func-
tion (1). The superscript ‘finite’ reminds us that the quantity on 
the right hand side of (1) is naively divergent due to the infinite 
volume of AdS2 but this divergence may be regulated in accor-
dance with general principles of the AdS/CFT correspondence and 
a cutoff-insensitive finite part extracted, which is then identified 
to dhor [8–10]. The path integral is carried out over all fields that 
asymptote to the black hole near horizon geometry. In the con-
text of supersymmetric extremal black holes in flat space, this has 
been evaluated using saddle point techniques [10–14,16,17] as well 
as supersymmetric localization [18–24] and the answer matched 
with microscopic results wherever available. Importantly, even in 
the cases where the full microscopic formula is unavailable, this 
quantity may be evaluated at least using saddle-point methods to 
gain some insight into the full microscopic formula [13,17].

In contrast, the situation for entropy computations for extremal 
black holes in AdS space is relatively in its infancy. While the Wald 
entropy [25] associated to the horizon may be computed for such 
black holes using for example the entropy function formalism, the 
quantum corrections to it are still unknown.1 In this situation, it 

1 Recently the quantum entropy of the topological black hole in AdS4 has been 
computed using supersymmetric localization [26], building on the analysis of [27], 
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would clearly be of interest to evaluate (1) for such black holes to 
obtain the set of quantum corrections to the Wald formula. Such 
computations are further motivated by the recent proposal for a 
microscopic computation of a CFT3 index argued to capture the 
quantum entropy of an AdS4 extremal black hole [29].

In this note we will focus on the computation of (1) in the 
semi-classical approximation where the event horizon of the black 
hole has a large length scale a associated with it. In the case of 
extremal black holes in flat space, this large length scale arises 
when the charges of the black hole are taken to be large. In the 
present case of AdS black holes, this corresponds to taking the rank 
N of the gauge group in the dual CFT to be large, while the charges 
themselves are not scaled.

One saddle-point of the path integral (1) is the black hole’s 
near-horizon geometry itself. By evaluating the on-shell action on 
this field configuration, it is possible to show that [8,9]

dhor � eSWald ⇒ S B H = ln dhor � SWald. (2)

Hence the quantum entropy function produces as the leading con-
tribution, Wald’s formula for the entropy of the horizon. In this 
note, we will consider subleading corrections of the form ln a to 
this formula, i.e.

S B H = SWald + c ln a + . . . , (3)

where c is a coefficient which depends on the details of the 
quantum gravity that the black hole is embedded in. For exam-
ple, the same four-dimensional black hole which is a quarter-BPS 
black hole in N = 4 supergravity may be embedded as a one-
eighth BPS black hole in N = 8 supergravity and while the lead-
ing Bekenstein–Hawking answer is the same for the black hole, 
the log terms computed in both theories are different [12], and 
match with the microscopic computations carried out respectively 
in N = 4 and N = 8 string compactifications. This matching is an 
important test of the consistency of the quantum entropy function 
proposal.

The main reason why the log term is an important contribu-
tion to the microscopic formula is that it is a genuinely quantum 
correction to the Bekenstein Hawking formula, but is determined 
completely from one-loop fluctuations of massless fields of two-
derivate supergravity, which essentially constitute the IR data of 
the black hole.2 To see this, let us recall some elements of a scal-
ing argument presented in [15]. Consider the �-loop free energy 
for a theory defined on a D dimensional background with a length 
scale a associated with it. A typical Feynman graph contributing to 
this quantity would scale as (see [15] for details)

�
(D−2)(�−1)
P a−(D−2)(�−1)

a/
√

ε∫
dD�k̃ k̃2−2� F

(
k̃
)

, (4)

where k̃ = ka and { k } are the loop momenta, and F is a function 
which approaches 1 at large values of its arguments. By focusing 
on the regime where all loop momenta are of the same order, 
and working at large k̃, we see that a ln a term arises from the 
k̃2�−2−D� term in the 1

k̃
expansion of F at large k̃, and the full a

dependence of this term is

to find a complete match with the corresponding microscopic expression. We thank 
Jun Nian for helpful correspondence regarding this. We also note that the quantum 
entropy of AdS4 hyperbolic black holes was studied in [28].

2 The term ‘massless’ has to be carefully defined on curved manifolds. The more 
precise statement is that the eigenvalues of the kinetic operator should scale as 1

a2 , 
which is how the eigenvalues of the kinetic operator over a massless scalar, −�

would scale.
(
1

a

)(D−2)(�−1)

ln a, (5)

which is highly suppressed in the large a limit unless � = 1. This 
verifies the above claim that only one-loop fluctuations give rise 
to the log term. Further, by considering different scaling regimes 
where various subsets of loop momenta scale to be much larger 
than the rest, one may verify the fact that only the two derivative 
sector of massless fields contributes to the log term. However, we 
do not do so here and instead refer the reader to [15] for those 
details.

Therefore, as argued earlier, the log term may be regarded as an 
IR probe of the microscopic theory, in the sense that any putative 
microscopic description of the black hole must correctly reproduce 
not only the leading Bekenstein Hawking area law, but also the log 
correction to it.

In this note we shall compute the log term for a class of 
magnetically charged extremal black holes which asymptote to 
AdS4 × S7 for which a complete expression for the microscopic 
entropy has recently been computed via the computation of a 
topologically twisted index in ABJM theory [29]. We omit details 
of the microscopic formula, referring the reader to [29] as well 
as the companion papers [30,31]. Further, the only features of the 
near horizon geometry which shall be relevant to us are that it is 
AdS2 × S2 × S7 where the S7 is bundled over the S2 and that the 
AdS2, S2 and S7 have a common length scale a associated to them. 
That is, the metric over the full 11 dimensional near horizon ge-
ometry can be brought to the form gμν = a2 g(0)

μν where the metric 
g(0) and the coordinates are a independent.

Further the S2 has S O (3) isometry, while the S7 has U (1)4

isometry. These inputs suffice for the macroscopic computation of 
the log term as a prediction for the microscopic formula of [29]. 
We shall finally discuss a few aspects of the proposed match.3 De-
tails of the full black hole solution are reviewed in [29].

2. The log term from the quantum entropy function

We will now describe how the log term may be extracted from 
the path integral (1). To do so, it is useful to phrase the problem 
more generally. In particular, we consider a theory in D dimen-
sions, with a dynamical field �, admitting a saddle-point which is 
a background with length scale a.

Z [�] =
∫

D� e− 1
h̄ S[�]. (6)

Then, as argued from Equation (4), to extract the term in the free 
energy proportional to ln a, it is sufficient to concentrate on the 
one-loop partition function of the theory. The techniques for this 
analysis are well-known and we refer the reader to [14,38,16,17]
for accounts of how these computations are carried out. Firstly, the 
one-loop partition function is then given by

Z1−� = det′O− 1
2 · (Zzero)

n0 , (7)

where det′ O is the determinant of O evaluated over its non-zero 
modes, n0 is the number of zero modes of O, and Zzero is the 
residual zero-mode integral. Therefore

lnZ1−� = −1

2
ln det′O + n0 lnZzero. (8)

The final result is that the coefficient of the ln a term in the 
free energy computed about this saddle-point depends on K (t;0), 

3 While this draft was being readied for submission, we learned of [32] where 
this comparison has been carried out in a numerical scheme to find a mismatch.
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which is the t0 coefficient of the heat kernel expansion of the 
kinetic operator O about this saddle-point, and β� , which deter-
mines how the zero mode contribution Zzero to the path integral 
scales with a.

Zzero = aβ� Ẑzero, (9)

where Ẑzero does not scale with a. We eventually obtain the for-
mula

lnZ1−� = K (t;0) ln a + (β� − 1)n0 ln a. (10)

It is well known that in odd-dimensional spacetimes, K (0; t) = 0
and hence we have the formula

lnZ1−� = (β� − 1)n0 ln a. (11)

The extension to the case of multiple fields { � } having zero 
modes is apparent.

lnZ1−� =
∑

φ∈{ � }

(
βφ − 1

)
nφ

0 ln a, (12)

where nφ
0 is the number of zero modes of the kinetic operator over 

the field φ. The specific values for β� that will be relevant to us 
are for the vector, the graviton, the three-form and the gravitino. 
These are given by

βv = D − 2

2
, βm = D

2
, β f = D − 1, βC = D

2
− 3. (13)

Here v denotes the vector field, m the metric or the graviton, f the 
gravitino, and the corresponding β values have been listed in Equa-
tion (2.37) of [14]. C denotes the three-form field and its β value 
may be determined exactly in the same manner as the previous 
fields [14,38]. We start with the expression for the normalization 
of the field CMN P in D-dimensions.∫

DCMN P e

[
− ∫

ddx
√

g gMU gN V g P W CMN P CU V W

]
= 1. (14)

Here the metric scales as gMN = a2 g(0)
MN where g(0) does not scale 

with a. Therefore we have∫
DCMN P e

[
−aD−6

∫
ddx

√
g(0) g(0)MU g(0)N V g(0)P W CMN P CU V W

]
= 1. (15)

Hence the correctly normalized integration measure is
∏

x,(MN P )

d
(

a
D
2 −3CMN P

)
. (16)

From this we can obtain that the zero mode of CMN P corresponds 
to

βC = D

2
− 3. (17)

3. Counting the number of zero modes

From the above discussion it is clear that if we are to extract 
the contribution to the (logarithm of the) quantum entropy func-
tion which scales as ln a, where a is the length scale associated 
with the radii of AdS2, S2 and S7, it is enough to compute the 
zero modes of the fields appearing in the path integral (1). Zero 
modes can in principle appear in the massless spectrum of AdS2
fields obtained from fields of the 11 dimensional supergravity re-
duced on to S2 × S7. In this section we will enumerate these zero 
modes and compute their contribution to the quantum entropy 
of magnetically charged AdS4 black holes. In isolating these zero 
modes, a special role is played by the so-called discrete modes of 
the Laplacian for spin-1 and spin-2 fields, and the Dirac operator 
for spin- 3

2 fields on AdS2 explicitly enumerated in [33,34] respec-
tively, and counting the total number of zero modes is essentially 
equivalent to counting the total number of discrete modes of these 
fields. These modes have also been listed in [12,14,17]. An impor-
tant observation for us is that it turns out that naively the number 
of zero modes for each of these fields turns out to be infinite. How-
ever, this divergence turns out to be essentially equivalent to the
volume divergence of the free energy and may be regulated in the 
same way. Two slightly different, but equivalent, procedures for 
doing this are available in [11,12,14] and [16,17] and we shall use 
those results for the regularized number of zero modes in the com-
putations that follow.

3.1. Bosonic zero modes

The bosonic fields are the graviton hMN and the 3-form CMN P . 
Quantization of the graviton gives rise to a ghost vector field but 
this has no zero modes. Quantization of the 3-form C gives rise 
to a ghost 2-form B with Grassmann odd statistics, and a ghost-
for-ghost 1-form A with Grassmann even statistics. We use the 
following conventions: M is an 11-d vector index, μ is an AdS2
index, a is an S2 index and i is an S7 index. Finally α is either a
or i.

Consider the metric zero modes first. The graviton hMN decom-
poses into the AdS2 graviton hμν , 3 massless AdS2 vectors hμa , and 
4 massless AdS2 vectors hμi , along with the AdS2 scalars gia, gij
and gab . In counting the number of massless vectors, we used the 
fact that these are given by

hμα = vμkα, (18)

where kα is a Killing vector along an internal direction. Since the 
internal space has SU(2) ⊗ U(1)⊗4 isometry, there are 3 + 4 = 7
Killing vectors. Each massless vector field on AdS2 contributes

nv
0 = −1, (19)

hence there are −7 zero modes from the hμα . Also there are −3
zero modes from the AdS2 metric hμν . Therefore total number of 
metric zero modes is

nm
0 = −7 − 3 = −10. (20)

Then the contribution to the log term from the 11d metric zero 
modes is

δZ |metric = (βm − 1)nm
0 ln a = −45 ln a. (21)

We next consider the 3-form field CMN P . Its quantization was car-
ried out in [35–37] and is reviewed in Section 3.1 of [38]. We will 
just require the following result. The quantization of a p-form re-
quires p generalized ghost fields which are (p − j)-forms, where j
runs from 1 to p. Further the logarithmic contribution of all these 
fields to the free energy may be packaged into the expression

�F =
p∑

j=0

(−1) j (βp− j − j − 1
)

n0
Op− j

ln a, (22)

where O is the kinetic operator. For j = 1, . . . , p which are the 
generalized ghost fields, this is just the Hodge Laplacian. For j = 0, 
which is the physical field, this can have couplings to background 
fluxes as well. We now consider the reduction of CMN P onto AdS2. 
This firstly leads to Cμνa Cμνi which are two-forms on AdS2 which 
are Hodge duals of scalars. These have no zero modes. Next, we 
consider a 3-form which is the wedge product of a 1-form along 
AdS2 with a harmonic 2-form along S2 × S7.

C (3) = C (AdS2) ∧ C (S2×S7)
. (23)
(1) (2)
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The number of such harmonic forms is given by the second Betti 
number b2 of the manifold, which is 1 in this case, as may be 
readily seen from multiplying the Poincaré polynomials of S2 and 
S7. Hence there is a single massless vector fields along AdS2
from the 11 dimensional 3-form field. Finally we have the scalars 
Cabi, Caij, Cijk which don’t have zero modes. Hence the 3-form 
contributes

δZ |C = (βC − 1)nC
0 ln a = −3

2
ln a (24)

to the log term. We next consider the ghost B MN which arises 
from the quantization of C . This decomposes into the following 
massless fields on AdS2. First we have Bμν which contributes no 
zero modes. Next we may obtain a massless 1-form on AdS2 from 
this field by decomposing B MN into a wedge product of an AdS2
1-form with a harmonic 1-form on S2 × S7. The number of such 
harmonic 1-forms is the first Betti number of S2 × S7 which is 
zero. Finally we have the scalars Bab, Bai and Bij , which contribute 
no zero modes. Therefore the contribution to the log term is

δZ |B = − (βB − 2)nB
0 ln a = 0. (25)

The overall minus sign is on account of Grassmann odd statistics 
of this field. Finally we have the ghost-for-ghost field AM from the 
quantization of B . This leads to one massless vector field on AdS2
and therefore

δZ |A = (βA − 3)nA
0 ln a = −3

2
ln a. (26)

We therefore add (21), (24), (25) and (26) to obtain

δZ =
(

−45 − 3

2
− 3

2

)
ln a = −48 ln a. (27)

The residual scalar generalized ghost has no zero modes.

3.2. Fermionic zero modes

To count fermion zero modes, we need to compute the regu-
larized number of discrete modes ξ (k)+

μ and ξ̂ (k)+
μ , k = 1, 2, . . . , on 

AdS2. The relevant computations are available in [12,14,17] and we 
only mention final results. Firstly, it may be shown that the regu-
larized number of modes of both ξ and ξ̂ is given by −1. Further, 
these modes should be tensored with the spinors associated with 
directions transverse to AdS2. This will give rise to additional mul-
tiplicity factors. To determine the multiplicity, we note first that 
the near horizon geometry of the black hole has a superconformal 
symmetry su(1, 1|1) with fermionic generators Gα

n where α = ±
and n ∈ Z + 1

2 . The gravitino zero modes we consider are associated 
with the generators Gα

n where |n| ≥ 3
2 . In particular, we identify Gα

n

with n ≥ 3
2 with ξk where n = k + 1

2 and Gα
n with n ≤ − 3

2 with ξk

where n = −k − 1
2 . Hence, there is an overall multiplicity factor of 

2 coming from α taking values + and −. Therefore the number of 
fermion zero modes is

n f
0 = (−1 − 1) × 2 = −4. (28)

Then the contribution to the log term from the fermionic zero 
modes is

δZ |fermions = − (
β f − 1

)
n f

0 ln a = +36 ln a. (29)

The overall minus is on account of Grassmann odd statistics. 
Adding (27) and (29) we see that the log term is given by

�F = (−48 + 36) ln a = −12 ln a. (30)
4. On the comparison with microscopics

We have so far computed the log term for magnetically charged 
AdS4 extremal black holes using the quantum entropy function. In 
this section we shall very briefly discuss how in principle a match 
with the proposed microscopic answer of [29] may be carried out. 
At first glance one may expect that the large N expansion of the 
logarithm of the topologically twisted index in the CFT computed 
in [29] may be matched term by term with the large a expansion 
of the logarithm of the quantum entropy function. We note how-
ever, that several steps should in principle be necessary to carry 
out before a match can be meaningfully proposed.

Firstly, the index computed by [29] measures the black hole en-
tropy in the grand canonical ensemble as it employs the AdS4/CFT3
correspondence. In contrast, the natural boundary conditions for 
the quantum entropy function (1) pick out the microcanonical en-
semble [9]. While the choice of ensemble is irrelevant in the strict 
large N limit, it is typically important when finite N effects are 
taken into account. Indeed examples exist where the choice of en-
semble is explicitly shown to affect the value of the log term [15]. 
Therefore, as a first step, we expect that one would need to go to 
the microcanonical ensemble when computing the CFT answer to 
match with the quantum entropy function.

Second, it is not obvious how the naive large N scalings of the 
log of the index are to be reproduced by the quantum entropy 
function. In particular, it appears from the analysis of [29] that 
ln Z scales as

ln Z ∼ N3/2 +O (N ln N) . (31)

The N3/2 term precisely matches with the Bekenstein Hawking en-
tropy of the black hole, but the possible subleading term of order 
N ln N is particularly surprising from the point of view of the gen-
eral scalings of contributions to the quantum entropy as expected 
from the quantum entropy function. In particular, on going through 
the scaling analysis of Equation (4), it is apparent that we do not 
expect a term of the form N ln N , and that this term should drop 
from the CFT3 answer if a match with the quantum entropy func-
tion is to be possible.

Remarkably, it seems that a numerical estimate of the large N
behavior of the index produces the pattern one would naturally 
expect from the quantum entropy function scalings, including an 
absence of the N ln N term, and the presence of the ln N term, 
albeit with a mismatching coefficient [32]. This remarkable feature 
should certainly be better understood by carrying out a systematic 
large N expansion of the CFT index while accounting for the choice 
of ensemble as we have indicated above. It would be interesting to 
return to these questions in the future.
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