G. Liu, Y. Qin, Z. Li, and Y. Qu, Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era, Biotechnology Advances, vol.31, issue.6, pp.962-75, 2013.
DOI : 10.1016/j.biotechadv.2013.03.001

H. Bouws, A. Wattenberg, and H. Zorn, Fungal secretomes???nature???s toolbox for white biotechnology, Applied Microbiology and Biotechnology, vol.5, issue.24, pp.381-389, 2008.
DOI : 10.1007/s00253-002-1169-3

I. Druzhinina, V. Seidl-seiboth, A. Herrera-estrella, B. Horwitz, C. Kenerley et al., Trichoderma: the genomics of opportunistic success, Nature Reviews Microbiology, vol.270, issue.10, pp.749-59, 2011.
DOI : 10.1111/j.1574-6968.2007.00659.x

. Ivanova, Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib1 expression and loss of cellulase induction, Biotechnology for Biofuels, vol.6, issue.1, p.209, 2017.
DOI : 10.1038/nmeth.1363

E. Reese, History of the cellulase program at the U.S. army Natick Development Center, Biotechnol Bioeng Symp, vol.6, pp.9-20, 1976.

C. Kubicek, A. Herrera-estrella, V. Seidl-seiboth, D. Martinez, I. Druzhinina et al., Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma, Genome Biology, vol.12, issue.4, p.40, 2011.
DOI : 10.1093/bioinformatics/btm076

E. R. Bayer and . Mary, Remembering Mary (1917 to 2008): editorial introduction to the thematic series on the life and lifework of Mary Mandels, first lady of cellulase research, Biotechnology for Biofuels, vol.2, issue.1, p.23, 1917.
DOI : 10.1186/1754-6834-2-23

D. Eveleigh and B. Montenecourt, Increasing Yields of Extracellular Enzymes, Adv Appl Microbiol, vol.25, pp.57-74, 1979.
DOI : 10.1016/S0065-2164(08)70146-1

R. Peterson and H. Nevalainen, Trichoderma reesei RUT-C30 - thirty years of strain improvement, Microbiology, vol.158, issue.1, pp.58-68, 2012.
DOI : 10.1099/mic.0.054031-0

E. Torigoi, F. Henrique-silva, J. Escobar-vera, J. Carle-urioste, O. Crivellaro et al., Mutants of Trichoderma reesei are defective in cellulose induction, but not basal expression of cellulase-encoding genes, Gene, vol.173, issue.2, pp.199-203, 1996.
DOI : 10.1016/0378-1119(96)00219-3

M. Nitta, T. Furukawa, Y. Shida, K. Mori, S. Kuhara et al., A new Zn(II)2Cys6-type transcription factor BglR regulates ??-glucosidase expression in Trichoderma reesei, Fungal Genetics and Biology, vol.49, issue.5, pp.388-97, 2012.
DOI : 10.1016/j.fgb.2012.02.009

P. Jde, O. Furukawa, T. Mori, K. Shida, Y. Hirakawa et al., Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed in Japan, Biosci Biotechnol Biochem, vol.77, pp.534-577, 2013.

M. Hakkinen, M. Valkonen, A. Westerholm-parvinen, N. Aro, M. Arvas et al., Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production, Biotechnology for Biofuels, vol.7, issue.1, p.14, 2014.
DOI : 10.1016/0168-1656(92)90074-J

L. Crom, S. Schackwitz, W. Pennacchio, L. Magnuson, J. Culley et al., Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing, Proceedings of the National Academy of Sciences, vol.72, issue.3, pp.16151-16157, 2009.
DOI : 10.1128/AEM.72.3.2126-2133.2006

Y. Shida, K. Yamaguchi, M. Nitta, A. Nakamura, M. Takahashi et al., The impact of a single-nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant, Biotechnology for Biofuels, vol.32, issue.5, p.230, 2015.
DOI : 10.1093/nar/gkh340

M. Vitikainen, M. Arvas, T. Pakula, M. Oja, M. Penttila et al., Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties, BMC Genomics, vol.11, issue.1, p.441, 2010.
DOI : 10.1186/1471-2164-11-441

P. Jde, O. Furukawa, T. Shida, Y. Mori, K. Kuhara et al., Identification of major facilitator transporters involved in cellulase production during lactose culture of Trichoderma reesei PC, pp.3-7

A. Lichius, F. Bidard, F. Buchholz, L. Crom, S. Martin et al., Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype, BMC Genomics, vol.8, issue.6, p.326, 2015.
DOI : 10.1101/gad.8.20.2504

URL : https://hal.archives-ouvertes.fr/hal-01149671

I. Druzhinina, M. Schmoll, B. Seiboth, and C. Kubicek, Global Carbon Utilization Profiles of Wild-Type, Mutant, and Transformant Strains of Hypocrea jecorina, Applied and Environmental Microbiology, vol.72, issue.3, pp.2126-2159, 2006.
DOI : 10.1128/AEM.72.3.2126-2133.2006

M. Schmoll, S. Zeilinger, R. Mach, and C. Kubicek, Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach, Fungal Genetics and Biology, vol.41, issue.9, pp.877-87, 2004.
DOI : 10.1016/j.fgb.2004.06.002

M. Schmoll, L. Franchi, and C. Kubicek, Envoy, a PAS/LOV Domain Protein of Hypocrea jecorina (Anamorph Trichoderma reesei), Modulates Cellulase Gene Transcription in Response to Light, Eukaryotic Cell, vol.4, issue.12, pp.1998-2007, 2005.
DOI : 10.1128/EC.4.12.1998-2007.2005

H. Koike, A. Aerts, K. Labutti, I. Grigoriev, and S. Baker, Strains, Industrial Biotechnology, vol.9, issue.6, pp.352-67, 2013.
DOI : 10.1089/ind.2013.0015

F. Castellanos, M. Schmoll, P. Martinez, D. Tisch, C. Kubicek et al., Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei, Fungal Genetics and Biology, vol.47, issue.5, pp.468-76, 2010.
DOI : 10.1016/j.fgb.2010.02.001

H. Marie-nelly, M. Marbouty, A. Cournac, J. Flot, G. Liti et al., High-quality genome (re)assembly using chromosomal contact data, Nature Communications, vol.5, p.5695, 2014.
DOI : 10.1080/01621459.2000.10473908

URL : https://hal.archives-ouvertes.fr/hal-01138788

I. Druzhinina, A. Kopchinskiy, E. Kubicek, and C. Kubicek, A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness, Biotechnology for Biofuels, vol.7, issue.Web Server issu, p.75, 2016.
DOI : 10.1186/1471-2105-7-474

E. Jourdier, L. Baudry, D. Poggi-parodi, Y. Vicq, R. Koszul et al., Proximity ligation scaffolding and comparison of two Trichoderma reesei strains genomes, Biotechnology for Biofuels, vol.18, issue.Suppl 6, p.151, 2017.
DOI : 10.1093/bioinformatics/18.suppl_1.S225

URL : https://hal.archives-ouvertes.fr/hal-01581813

V. Farkas, S. Sestak, M. Gresíak, N. Kolarova, L. Labudova et al., Induction of cellulase in trichoderma reesei grown on lactose, Acta Biotechnologica, vol.97, issue.5, pp.425-434, 1987.
DOI : 10.1007/BF00127031

Q. Xiang and N. Glass, Identification of vib-1, a locus involved in vegetative incompatibility mediated by het-c in Neurospora crassa, Genetics, vol.162, pp.89-101, 2002.

M. Slattery, D. Liko, and W. Heideman, The Function and Properties of the Azf1 Transcriptional Regulator Change with Growth Conditions in Saccharomyces cerevisiae, Eukaryotic Cell, vol.5, issue.2, pp.313-333, 2006.
DOI : 10.1128/EC.5.2.313-320.2006

C. Tian, W. Beeson, A. Iavarone, J. Sun, M. Marletta et al., Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa, Proceedings of the National Academy of Sciences, vol.3, issue.2, pp.22157-62, 2009.
DOI : 10.1186/1471-2105-5-54

S. Shahi, L. Fokkens, P. Houterman, and M. Rep, Suppressor of fusion, a Fusarium oxysporum homolog of Ndt80, is required for nutrient-dependent regulation of anastomosis, Fungal Genetics and Biology, vol.95, pp.49-57, 2016.
DOI : 10.1016/j.fgb.2016.08.005

J. Li, J. Wang, S. Wang, M. Xing, S. Yu et al., Achieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters, Microbial Cell Factories, vol.11, issue.1, p.84, 2012.
DOI : 10.1016/0168-1656(92)90074-J

URL : https://microbialcellfactories.biomedcentral.com/track/pdf/10.1186/1475-2859-11-84?site=microbialcellfactories.biomedcentral.com

S. Paul, J. Klutts, and W. Moye-rowley, Analysis of Promoter Function in Aspergillus fumigatus, Eukaryotic Cell, vol.11, issue.9, pp.1167-77, 2012.
DOI : 10.1128/EC.00174-12

C. Sibthorp, H. Wu, G. Cowley, P. Wong, P. Palaima et al., Transcriptome analysis of the filamentous fungus Aspergillus nidulans directed to the global identification of promoters, BMC Genomics, vol.14, issue.1, p.847, 2013.
DOI : 10.1016/j.fgb.2004.08.001

H. Durand, M. Clanet, and G. Tiraby, Genetic improvement of Trichoderma reesei for large scale cellulase production, Enzyme and Microbial Technology, vol.10, issue.6, pp.341-347, 1988.
DOI : 10.1016/0141-0229(88)90012-9

K. Nevalainen and E. Palva, Production of extracellular enzymes in mutants isolated from Trichoderma viride unable to hydrolyze cellulose, Appl Environ Microbiol, vol.35, pp.11-17, 1978.

J. Cherry and A. Fidantsef, Directed evolution of industrial enzymes: an update, Current Opinion in Biotechnology, vol.14, issue.4, pp.438-481, 2003.
DOI : 10.1016/S0958-1669(03)00099-5

Y. Xiong, J. Sun, and N. Glass, VIB1, a Link between Glucose Signaling and Carbon Catabolite Repression, Is Essential for Plant Cell Wall Degradation by Neurospora crassa, PLoS Genetics, vol.9, issue.8, p.1004500, 2014.
DOI : 10.1371/journal.pgen.1004500.s008

URL : http://doi.org/10.1371/journal.pgen.1004500

C. Cuozzo, A. Porcellini, T. Angrisano, A. Morano, B. Lee et al., DNA Damage, Homology-Directed Repair, and DNA Methylation, PLoS Genetics, vol.89, issue.7, p.110, 2007.
DOI : 10.1371/journal.pgen.0030110.sg006

URL : http://doi.org/10.1371/journal.pgen.0030110.eor

O. Hagan and H. , Chromatin modifications during repair of environmental exposure-induced DNA damage: A potential mechanism for stable epigenetic alterations, Environmental and Molecular Mutagenesis, vol.13, issue.141, pp.278-91, 2014.
DOI : 10.1101/gad.13.15.1924

L. Ries, N. Belshaw, M. Ilmen, M. Penttila, M. Alapuranen et al., The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei, Applied Microbiology and Biotechnology, vol.18, issue.Corrigendum, pp.749-62, 2014.
DOI : 10.1007/s00438-003-0895-2

K. Dementhon, G. Iyer, and N. Glass, VIB-1 Is Required for Expression of Genes Necessary for Programmed Cell Death in Neurospora crassa, Eukaryotic Cell, vol.5, issue.12, pp.2161-73, 2006.
DOI : 10.1128/EC.00253-06

M. Katz, K. Braunberger, G. Yi, S. Cooper, H. Nonhebel et al., A p53- like transcription factor similar to Ndt80 controls the response to nutrient stress in the filamentous fungus, Aspergillus nidulans, F1000Res, vol.2, p.72, 2013.

J. Niones and D. Takemoto, VibA, a Homologue of a Transcription Factor for Fungal Heterokaryon Incompatibility, Is Involved in Antifungal Compound Production in the Plant-Symbiotic Fungus Epichlo?? festucae, Eukaryotic Cell, vol.162, issue.1, pp.13-24, 2015.
DOI : 10.1007/s00018-011-0849-5

. Ivanova, 10:209 ? We accept pre-submission inquiries ? Our selector tool helps you to find the most relevant journal ? We provide round the clock customer support ? Convenient online submission ? Thorough peer review ? Inclusion in PubMed and all major indexing services ? Maximum visibility for your research Submit your manuscript at www.biomedcentral, com/submit Submit your next manuscript to BioMed Central and we will help you at every step, 2017.

J. Van-munster, P. Daly, S. Delmas, S. Pullan, M. Blythe et al., The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger, Fungal Genetics and Biology, vol.72, pp.34-47, 2014.
DOI : 10.1016/j.fgb.2014.04.006

C. Derntl, L. Gudynaite-savitch, S. Calixte, T. White, R. Mach et al., Mutation of the Xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains, Biotechnology for Biofuels, vol.6, issue.1, p.62, 2013.
DOI : 10.1016/j.jbiotec.2009.10.012

A. Mach-aigner, M. Pucher, M. Steiger, G. Bauer, S. Preis et al., Transcriptional Regulation of xyr1, Encoding the Main Regulator of the Xylanolytic and Cellulolytic Enzyme System in Hypocrea jecorina, Applied and Environmental Microbiology, vol.74, issue.21, pp.6554-62, 2008.
DOI : 10.1128/AEM.01143-08

C. Ivanova, J. Baath, B. Seiboth, and C. Kubicek, Systems Analysis of Lactose Metabolism in Trichoderma reesei Identifies a Lactose Permease That Is Essential for Cellulase Induction, PLoS ONE, vol.57, issue.5, p.62631, 2013.
DOI : 10.1371/journal.pone.0062631.s006

T. Portnoy, A. Margeot, R. Linke, L. Atanasova, E. Fekete et al., The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation, BMC Genomics, vol.6, issue.1, p.269, 2011.
DOI : 10.1089/106652799318274

URL : https://hal.archives-ouvertes.fr/inserm-00663944

J. Li, L. Lin, H. Li, C. Tian, and Y. Ma, Transcriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides D-glucose, D-xylose and L-arabinose, Biotechnology for Biofuels, vol.7, issue.1, p.31, 2014.
DOI : 10.1073/pnas.80.6.1730

E. Akel, B. Metz, B. Seiboth, and C. Kubicek, Molecular Regulation of Arabinan and L-Arabinose Metabolism in Hypocrea jecorina (Trichoderma reesei), Eukaryotic Cell, vol.8, issue.12, pp.1837-1881, 2009.
DOI : 10.1128/EC.00162-09

A. Stricker, R. Mach, and L. De-graaff, Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei), Applied Microbiology and Biotechnology, vol.270, issue.Pt 3, pp.211-231, 2008.
DOI : 10.1042/bj2980705

S. Coradetti, J. Craig, Y. Xiong, T. Shock, C. Tian et al., Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi, Proceedings of the National Academy of Sciences, vol.26, issue.1, pp.7397-402, 2012.
DOI : 10.1093/bioinformatics/btp616

URL : http://www.pnas.org/content/109/19/7397.full.pdf

E. Znameroski and N. Glass, Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction, Biotechnology for Biofuels, vol.6, issue.1, p.6, 2013.
DOI : 10.1073/pnas.0809575106

R. Bischof, L. Fourtis, A. Limbeck, C. Gamauf, B. Seiboth et al., Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose, Biotechnology for Biofuels, vol.6, issue.1, p.127, 2013.
DOI : 10.1007/BF00500103

Y. Xiong, V. Wu, A. Lubbe, L. Qin, S. Deng et al., A fungal transcription factor essential for starch degradation affects integration of carbon and nitrogen metabolism, PLOS Genetics, vol.44, issue.5, p.1006737, 2017.
DOI : 10.1371/journal.pgen.1006737.s009

D. Poggi-parodi, F. Bidard, A. Pirayre, T. Portnoy, C. Blugeon et al., Kinetic transcriptome analysis reveals an essentially intact induction system in a cellulase hyper-producer Trichoderma reesei strain, Biotechnology for Biofuels, vol.32, issue.suppl 2, p.173, 2014.
DOI : 10.1093/nar/gkh894

URL : https://hal.archives-ouvertes.fr/hal-01112360

M. Mandels, J. Weber, and R. Parizek, Enhanced cellulase production by a mutant of Trichoderma viride, Appl Microbiol, vol.21, pp.152-156, 1971.

E. Hartree, Determination of protein: A modification of the lowry method that gives a linear photometric response, Analytical Biochemistry, vol.48, issue.2, pp.422-429, 1972.
DOI : 10.1016/0003-2697(72)90094-2

T. Ghose, Measurement of cellulase activities, Pure and Applied Chemistry, vol.59, issue.2, pp.257-68, 1987.
DOI : 10.1351/pac198759020257

Z. Xiao, R. Storms, and A. Tsang, Microplate-based filter paper assay to measure total cellulase activity, Biotechnology and Bioengineering, vol.160, issue.108, pp.832-839, 2004.
DOI : 10.1002/bit.20286

D. Sternberg and G. Mandels, Induction of cellulolytic enzymes in Trichoderma reesei by sophorose, J Bacteriol, vol.139, pp.761-770, 1979.

R. Schiestl and R. Gietz, High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier, Current Genetics, vol.76, issue.5-6, pp.339-385, 1989.
DOI : 10.1007/BF00340712

T. Christianson, R. Sikorski, D. M. Shero, J. Hieter, and P. , Multifunctional yeast high-copy-number shuttle vectors, Gene, vol.110, issue.1, pp.119-141, 1992.
DOI : 10.1016/0378-1119(92)90454-W

M. Singh and P. Weil, A method for plasmid purification directly from yeast, Analytical Biochemistry, vol.307, issue.1, pp.13-20, 2002.
DOI : 10.1016/S0003-2697(02)00018-0

M. Penttila, H. Nevalainen, M. Ratto, E. Salminen, and J. Knowles, A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei, Gene, vol.61, issue.2, pp.155-64, 1987.
DOI : 10.1016/0378-1119(87)90110-7

B. Metz, V. Seidl-seiboth, T. Haarmann, A. Kopchinskiy, P. Lorenz et al., Expression of Biomass-Degrading Enzymes Is a Major Event during Conidium Development in Trichoderma reesei, Eukaryotic Cell, vol.10, issue.11, pp.1527-1562, 2011.
DOI : 10.1128/EC.05014-11

L. Jourdren, M. Bernard, M. Dillies, L. Crom, and S. , Eoulsan: a cloud computing-based framework facilitating high throughput sequencing analyses, Bioinformatics, vol.28, issue.11, pp.1542-1545, 2012.
DOI : 10.1093/bioinformatics/bts165

URL : https://academic.oup.com/bioinformatics/article-pdf/28/11/1542/16904448/bts165.pdf

B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, Ultrafast and memoryefficient alignment of short DNA sequences to the human genome

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2087, 2009.
DOI : 10.1093/bioinformatics/btp352

URL : https://academic.oup.com/bioinformatics/article-pdf/25/16/2078/531810/btp352.pdf

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biology, vol.11, issue.10, p.106, 2010.
DOI : 10.1186/gb-2010-11-10-r106

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218662/pdf

W. Li, J. Wooley, and A. Godzik, Probing Metagenomics by Rapid Cluster Analysis of Very Large Datasets, PLoS ONE, vol.234, issue.10, p.3375, 2008.
DOI : 10.1371/journal.pone.0003375.g007

K. Chen, J. Wallis, M. Mclellan, D. Larson, J. Kalicki et al., BreakDancer: an algorithm for high-resolution mapping of genomic structural variation, Nature Methods, vol.453, issue.9, pp.677-81, 2009.
DOI : 10.1101/gr.074492.107