

Modelling facilitation or competition within a root system: importance of the overlap of root depletion and accumulation zones

Henri de Parseval, Sébastien Barot, Jacques Gignoux, Jean-Christophe Lata,

Xavier Raynaud

▶ To cite this version:

Henri de Parseval, Sébastien Barot, Jacques Gignoux, Jean-Christophe Lata, Xavier Raynaud. Modelling facilitation or competition within a root system: importance of the overlap of root depletion and accumulation zones. Plant and Soil, 2017, 419 (1-2), pp.1-15. 10.1007/s11104-017-3321-y . hal-01593507

HAL Id: hal-01593507 https://hal.sorbonne-universite.fr/hal-01593507v1

Submitted on 26 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Modelling facilitation or competition within a root system: importance
2	of the overlap of root depletion and accumulation zones
3	
4	Henri de Parseval ¹ , Sébastien Barot ¹ , Jacques Gignoux ¹ , Jean-Christophe Lata ^{1,2} and
5	Xavier Raynaud ^{*,1}
6	
7	¹ Sorbonne Universités, UPMC Univ. Paris 06, CNRS, INRA, IRD, Univ Paris Diderot Paris 07,
8	UPEC, UMR 7618, Institute of Ecology and Environmental Sciences – Paris, Tour 44-45, 4 place
9	Jussieu, 75005 Paris, France
10	² Department of Geoecology and Geochemistry, Institute of Natural Resources, Tomsk Polytechnic
11	University, Lenin Avenue, 30, 634050 Tomsk, Russia
12	*Corresponding author: <u>xavier.raynaud@upmc.fr</u>
13	
14	

15 Summary

16 Aims: The concept of intra-plant, inter-root competition considers the overlap of nutrient depletion 17 zones around roots, but neglects the spatial pattern of root exudates that can increase nutrient 18 availability. We tested the hypothesis that interactions between nutrient accumulation zones due to 19 exudation by different roots can lead to intra-plant inter-root facilitation.

Methods: We used the PARIS model (Raynaud et al 2008) to simulate phosphorus uptake by a population of roots that are able to increase phosphorus availability by exuding citrate. We carried out several simulations with the same parameters but with increasing root density in order to study out if changes in root densities would alter nutrient uptake per unit root.

Results: Emerging relationships between root uptake efficiency and root length density indicated cases of inter-root competition or facilitation. The sizes of the accumulation and depletion zones were calculated to explain these results. Our simulations showed a continuum between cases of inter-root competition and facilitation. Facilitation occurred at low exudation rates, when phosphorus supply was not saturated within the phosphorus depletion zone surrounding roots. Low

exudation systems led to a lower phosphorus uptake per unit root length, but minimized phosphoruslosses in the process.

31 *Conclusions*: Based on our model, we derived conditions that allowed predicting whether 32 competition, facilitation or no interaction, is the dominant interaction between roots within a root 33 system, based on the different distances to which an isolated root alters P concentration and supply.

34

35 Key-words: diffusion, exudation, modelling, phosphorus, rhizosphere, spatial distribution

- 36
- 37

38 Introduction

39 Living roots contribute to plant mineral nutrition by two complementary processes: nutrient 40 absorption and exudation. On the one hand, plants are able to adjust the location, surface and uptake 41 rates of their roots to the local concentration in available nutrients (Hodge 2004). On the other hand, 42 they are able to locally increase the availability of mineral nutrients by releasing various products 43 (protons, carbohydrates, secondary metabolites) in the soil surrounding their roots (Dakora and 44 Phillips 2002). For example, experiments and models have shown that local modifications of soil 45 pH due to the release of organic acids by roots can alter the availability of phosphorus (Hinsinger 46 2001) and significantly increase plant P uptake at the level of individual plants (Kirk et al, 1999b) 47 or plant community (Li et al, 2007). Root exudates can also boost microbial activities, leading to increased mineralization which can, in turn, increase nutrient availability locally (Dijkstra and 48 49 Cheng 2007; Shahzad et al. 2015).

50 By taking up nutrients at their surface, roots create diffusion gradients leading to the formation of depletion zones around them (Tinker and Nye, 2000). In the same way, exudates 51 52 accumulate around roots to form accumulation zones. Nearby roots therefore compete with each other when their respective depletion zones overlap (Ge et al. 2000). Similarly, if exudates increase 53 54 nutrient availability in the soil surrounding roots, nearby roots could also increase their respective 55 nutrient uptake when exudate accumulation zones overlap. These zones of influence (i.e. depletion 56 and accumulation zones around roots), from which competitive or facilitative interactions can arise, 57 are therefore of fundamental importance for plant nutrition and soil functioning (York et al. 2016). 58 Yet, the consequences of these zones of influence are still poorly understood due to their size which 59 is restricted to short distances around roots (i.e. a few millimetres). In order to tackle these limits, 60 several modelling approaches have been developed to explore how root activity can lead to the 61 creation of these root zones of influence, and alter nutrient availability and plant nutrient uptake in the case of (1) single roots (Kirk et al, 1999a; Ptashnyk et al. 2011; Zygalakis and Roose 2012), (2) 62 63 root systems of single plants (Rubio et al. 2001; Schnepf et al. 2012; Dunbabin et al. 2013) or (3) 64 root systems of different plants in a community (Raynaud et al. 2008). All these studies found that 65 the distance between roots, which results from root system characteristics (size, architecture, root 66 density), could lead to the overlap of these accumulation and/or depletion zones. This could thus 67 alter nutrient availability and plant nutrient uptake in a complex manner: intra-plant, inter-root 68 facilitation adds to intra- and inter-plant competition as a constraint shaping root system architecture and root foraging strategies (Rubio et al. 2001). In this case, net facilitation between 69 70 roots would occur when the synergistic effect of having a root neighbour is higher than its 71 competitive effect, so that increasing root density increases the absorption of nutrient per unit of 72 root length. Facilitation as a belowground interaction is a quite common concept (Lin et al. 2012). 73 However, to our knowledge, it has never been used at the scale of roots within a single root-system and existing modelling studies have not yet studied how the simultaneous development of 74 accumulation and depletion zones alters rhizosphere nutrient availability and nutrient uptake. 75

76 Models of solutes movements around roots indicate that the overlap of depletion or 77 accumulation zones depends on factors controlling diffusion fluxes in soils such as soil physico-78 chemical characteristics, soil water content (Williams and Yanai 1996; Raynaud 2010), as well as 79 the architecture of the root system (e.g. root density). Overlap increases with root density (Rubio et 80 al. 2001; Schnepf et al. 2012) and the consequences of this overlap on plant nutrition depends on 81 the process considered: overlap of nutrient depletion zones should decrease root uptake efficiency 82 (i.e. the amount of nutrient taken up per unit root) whereas overlap of accumulation zones could 83 increase root uptake efficiency if exudates increase nutrient availability. The distance between roots 84 and the respective size of root accumulation and depletion zones should thus determine whether 85 intra-plant, inter-root competition or intra-plant, inter-root facilitation occurs. This latter possibility 86 has so far hardly been mentioned.

Using a simulation model, our objective was to test the above rationale, i.e. to determine whether inter-root facilitation is possible and if so, under which conditions. To do so, we considered the case of a small volume of soil explored by the roots of a single plant individual that takes up a mineral nutrient and can increase its availability through the exudation of solutes. In order to carry out realistic simulations, we have chosen to model the uptake of phosphorus (P) and the changes in its availability through the release of citrate (C) by roots (Hodge, 2004; Fig. 1). The case of citrate

93 is well documented and relatively simple to model as a direct effect of C concentration on soil 94 physico-chemical properties (Hinsinger 2001). For example, in some soils, phosphorus can be found in the form of phosphate rocks (e.g. apatite) that can release soluble phosphate when in 95 96 presence of plant-released citrate, due to lower pH conditions in the plant rhizosphere (Li et al, 97 2007). In the modelled soil volume, interactions between roots were assessed by calculating the relationships between plant P uptake and root length density, as well as P uptake efficiency (P 98 99 uptake per unit of root length). As root length density increases, the mean distance between 100 individual roots decreases, which should lead to more overlap of the different accumulation and 101 depletion zones. In this context, we distinguished inter-root competition from facilitation by 102 negative and positive relationships between root length density and P uptake efficiency.

103 We expected the outcome of our model to depend on all factors that can affect the sizes of 104 root accumulation and depletion zones, i.e. on any factor that affects the inputs, diffusion and losses of the solutes involved. Here, we mostly focused on C exudation rate. Our hypotheses were that: (i) 105 both inter-root competition and facilitation can arise in our model system, (ii) the occurrence of 106 107 each type of interaction can be explained by patterns of overlap of accumulation and depletion zones and especially (iii) inter-root facilitation should emerge from overlap of accumulation zones 108 109 with no, or reduced, overlap of P depletion zones. A last hypothesis arising from (iii) is that (iv) 110 inter-root facilitation should occur for intermediate values of root length density.

111

112 Material and Methods

113 Model description

114 We modelled the case of a plant taking up P, and exuding C (Fig. 1), using a modified version (see below) of the PARIS model (Raynaud and Leadley 2004; Raynaud et al. 2008) which is an 115 116 extension of the Barber-Cushman model (Barber and Cushman, 1981) to a set of roots exploring a horizontal layer of soil. The model simulates different rhizosphere processes, including solutes (P 117 and C) diffusion and losses, P absorption at the root surface, C exudation by roots, and the 118 production of available P from a chemical reaction between C and soil (Kirk et al 1999a; Kirk et al 119 120 1999b). Model variables and parameters are summarized in Tables 1 and 2 and details of the model 121 equations are given below.

122 All the modelled processes occur in a 1 cm thick (parameter z) layer of soil, having a surface 123 of 2x2 cm. In contrast to the original PARIS model (Raynaud and Leadley 2004; Raynaud et al. 124 2008) that considered a hexagonal grid, the soil layer is organized as a 100x100 squared grid of voxels that can be either soil or root. Tests comparing squared and hexagonal geometries as well as 125 the comparison between the diffusion fluxes calculated with these geometries and those obtained 126 127 from the analytical solution around a single root indicate that, at steady state, results are very robust 128 to the geometry of the grid. Voxel width (h=0.2 mm) is equal to the diameter of roots and the modelled soil layer is 1 voxel high so that voxels have dimensions $h \times h \times z$. Solute fluxes through 129 130 soil are thus only horizontal. Roots are assumed to grow vertically down into the soil, and no root 131 branching occurs within the simulated soil volume. As we consider roots having the same geometry 132 as voxels, one root has an exchange surface $(h \times z)$ with the four orthogonal nearest voxel neighbours. We define d_R as the root length density within the soil volume (cm cm⁻³). To eliminate 133 boundary conditions problems and avoid edge effects, we consider the surface modelled as a torus 134 in which top and bottom, as well as left and right edges are connected (periodic boundary condition; 135 136 Haefner 2012).

137 Soil water content (parameter θ , cm³ cm⁻³) is constant and homogeneous over the modelled 138 soil volume. The diffusion of solutes (phosphorus and citrate) only occurs within the soil liquid 139 phase and is thus a function of θ . For a given solute *i*, the diffusion flux between two adjacent soil 140 voxels *v* and *w* is:

$$F_{(i)\nu,w} = -D_{e,i}\frac{\Delta C_i}{h} \tag{1}$$

141 where $D_{e,i}$ (cm² s⁻¹) is the effective diffusion coefficient of solutes in the soil and ΔC_i (mmol cm⁻³) 142 is the concentration difference between voxels *v* and *w* (O'Reilly and Beck 2006). $D_{e,i}$ is calculated 143 from θ , the solute diffusion coefficient in pure water (D_i , cm² s⁻¹), an impedance factor related to the 144 tortuous pathways of water films in the soil (also known as tortuosity factor, f_i ; Olesen et al, 145 2001)and the soil buffer power for the solute considered (b_i ; van Rees et al. 1990; Raynaud et al. 146 2008):

$$D_{e,i} = D_i \,\theta f_l / b_i \tag{2}$$

147 Soil buffer power (b_i ; which is related to adsorption/desorption of solute on the soil solid-phase; 148 unitless) depends on soil density (ρ), θ and solute distribution coefficient $k_{d,i}$ following:

$$b_i = \theta + \rho k_{d,i} \tag{3}$$

149 and soil impedance factor f_l depends on soil water content and a threshold value below which

150 diffusion ceases due to discontinuous pathways (Olesen et al. 2001):

$$f_l = 1.1(\theta - \theta_{\rm th}) \tag{4}$$

151 where θ_{th} represents the soil water content threshold below which diffusion ceases due to 152 discontinuous diffusion pathways.

Each voxel loses P (L_P , mmol_P s⁻¹) and C (L_C , mmol_C s⁻¹) at rates μ_P (s⁻¹), μ_C (s⁻¹) that express the disappearance of these solutes due to consumption by other organisms.

All roots are assumed to be identical, except for their position in the soil volume. Roots take up P from adjacent soil voxels at a rate per unit root surface that follows a Michaëlis-Menten equation, with maximum uptake rate I_{max} (mmol_P cm⁻² s⁻¹) and half saturation constant for uptake K_U (mmol_P cm⁻³), where $C_{P,v}$ is P concentration in the adjacent soil voxel v (mmol_P cm⁻³):

$$U_{P} = I_{max} \frac{C_{P,\nu}}{C_{P,\nu} + K_{U}}.$$
(5)

Plant P uptake rate, A_P , is calculated as the sum of uptake rates of all roots present in the soil: $A_P = n_R U_P$ where n_R is the number of roots in the modelled soil volume.

161 Roots release C in adjacent voxels at constant rate e_c (mmol_C cm⁻² s⁻¹) per unit root surface.

162 To simulate P solubilization, available P is released into each soil voxel at the rate S_P 163 (mmol_P cm⁻³ s⁻¹) depending on C concentration in the soil voxel. When C is not present in a soil 164 voxel, P supply rate is constant with $S_P = S_{min}$. When C is present, P supply is increased depending 165 on C concentration (C_{C,v}) up to $S_P = S_{max}$ following the relationship:

$$S_{P} = S_{min} + (S_{max} - S_{min}) \frac{C_{C,\nu}}{C_{C,\nu} + K_{S}}$$
(6)

where S_{max} (mmol_P cm⁻³ s⁻¹) is the soil maximal P supply rate, $C_{C,v}$ is the C concentration in the soil voxel v and K_S (mmol_C cm⁻³) is a half-saturation constant for P supply (Raynaud et al. 2008).

168 Overall, solute concentration changes across time in a soil voxel *v* can be summarized by the 169 differential equations below (see Supplementary Material for the model equation in continuous 170 form), where *w* corresponds to the four neighbouring soil voxels of *v*:

$$\frac{dC_{C,v}}{dt} = (hz)\frac{e_C}{hhz} - \mu_C C_{C,v} + \frac{1}{h}\sum_{w=1}^4 F_{(C)v,w}$$

$$\frac{dC_{P,v}}{dt} = S_P - (hz)\frac{U_P}{hhz} - \mu_P C_{P,v} + \frac{1}{h}\sum_{w=1}^4 F_{(P)v,w}$$
for voxels adjacent to roots
$$(7)$$

$$\frac{dC_{C,v}}{dt} = -\mu_C C_{C,v} + \frac{1}{h} \sum_{w=1}^4 F_{(C)v,w}$$
$$\frac{dC_{P,v}}{dt} = S_P - \mu_P C_{P,w} + \frac{1}{h} \sum_{w=1}^4 F_{(P)v,w}$$

for all other voxels.

(8)

172 Numerical analysis

171

Model equations were implemented in JAVA, within the 3Worlds modelling platform (Gignoux et al., 2005; Gignoux et al. 2011). Individual roots were randomly distributed within a 2-dimensional rectangular grid of cells representing the modelled layer of soil. Solutes diffusion and root-soil interactions (absorption and exudation) were programmed as reusable sub-routines plugged into the 3Worlds core application.

178 All parameter values used for simulations are given in Table 2. P and C parameters were 179 taken from different literature sources (see Table 2 for details). We modelled rhizosphere processes for increasing number of roots (n_R) , with values ranging from 1 to 600 roots in a 1x2x2 cm³ soil 180 volume (14 different values of n_R). This corresponds to root length densities d_R ranging from 0.25 181 cm cm⁻³ to 150 cm cm⁻³ (although unrealistic, this upper value was useful for the interpretation of 182 183 our results). Because voxels can be either soil or root but not both, the increase in root density thus 184 reduces the amount of soil modelled, and eventually the total P supply of soil. In the case where 185 supply in all soil voxels is $S_P = S_{max}$, this reduction in P supply is at most 6% between the two extremes of the chosen range of root densities, and less than 1% for densities below 25 cm cm⁻³. 186 187 Roots were placed randomly within the 2x2 cm modelled surface. To avoid the risk that our results 188 depend on a particular root spatial distribution, 5 different maps were used for each root length 189 density value (e.g. 5x14=70 maps in total). The model outputs obtained from these different maps 190 are shown as points in Figs. 3 and 5. As the exudation rate of C (e_c) affects the size of exudation 191 rhizospheres (Raynaud 2010), our simulations were done for several values of this parameter (Table 192 2).

The kinetics and mass-transport equations were solved simultaneously. Model equations (Eqs. 7 and 8) were solved numerically using Forward Time Centered Space (FTCS) finite difference scheme (Press et al. 2007) until all fluxes of P and C reached steady-state (e.g., P supply (S_P) becomes equal to the sum of plant P uptake A_P and P losses L_P , and the rate of C liberated by all roots equals the rate of C lost from the soil). The time step for integration was 10 s. For each simulation, the influx, stocks and outflux of solutes were calculated for both P and C (Table 1). We 199 defined P uptake efficiency UE_P as the quantity of P taken up by unit of root length:

$$UE_P = \frac{A_P}{d_R V} \tag{9}$$

where A_P represents total P absorption and V is the simulated soil volume. 201

202 Assessment of the sizes of root influence regions on soil properties

Our modelling framework produces concentration maps for available P and C (C_P , C_C), as well as 203 204 maps of P supply (S_P) that can be used to measure the spatial influence of roots on soil 205 concentrations and supply. In order to get a simpler description of the size of the region upon which 206 roots have some influence, we have used these calculated maps to assess the sizes of root zones of influence. We considered that (i) the distance to which a root can alter soil properties depended on 207 208 the process considered (i.e. different distances were calculated for C_P , C_C , and S_P) and (ii) the result 209 of root influence on soil properties was the creation of gradients that could be used to estimate these 210 distances.

211 In the case of a single root, defining a "limit" between the volume of soil influenced by the root and bulk soil has to be drawn arbitrarily from the gradient (Hinsinger et al. 2009). For citrate 212 concentrations C_c , this limit was set to a modification by roots > 5% compared to bulk soil values 213 (C accumulation zone, Fig. 2, top left). In the case of P supply S_P , we considered two distinct limits: 214 215 the first corresponding to an increase > 5% of the bulk soil supply (total supply zone), similar to C_C , the second corresponding to 95% of soil maximum supply S_P ("saturated zone", Fig. 2, middle left). 216 217 Considering these two limits for P supply allowed a better description of soil supply heterogeneity. 218 Finally, the size of the P depletion zone was calculated as the distance to the maximum P 219 concentration from each root (Fig. 2, bottom left). These different limits calculated from 220 simulations with a single root were used to calculate the radii of the citrate accumulation zone (r^{I}_{C}) , the total supply zone (r^{1}_{S05}) , the saturated zone (r^{1}_{S95}) and the P depletion zone (r^{1}_{P}) for an isolated 221 222 root. Considering different values for these limits (e.g. 1% instead of 5%) modified the sizes of the 223 different zones considered but did not qualitatively changed the results.

When several roots are present, gradients around individual roots can overlap, so that all the simulated soil volume can be under the influence of one or more roots and the above limits cannot be used. Moreover, if the accumulation or depletion zones of two neighbouring roots overlap, concentrations and supply will not be monotonic along the line between these two roots (Fig. 2, right panels). We thus assumed that the "territory" of a root can be defined as the distance from that root within which the gradient of concentration or supply was monotonic (e.g. citrate concentration decreases to a minimum with increasing distance from the root). This distance no longer measures the size of the zone of influence of a single root, but rather indicates the level of overlapping and interaction between the zones of influence of single roots. Because all roots have identical parameters in a simulation, if all neighbouring root zones of influence overlap, the average radius of the territory of a root is equal to the average half distance between 2 roots for a given root density $r_{max}(d_R) = \sqrt{1/(\pi d_R)}$.

236 In each simulated map, because root positions were drawn randomly, some roots could be 237 isolated from others and thus develop full concentration gradients, whereas others would interact 238 with each other. We thus calculated the average radius of root territory as the distance from a root 239 within which (1) the concentration (or supply flux) was above the limits defined for the isolated root 240 rhizosphere (see above) or (2) the gradient of concentration or supply from that root was monotonic. 241 The corresponding variables, t_C (citrate exudation), t_{S05} (P supply), t_{S95} (saturated P supply) and t_P 242 (P depletion) thus quantify the radius of these territories. Depending on the spatial distribution of 243 roots and the root density in the simulated maps, these distances can take any values between the zone of influence size for a single root when a root is isolated from others (r^{1}_{C} , r^{1}_{S05} , r^{1}_{S95} , r^{1}_{P}), and 244 245 $r_{max}(d_R)$ when all neighbouring roots interact.

246

247 Results

248 Phosphorus fluxes depend on root density and exudation rates

Soil *P* supply– In all simulations, total P supply S_P increased with root length density d_R up to a maximum value that depended on S_{max} (Fig. 3a). The slight decrease observed for very high d_R values was due to the absence of P supply in the voxels occupied by roots, which reduced the total amount of soil voxels that can supply P (see Methods). The relationship between S_P and d_R also depended on C exudation rate e_C , with overall lower values for low C exudation rate e_C .

254 *Plant P uptake and P losses from soil*– Total P uptake A_P always increased with root length density 255 d_R and exudation rates e_C , without reaching saturation (*not shown*). On the contrary, P losses L_P 256 displayed a unimodal shape (Fig. 3b): an increase from low to intermediate d_R as a direct 257 consequence of higher P supply and a decrease once the maximum supply is reached while P uptake 258 A_P carries on increasing. *P uptake efficiency*– Because available P can be taken up by roots or lost through microbial consumption, roots could not take all available P. With the chosen values for P loss rate μ_P , the relative proportion of absorbed P by all roots (A_P) over P supply (S_P) increased with root length density d_R from 0.015 to 0.5, and was higher for smaller e_C values (Fig. 3c). The efficiency of P uptake by single roots (UE_P , Eq. 9) varied depending on C exudation rate e_C (Fig. 3d): for high exudation rates, UE_P always decreased with root density whereas in the case of the lower exudation rate tested, UE_P first increased and then decreased.

266

Patterns of accumulation and depletion zone sizes determine inter-root competition or facilitation

Figure 2 gives an example of a C concentration profile around a single root and the corresponding P 269 supply profile, as well as the calculated influence zone radii r_C^1 , r_{SP05}^1 and r_{SP95}^1 . Due to the non-270 linearity of the relationship between C concentration C_C and P supply S_P (Eq. 6), the calculated C 271 accumulation zone radius, r_c^{l} , was not a good descriptor of the volume upon which roots alter P 272 supply in the soil. We thus focused on territory sizes of P supply (t_{S05}) , P supply saturation (t_{S95}) 273 274 and P depletion (t_P) . In order to illustrate the links between nutrient concentration and territory sizes, Figure 4 maps the changes in P supply around roots, as well as the extent of P depletion zones 275 276 in two maps differing in root length densities and for the three exudation rates tested. The chosen root length densities in these maps correspond to the two contrasted patterns observed for P root 277 278 uptake efficiency in Figure 3d: a decrease of UE_P between low and high root length density for high exudation rate whereas UE_P increased between these two values at low exudation rate. 279

Figure 4 shows that for a citrate exudation rate of 10⁻⁸ mmol cm⁻² s⁻¹, the whole soil volume 280 was influenced by roots for P supply, even at low d_R . At high d_R , P supply was maximized in the 281 whole modelled soil volume. The pattern was similar for a C exudation rate of 10⁻⁹ mmol cm⁻² s⁻¹, 282 although very small regions of bulk soil are still present at low d_R and P supply is not maximized 283 over the whole soil volume. C exudation rates lower than 10⁻⁹ mmol cm⁻² s⁻¹ yielded a slightly 284 285 different pattern, leaving large part of the soil unaffected by roots at low d_R , whereas most soil was 286 affected by roots at high d_R but with supply values $< S_{max}$. In particular, at low d_R , P depletion zones around roots were relatively isolated, whereas most P concentration were under the influence 287 288 of roots at high d_R values.

Figure 5 shows the average territory radius around one root as a function of d_R and e_C and suggests that this extent followed a similar pattern for all three territory types along the gradient of 291 root length density d_R : whatever the territory considered, average territory radii was constant for 292 low d_R values and then decreased with increasing d_R . (Fig. 5). A territory radius equal to $r_{max}(d_R)$ 293 thus indicates that zones of influence of neighbouring roots overlap so that roots mutually influence 294 the solute concentrations in each other's surroundings. The only exception for this general pattern 295 was the radius of saturated P supply territory t_{595} , which was slightly greater at intermediate d_R 296 values compared to low d_R values in the case of intermediate and low values of C exudation (barely 297 visible on Fig. 5, but significant). This increase occurs because close roots increase the saturation of 298 P supply between them, thus increasing the size of their saturation rhizosphere without necessarily 299 merging or overlapping them (see Fig. 4, mid left panel).

300

301 Discussion

302 Most of our hypotheses were confirmed by our study: (i) facilitation between roots of the same root 303 system can occur when the availability of a nutrient (e.g. phosphorus) depends on the exudation of a 304 chemical factor (e.g. citrate) by roots; (ii) facilitation or competition depend on the degree of 305 overlap between the rhizospheres of individual roots; (iv) facilitation occurs at intermediate levels 306 of root density above which P uptake efficiency decreases, i.e. inter-root competition increases. Hypothesis (iii) was only partly confirmed: the overlap of P depletion zones around roots accounted 307 308 well for the emergence of inter-root competition, but the overlap of C accumulation zones was not 309 relevant to fully explain the emergence of inter-root facilitation.

310 To our knowledge, our study is the first exploring the mechanisms through which facilitation within the root system of a single plant can occur. Our results suggest that the ability of 311 312 a plant to increase P availability through exudation does not prevent inter-root competition, but rather creates a continuum between cases of inter-root competition and inter-root facilitation. 313 314 Studies on root foraging strategies have not, to date, considered the consequence of root exudation on nutrient supply (Ge et al. 2000; Cahill and McNickle 2011; Pagès 2011; but see Schnepf et al. 315 316 2012) and have not distinguished the respective scales of root exudation and nutrient uptake 317 (McNickle et al. 2009). Our study suggests that exudation of solutes by neighbouring roots can 318 dramatically alter nutrient availability near the root system so that increasing root density might not necessarily lead to a decrease in root uptake efficiency. Still, our study explored a relatively simple 319 320 case and the robustness of our results and their implications for the understanding of root foraging strategies remain to be thoroughly studied both through modelling and experiments. Below, we 321 322 focus on the mechanisms that lead to the emergence of inter-root facilitation and how they could be 323 generalized. Then, we analyse the implications of the variability of inter-root interactions for root324 foraging strategies.

325 Mechanisms leading to the emergence of facilitation between roots

326 Above all, the possibility of facilitation between roots depends on the mechanisms by which roots 327 are able to locally increase the availability of nutrients. Our model allows tracking the creation of 328 spatial heterogeneity in nutrient stocks and fluxes from individual root activity. In particular, the 329 model allows distinguishing gradients of P supply from the gradients of C concentration that created 330 them. The model thus allows extrapolation of the concept of root zone of influence to fluxes of P 331 whereas it is more often applied to stocks (concentrations of solutes, partial pressure of gas etc.; 332 Hinsinger et al. 2009). Because the model assumes that P supply is a saturating function of C concentration, we distinguished two different territories for P supply: the "saturated territory" (t_{595}), 333 334 i.e. the volume of soil in which the effect of a root is maximum and in which an increase of exudate 335 concentration has no effect, and the total P supply territory (t_{505}) that corresponds to the whole 336 volume in which roots increase P supply.

We first discuss how facilitation and competition can occur in the case of two neighbouring roots and then extend this discussion to a population of roots randomly distributed on a 2D plane. First, consider two identical roots separated by the distance 2*d*, with root zones of influence radii r^{I}_{P} , r^{I}_{S05} and, r^{I}_{S95} (see Supporting information Fig. S1 for an illustration). Because these radii are those of the zones of influence of single roots (see Material and Method section), they do not depend on the distance *d*. These two roots compete for P if their P depletion zones overlap so that they do not compete for P if:

344 $r_P^1 < d$ (condition 1).

Because exudates are released from roots and diffuse into the soil, P supply can change along the distance 2*d*. Both roots mutually alter soil P supply in their vicinity if their total supply zones overlap, which occurs when:

$$348 r_{S05}^1 > d (condition 2).$$

However, if the two roots increase C concentrations sufficiently enough to saturate P supply up to distance *d*, P supply is constant and equal to S_{max} across the whole distance 2*d* and adding more exudate to the soil does not increase P supply (Fig. 4b). This becomes similar to a case where P supply is constant in the whole soil volume. In such case, P uptake of a root competing with others only depends on its uptake rate (Raynaud and Leadley 2004) and facilitation does not occur. A necessary condition to observe facilitation is thus that the saturated P supply zones of both rootsdo not overlap, which corresponds to:

356
$$r_{S95}^1 < d$$
 (condition 3).

If conditions 2 and 3 allow identifying cases in which facilitation can occur, the intensity of the facilitation depends on the degree to which total P supply zones of the two roots overlap, as the benefits of root proximity only occurs in the overlapping region. This yields two more conditions on P depletion zones and total P supply zones. First, in order for the root to benefit from the increase in supply, the P depletion zones must include parts of the region where supply is increased (i.e. where total supply zones overlap), which corresponds to:

363
$$r_P^1 > 2d - r_{S05}^1$$
 (condition 4).

Second, if the P depletion zone of a root (r_P^l) is smaller than the zone over which this root brings P supply to its maximum value (r_{S95}^l) , part of the P made available by exudates is out of reach for this particular root, and changes in exudate concentration near this root do not lead to changes in P supply (Fig. 4a). Thus, the condition:

368
$$r_P^1 > r_{S95}^1$$
 (condition 5)

is necessary for facilitation to occur. However, even when condition 5 is met, if $r_P^1 \approx r_{S95}^1$ an increase in root density only leads to a limited increase in supply because increase in supply only occurs in the region between r_{S95}^1 and r_P^1 . Thus, facilitation is important only if $r_P^1 >> r_{S95}^1$ and the greater the ratio r_P^1/r_{S95}^1 , the greater the facilitation.

373 In the case of a population of roots randomly distributed on a 2D plane, the half distance between 2 neighbouring roots is, on average, $r_{max}(d_R)$ but can be larger or smaller for some roots. 374 Replacing d by $r_{max}(d_R)$ thus gives average conditions for facilitation to occur. However, because 375 half distances between 2 neighbouring roots vary around this mean, facilitation can occur before the 376 above conditions are met. In our simulations, we found that facilitation started for $r^{1}_{S05} > r_{max}(d_{R})/2$ 377 at low exudation rates (see Supporting Information Fig. S2). Overall, because citrate concentration 378 379 gradient around roots depends on exudation rates (Raynaud 2010), these different conditions 380 explain why facilitation only occurs at low exudation rates (where P maximum supply only occur in 381 the immediate vicinity of roots) whereas only competition occurs for higher exudation rates 382 (because the whole soil is at maximum supply).

383 Our results are consistent with the classical observation, usually at the plant community 384 scale, that facilitative interactions are more frequent in resource-poor systems (Bruno et al. 2003;

Kéfi et al. 2008). In our model, the base level of P supply (S_{min}) was very low compared to its 385 saturation value so that exudation was the only way for roots to access to available P. If this base 386 level was to increase (i.e. the share of directly available nutrients increases), facilitation should be 387 less frequent. The shape of the relation between exudate concentration and P supply might also have 388 some influence on our results. However, we believe that whenever P supply increases with exudate 389 390 concentration and saturates above a given exudate concentration, qualitatively similar results should 391 be obtained as the conditions described above should still hold. Moreover, as our model has shown 392 that the relative size of root zones of influence is crucial in determining the type of root interaction, 393 any parameter affecting their size (e.g., soil water content, diffusion of exudates, etc., see Raynaud 2010) should influence the type of interaction between roots within root systems. As some of these 394 395 parameters vary a lot on the short term, e.g. soil water content (Loague 1992), the same root system 396 should switch from facilitation to competition over short time-scales. The value we chose for soil 397 water content in our analysis is an intermediate value, so that our simulations should reflect an 398 intermediate case of root system functioning. Ultimately, studies on inter-root interactions 399 (facilitation or competition) should articulate the different time-scales of root-soil interactions, from 400 the short-time changes of soil properties and root activities to the long-term dynamic of root growth and demography (Hodge et al. 2009). For example, dauciform or cluster roots (Shane and Lambers 401 2005, Shane et al. 2006) allow plants to increase their absorption of P. This is likely to arise because 402 403 these roots have very high exudation rates and saturate the soil volume in carboxylates. However, 404 the facilitation mechanism we suggest with our model could also be influential. Our rationale 405 should also be tested for more complex patterns of root spatial distributions (e.g. aggregation) that 406 emerge from dynamic root architecture models (e.g. Pagès 2011). In particular, such models should 407 better take into account the fact that roots are not parallel and that portions of roots that exude and 408 take up nutrients are not necessarily the same (Doussan et al. 2003).

409 Whether these extended concepts of root zones of influence could be used in other studies 410 and especially in the field has to be discussed. Much progress has been made in the in situ 411 observation of gradients around roots (Hinsinger et al. 2009) but measuring supply and their degree 412 of saturation would require a very fine knowledge of the stocks of unavailable nutrients and their 413 potential of release. Still, our results suggest that the assessment of the P supply and saturated P 414 supply zones is crucial to understand interactions within the root system, although the function that converts exudate concentration into a nutrient supply could strongly condition the outcome of root 415 416 interactions.

417

Finally, although our model is based on a very simple case of an exudate that directly

increases the availability of P by a chemical reaction (Hinsinger 2001), it is based on very general 418 mechanisms (e.g. solute diffusion, nutrient uptake, etc.) and should apply to the roots of any plant in 419 any soil. We used it here to highlight the existence of new possible interactions between 420 neighbouring roots but the frequency of positive interactions between roots should be assessed by 421 parametrizing the model for different case studies. Moreover, this theoretical approach could be 422 423 generalized to other nutrients, whose availability depends on the release of molecules by roots, or 424 on the interactions between roots and soil microorganisms. For example, mineralisation of organic 425 nitrogen can depend on interactions between plant roots and soil micro-organisms, through the 426 release of root exudates (Raynaud et al. 2006; Shahzad et al. 2015). Similarly, biological 427 nitrification inhibition (Lata et al. 2004; Subbarao et al. 2006) by some grass species is due to the 428 release by roots of molecules that inhibit microbial ammonium oxidation. However, to be 429 generalized to such cases, a precise knowledge of the molecules involved and the processes and 430 time scales that lead to the increase in nutrient availability is needed. Similarly in cases in which 431 soil micro-organisms are involved, the spatial distribution of microorganisms with respect to root 432 spatial distribution (Compant et al. 2010) could also influence interactions between roots.

433 Implications for root foraging strategies

434 The concept of intra-plant inter-root competition was originally formulated in a context where the 435 carbon cost of nutrient acquisition was to be evaluated: inter-root competition within the root 436 system decreases the benefits of a root when it is close to another one (Ge et al. 2000; Rubio et al. 437 2001). When only root absorption is considered, a good proxy of the carbon cost of nutrient 438 acquisition is root length density and we used it in our definition of P uptake efficiency. This 439 approximation can be used when comparing root systems differing by their root length density but 440 not by their levels of root exudation rates (Lynch and Ho 2005). In this context, our results suggest that cases of intra-plant, inter-root facilitation should favour local root proliferation where root 441 length density increases nutrient uptake efficiency. By contrast, inter-root competition should 442 443 favour sparser root systems that limit competitive interactions between roots (Ge et al. 2000). The building of root systems thus not only depends on the presence of other plant competitors but also 444 on plant-created heterogeneity, that can both can lead to an increase (due to facilitation) or decrease 445 446 (due to competition) of root length density (Rubio et al. 2001). Similarly, facilitation between roots 447 of the same plant individual could favour dense root systems limiting their exploration of the soil volume (de Parseval et al. 2016). 448

449

In our simulations, the case of inter-root facilitation occurred at low exudation rates, where

450 the amount of P taken up by unit of root length was lowered (due to the low exudates concentration 451 in soils), but where P losses were also minimised. Indeed, increasing exudation increases the availability of P which should also lead to an increase of losses through microbial immobilization. 452 This suggests the existence of a gradient of strategies, in essence similar to the classical r/K 453 454 gradient. This gradient would span from a very fast exploitation of the nutrient pool, associated to 455 high exudation rates but also high losses, to a slow but more effective exploitation of the pool, 456 associated with low exudation rates and low losses (Boudsocq et al. 2011; Reich 2014): indeed, 457 more exudation leads to competition and a loss of efficiency, as measured by the amount of 458 resource invested to absorb mineral nutrients. However, the different levels of root exudation tested 459 in our model are not equivalent to the nutrient uptake efficiency as we have defined it. For a 460 relevant comparison, the assessment of the relative cost of root construction and functioning is needed, as well as that of exudation to determine the total cost of P uptake (Lynch and Ho 2005). A 461 462 low exudation strategy, that leads to inter-root facilitation, should be advantageous compared to a 463 high exudation strategy only if the cost of exudation is high compared to that of root absorption, *e.g.* 464 when complex molecules have to be synthesized.

465 Rationales based on the carbon cost of nutrient acquisition do not always account well for root foraging strategies. In the context of competition between roots, the use of game theory has 466 467 proved useful (O'Brien and Brown 2008). For example, even if the proliferation of roots implies a 468 high carbon cost relative to the benefits (increase in nutrient absorption), this behaviour also leads 469 to a competitive advantage for the root system with higher root length density (Robinson et al., 470 1999; Raynaud and Leadley 2004; Craine et al. 2005). Although our results focus on interactions between roots from a single root system, they could easily be generalized to interactions between 471 472 roots from different root systems and suggest that roots of one species could benefit from the proximity of roots of another species that would increase nutrient supply in their vicinity (Raynaud 473 474 et al. 2008). The possibility of positive interactions between root systems or individual plants could 475 be taken into account through new game theory root models, especially if one takes into account the 476 ability of self/non self-recognition by roots (Gruntman and Novoplansky 2004). Somehow, our 477 model suggests a mechanism that could account for some of the predicted and documented cases of 478 inter-plant facilitation (Callaway et al. 2002).

One important application of root foraging studies is the identification of roots traits that could be selected to enhance crop yields and/or sustainability (Lynch 2011). However, the study of crop species often neglected the role of exudation (Pagès 2011), whose importance seems to be minimised when nutrients are brought in high concentration and in a highly available form, as it is 483 often the case in agroecosystems. Studies about mechanisms by which plants increase the availability of nutrients (Chapman et al. 2006) have mainly focused on wild species from nutrient-484 poor environment. Agroecosystems are high yielded but lead to huge losses of mineral nutrients. 485 One reason for that is the massive use of mineral fertilizers. Another reason is that high yield 486 487 varieties have been selected and that these varieties are probably able to quickly absorb available 488 nutrients but do not impede losses of nutrient. Our results suggest that selecting species that limit 489 nutrient losses and foster root facilitation either intra- or inter-plants could reduce the need of 490 fertilizers while maintaining high yields (Loeuille et al. 2013).

491

492 Acknowledgements

We thank Shayne Flint and Ian Davies for their help in designing the model on 3Worlds. We thank
Eric Lateltin and reviewers for constructive comments on earlier versions of the manuscript. This
work was supported by the French Agence Nationale de la Recherche, grant number ANR-07-CIS7001 (3Worlds project).

497

498 References

- Barber SA, Cushman JH (1981) Nutrient uptake model for agronomic crops. In: Iskander IK (ed) *Modelling wastewater renovation land treatment*. Wiley, New York, pp. 382–409.
- 501 Boudsocq S, Barot S, Loeuille N (2011) Evolution of nutrient acquisition: when adaptation fills the
- 502 gap between contrasting ecological theories. *P Roy Soc B-Biol Sci*, 278:449–457.
- Bruno JF, Stachowicz, JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. *Trends Ecol Evol* 18:119–125.
- 505 Cahill JF, McNickle GG (2011) The behavioral ecology of nutrient foraging by plants. *Annu Rev*506 *Ecol Evol Syst*, 42:289–311.
- Callaway RM, Brooker R, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI,
 Newingham B, Aschehoug ET et al. (2002) Positive interactions among alpine plants increase with
 stress. *Nature*, 417:844–848.
- 510 Chapman SK, Langley JA, Hart SC, Koch, GW (2006) Plants actively control nitrogen cycling:
- 511 uncorking the microbial bottleneck. *New Phytol*, 169:27–34.

- 512 Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and
- endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. *Soil Biol Biochem* 42:669–678.
- 515 Craine JM, Fargione JE, Sugita S (2005) Supply pre-emption, not concentration reduction, is the 516 mechanism of competition for nutrients. *New Phytol* 166:933–940.
- 517 Dakora F, Phillips D (2002) Root exudates as mediators of mineral acquisition in low-nutrient 518 environments. *Plant Soil* 245:35–47.
- 519 Dijkstra FA, Cheng W (2007) Interactions between soil and tree roots accelerate long-term soil 520 carbon decomposition. *Ecol Lett* 10:1046–1053.
- 521 Doussan C, Pagès L, Pierret A (2003) Soil exploration and resource acquisition by plant roots: an 522 architectural and modelling point of view. *Agronomie* 23:419–431.
- 523 Dunbabin VM, Postma JA, Schnepf A (2013) Modelling root–soil interactions using three– 524 dimensional models of root growth, architecture and function. *Plant Soil* 372:93–124.
- Ge Z, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and
 phosphorus acquisition efficiency: results from a geometric simulation model. *Plant Soil* 218:159–
 171.
- 528 Gignoux J, Davies ID, Flint SR, Zucker J-D (2011) The ecosystem in practice: Interest and 529 problems of an old definition for constructing ecological models. *Ecosystems* 14:1039–1054.
- 530 Gignoux J, Davies ID, Hill DRC (2005) 3Worlds: a new platform for simulating ecological 531 systems. *1st Open International Conference on Modelling and Simulation*, Clermont-Ferrand,
- 532 France, pp. 49–64.
- Gruntman M, Novoplansky A (2004) Physiologically mediated self/non-self discrimination in roots. *Proc Nat Acad Sci USA* 101:3863–3867.
- Haefner JW (2005) *Modeling biological systems: Principles and applications*. 2nd ed. Springer
 Science & Business Media.
- Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced
 chemical changes: a review. *Plant Soil* 237:173–195.
- 539 Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics,
 540 biogeochemistry and ecological relevance. *Plant Soil* 321:117–152.

- Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. *New Phytol* 162:9–24.
- Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and
 function. *Plant Soil* 321:153–187.
- 545 Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients 546 from the rhizosphere. *Plant Soil* 166:247–257.
- 547 Kéfi S, Van Baalen M, Rietkerk M, Loreau M (2008) Evolution of local facilitation in arid 548 ecosystems. *Am Nat* 172:1–17.
- Kirk GJD, Santos EE, Findenegg GR (1999a) Phosphate solubilization by organic anion excretion
 from rice (*Oryza sativa* L.) growing in aerobic soil. *Plant Soil* 211:11–18.
- 551 Kirk GJD, Santos EE, Santos MB (1999b) Phosphate solubilization by organic anion excretion from

552 rice growing in aerobic soil: rates of excretion and decomposition, effects on rhizosphere pH and

effects on phosphate availability and uptake. *New Phytol* 142:185–200.

- Lata J-C, Degrange V, Raynaud X, Maron P-A, Lensi R, Abbadie L (2004) Grass populations control nitrification in savanna soils. *Funct Ecol*, 18:605–611.
- Li L, Li SM, Sun J-H, Bao X-G, Zhang H-G, Zhang F (2007) Diversity enhances agricultural
 productivity via rhizosphere phosphorus facilitation on phosphorus deficient soils. *Proc Nat Acad Sci USA*, 104:11192–11196.
- Lin Y, Berger U, Grimm V, Ji Q (2012) Differences between symmetric and asymmetric facilitation
 matter: exploring the interplay between modes of positive and negative plant interactions. *J Ecol*100:1482–1491.
- Loague K (1992) Soil water content at R-5. Part 1. Spatial and temporal variability. J Hydrol
 139:233–251.
- Loeuille N, Barot S, Georgelin E, Kylafis G, Lavigne C (2013) Eco-evolutionary dynamics of agricultural networks: Implications for sustainable management. *Adv Ecol Res*, 49:339–435.
- Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for
 future crops. *Plant Physiol* 156:1041–1049.
- 568 Lynch JP, Ho MD (2005) Rhizoeconomics: Carbon costs of phosphorus acquisition. *Plant Soil*569 269:45–56.
- 570 McNickle GG, St Clair CC, Cahill JF (2009) Focusing the metaphor: plant root foraging behaviour.

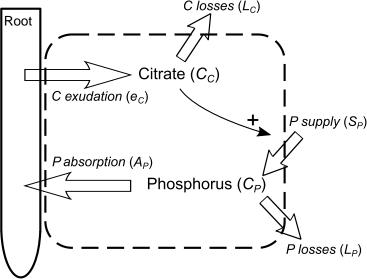
- 571 *Trends Ecol Evol* 24:419–426.
- Nielsen KL, Lynch JP, Jablokow AG, Curtis PS. 1994. Carbon cost of root systems: an architectural
 approach. *Plant Soil* 165: 161–169.
- 574 O'Brien EE, Brown JS (2008) Games roots play: effects of soil volume and nutrients. *J Ecol*, 575 96:438–446.
- 576 O'Reilly RC, Beck JM (2006) A family of large-stencil discrete Laplacian approximations in three 577 dimensions. *Int J Numer Meth Engineer*, 1–16.
- 578 Oburger E, Jones DL, Wenzel WW. 2011. Phosphorus saturation and pH differentially regulate the 579 efficiency of organic acid anion-mediated P solubilization mechanisms in soil. *Plant Soil* 341: 363– 580 382.
- 581 Olesen T, Moldrup P, Yamaguchi T, Rolston DE (2001) Constant slope impedance factor model for
- 582 predicting the solute diffusion coefficient in unsaturated soil. *Soil Science* 166:89–96.
- 583 Pagès L (2011) Links between root developmental traits and foraging performance. *Plant Cell*584 *Environ*, 34:1749–1760.
- de Parseval H, Abbadie L, Barot S, Gignoux J, Lata J-C, Raynaud X (2016) Explore less to control
 more: why and when should plants limit the horizontal exploration of soil by their roots? *Oikos*125:1110–1120.
- 588 Press WH, Teukoisky SA, Vetterling WT, Flannery BP, Teukolsky S (2007) *Numerical Recipes*,
 589 3rd ed. Cambridge University Press.
- 590 Ptashnyk M, Roose T, Jones DL, Kirk GJD (2011) Enhanced zinc uptake by rice through 591 phytosiderophore secretion: a modelling study. *Plant, Cell Environ* 34:2038–2046.
- Raynaud X (2010) Soil properties are key determinants for the development of exudate gradients in
 a rhizosphere simulation model. *Soil Biol Biochem* 42:210–219.
- Raynaud X, Jaillard B, Leadley PW (2008) Plants may alter competition by modifying nutrient
 bioavailability in rhizosphere: a modeling approach. *Am Nat* 171:44–58.
- 596 Raynaud X, Lata J-C, Leadley PW (2006) Soil microbial loop and nutrient uptake by plants: a test
- 597 using a coupled C:N model of plant–microbial interactions. *Plant Soil* 287:95–116.
- Raynaud X, Leadley PW (2004) Soil characteristics play a key role in modelling nutrient
 competition in plant communities. *Ecology* 85:2200–2214.
- 600 van Rees KCJ, Comerford NB, Rao PSC (1990) Defining soil buffer power: Implications for ion

- 601 diffusion and nutrient uptake modelling. Soil Sci Soc Am J 54:1505–1507.
- Reich PB (2014) The world-wide 'fast–slow' plant economics spectrum: a traits manifesto. *J Ecol*102:275–301.
- Robinson D, Hodge A, Griffiths BS, Fitter AH (1999) Plant root proliferation in nitrogen-rich
 patches confers competitive advantage. *Proc Roy Soc B-Biol Sci* 266:431–435.
- 606 Rubio G, Walk T, Ge Z, Yan X, Liao H, Lynch JP (2001) Root gravitropism and below-ground
- 607 competition among neighbouring plants: a modelling approach. Ann Bot, 88:929–940.
- Schnepf A, Leitner D, Klepsch S (2012) Modeling phosphorus uptake by a growing and exuding
 root system. *Vadose Zone J* doi:10.2136/vzj2012.0001.
- 610 Shahzad T, Chenu C, Genet P, Barot S, Perveen N, Mougin C, Fontaine S (2015) Contribution of
- 611 exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect
- 612 induced by grassland species. *Soil Biol Biochem* 80:146–155.
- 613 Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialized "dauciform" roots of
- 614 Cyperaceae are structurally distinct, but functionally analogous with "cluster" roots. *Plant, Cell* 615 *Environ*, 29:1989–1999.
- 616 Shane MW, Lambers H (2005) Cluster roots: A curiosity in context. *Plant Soil*, 274:101–125.
- 617 Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara KI, Lascano CE, Berry WL (2006)
- Biological nitrification inhibition (BNI) is it a widespread phenomenon? *Plant Soil*, 294:5–18.
- Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford,
 UK, 444p.
- Vanysek P (2000) Ionic conductivity and diffusion at infinite dilution. In: Lide DR, ed. CRC
 Handbook Of Chemistry And Physics. CRC Press, 1–3.
- Williams M, Yanai RD (1996) Multi-dimensional sensitivity analysis and ecological implication of
 a nutrient uptake model. *Plant Soil* 180:311–324.
- 625 York LM, Carminati A, Mooney SJ, Ritz K, Bennett MJ (2016) The holistic rhizosphere:
- 626 integrating zones, processes, and semantics in the soil influenced by roots. J Exp Bot 67:3629-3643.
- 627 Zygalakis KC, Roose T (2012) A simple mathematical model for investigating the effect of cluster
- 628 roots on plant nutrient uptake. *Eur Phys J-Spec Top* 204:103–118.

- 629 Tables
- **Table 1:** Model variables: symbols, definitions and units
- **Table 2:** Model parameter values used in simulations

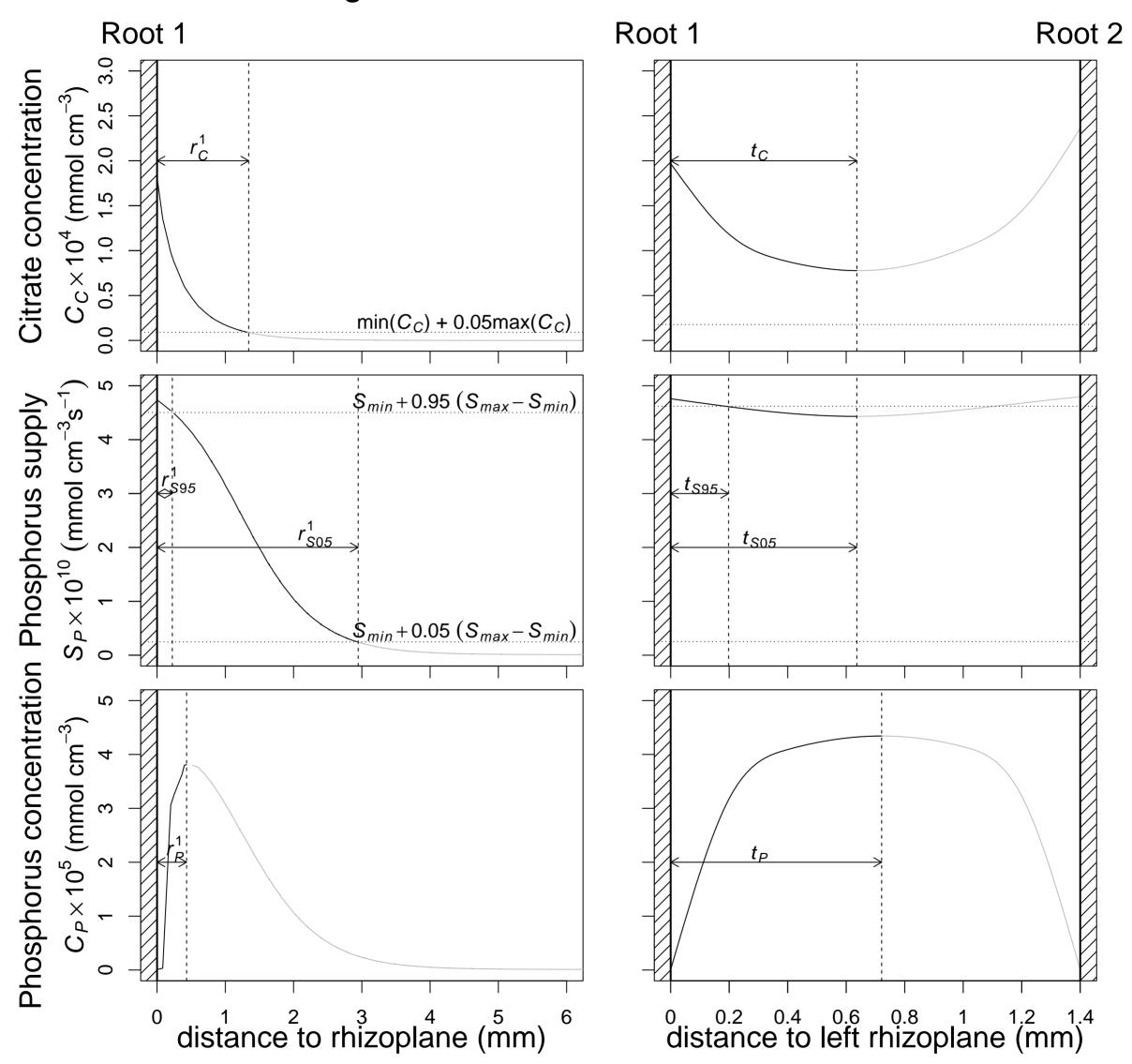
632 Figures Legend

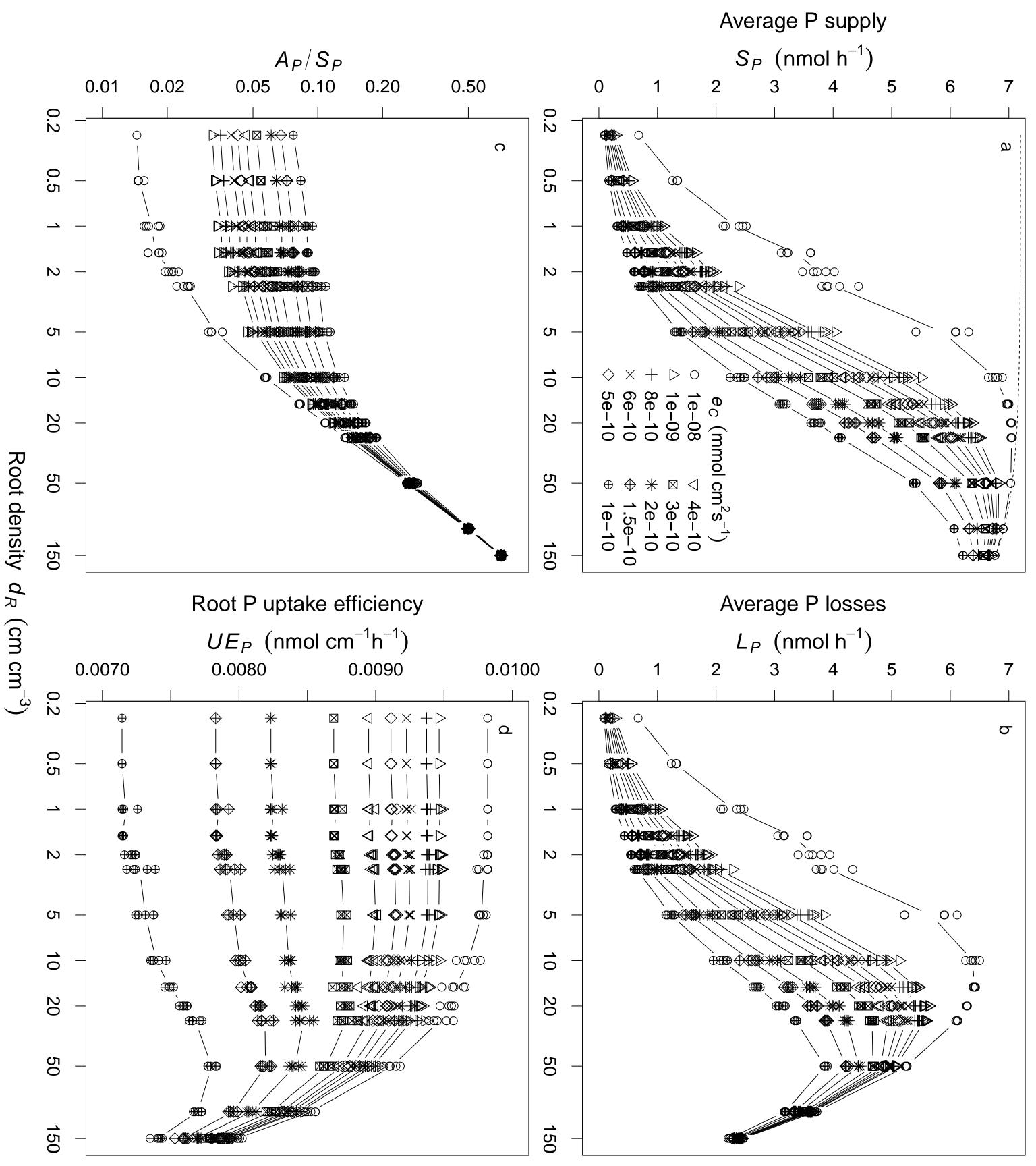
Figure 1: Schematic representation of the modelled system. Two concentrations of solutes within the soil solution are quantified by C_P (phosphorus) and C_C (citrate) variables. Large white arrows represent fluxes for these soil solutes: the supply of phosphorus to the soil solution (S_P), its losses (L_P) or absorption by roots (A_P), citrate exudation from roots (e_C) and its losses (L_C). The small arrow represents the modulation of phosphorus supply by citrate concentration C_C (see Eq. 6). All these processes are spatially explicitly quantified within a 2D grid (see Fig. 4).

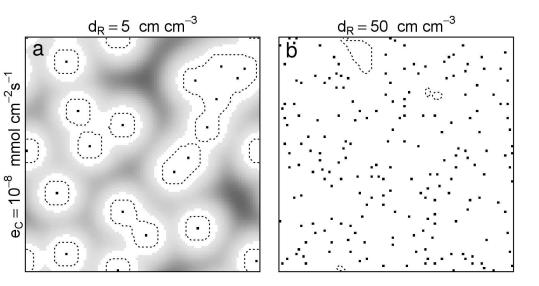

Figure 2: Description of the gradients around a root. Hatched zones indicate the position of root 639 640 rhizoplanes. Left: Zone of influence limits for citrate accumulation C_C (top), P supply S_P (mid) and P depletion C_P (bottom) around a root isolated from interaction with neighbours. Vertical dashed 641 lines show the respective rhizosphere sizes $(r_{C}^{1}, r_{S05}^{1}, r_{S95}^{1}, and r_{P}^{1})$ and horizontal dashed lines 642 show the threshold values used to calculate them (see text). Right: Territory for citrate 643 644 concentration C_C (top), P supply S_P (mid) and P concentration C_P (bottom) when rhizospheres 645 overlap. Note the difference in the x-axis scales between the left and right panels. Vertical dashed 646 lines show the respective territory sizes (t_{C} , t_{S05} , t_{S95} , and t_{P}) and horizontal dashed lines indicate the threshold values used to calculate the rhizosphere sizes. 647

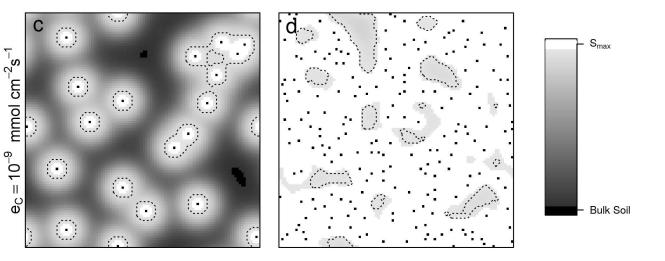
648 Figure 3: Relationships between root density (d_R , log scale) and different variables quantifying 649 phosphorus fluxes in the root-soil system: average soil phosphorus supply $(S_P, \text{ panel a})$ and losses 650 $(L_P, \text{ panel b})$, the ratio of phosphorus absorbed relative to its supply $(A_P/S_P, \text{ panel c}, \log \text{ scale})$ and phosphorus root uptake efficiency (UE_P , panel d). We focus here on the effect of the variation of 651 652 exudation rates e_C (see legend panel a). In panel a, the dashed line at the top of the graphic corresponds to the maximum value of P supply (S_{max}) in the whole modelled soil volume. The 653 654 decrease at high root density is due to the reduction in soil volume (see Methods). In all panels, 655 points correspond to model outputs for different spatial distribution of roots with a given root 656 density and exudation rate. Solid lines represent the means of simulations for a given root density 657 and exudation rate.

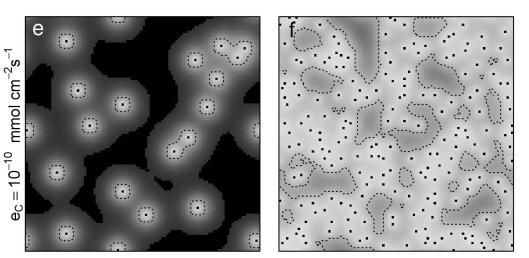
Figure 4: Maps of rhizospheres calculated from simulations for the three exudation rates e_c tested and two root length densities d_R . Bulk soil is shown in black and the saturation territory (t_{SP95}) is shown in white. The light gray/dark gray gradient illustrates the variation in supply within the supply territory (t_{S05}). Dotted lines delimit phosphorus depletion territories (t_P). Roots are figured by a black dot. See Fig. 2 for the criteria chosen to determine the border of each territory.

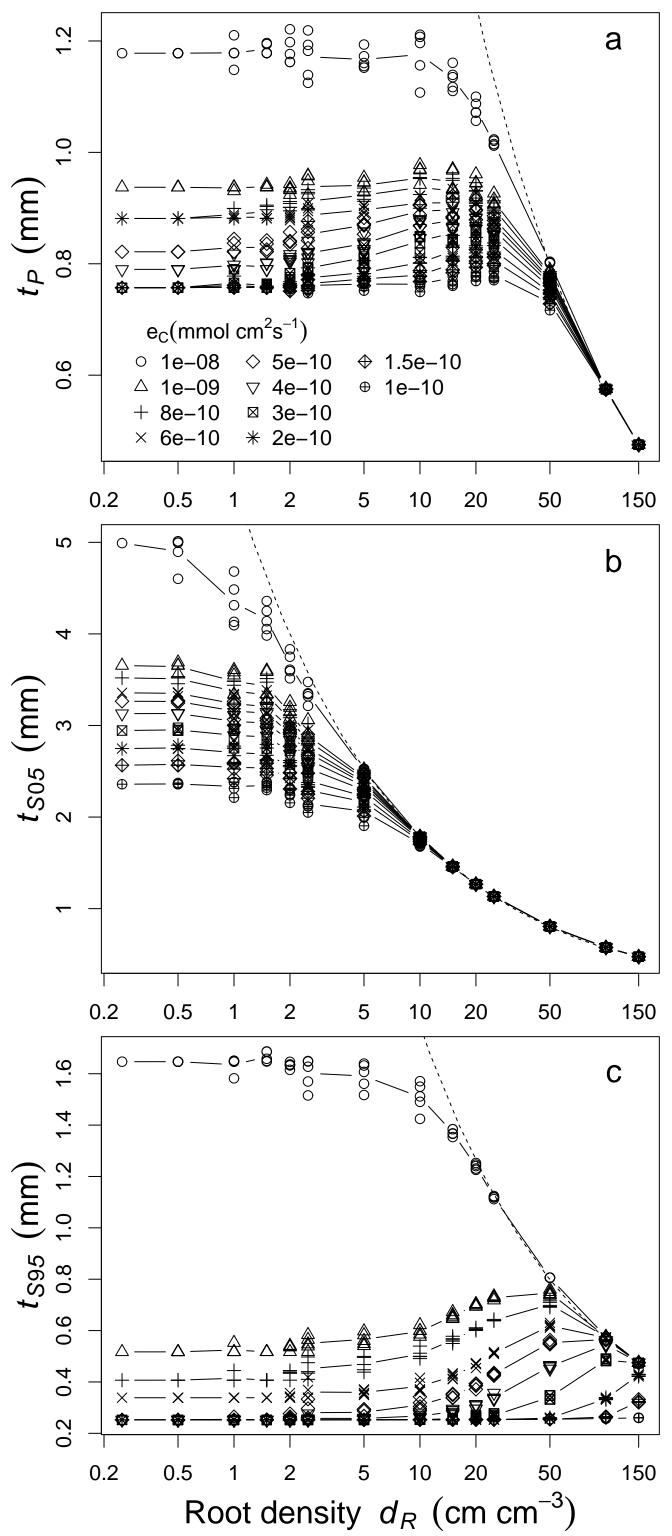

663 Figure 5: Estimation of average zone of influence diameters of single roots for phosphorus


depletion (a), phosphorus supply (b) and phosphorus supply saturation (c) as a function of root length density d_R . Cases of intra-plant, inter-root competition are presented by open circles and squares, and the case of inter-root facilitation by filled triangles. Dashed lines correspond to the maximum rhizosphere size ($r_{max} = \sqrt{(1/(d_R \pi))}$) as a function of d_R . In all panels, points correspond to the calculated diameter of zones of influence for different spatial distribution of roots with a given root density and exudation rate. Solid lines represent the means of these diameters for a given root density and exudation rate.




Single Root


Two Root



Supporting Information

Article title: Facilitation or competition within a root system depends on the overlap of root depletion and accumulation zones: a mechanistic model Authors: H. de Parseval, S. Barot, J. Gignoux, J.-C. Lata and X. Raynaud^{*}

Mathematical development of the PARIS model:

The model considers the diffusion of citrate (C) and phosphate (P) in soil with effective diffusion coefficients $D_{e,C}$ and $D_{e,P}$ (Eq. 2). When C is present in the soil, it increases the concentration of P by S_P following Eq. 6. We assume that C and P disappear from the soil at rates μ_C and μ_P , respectively. The rate of change in C and P with time is then expressed as:

$$\frac{\partial c_C}{\partial t} = D_{e,C} \nabla^2 \cdot C_C - \mu_C C_C \tag{1}$$

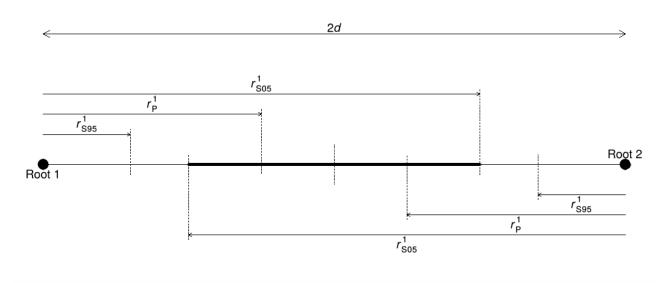
$$\frac{\partial C_P}{\partial t} = D_{e,P} \nabla^2 \cdot C_P - \mu_P C_P + S_P \tag{2}$$

where C_P and C_C correspond to the concentration of P and C in the soil solution.

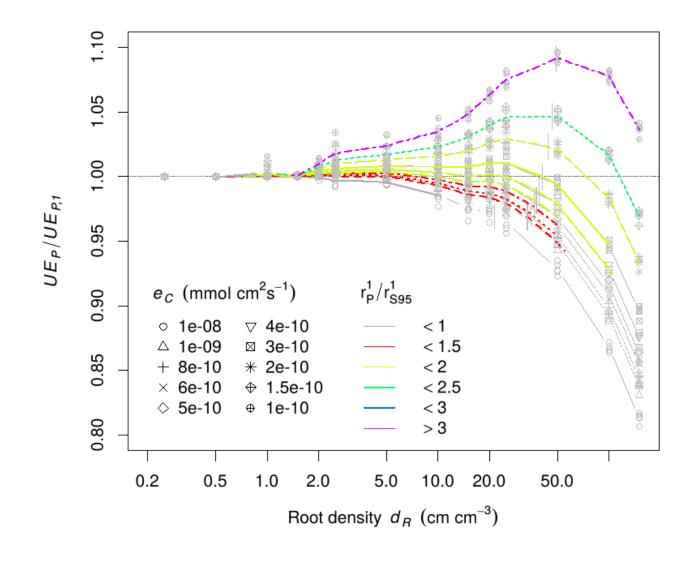
We consider the following boundary conditions:

Inner boundary condition: We assume that all roots in the model are identical, with surface s=4hz. Roots release C from the root surface at constant rate e_C and take up P at rate U_P that follows a Michaelis-Menten equation depending on P concentration at the root surface (Eq. 5).

Outer boundary condition: to limit border effects, we consider a periodic outer boundary condition, i.e., assume that diffusion is soil occur on a torus in which top and bottom, as well as left and right edges of the soil volume are connected.


Due to the conservation of mass in the soil, at steady-state we thus have,

$$nsU_P = D_{e,P}\nabla^2 \cdot C_P - \mu_P C_C + S_P$$


$$nse_C = D_{e,C}\nabla^2 \cdot C_C - \mu_C C_C$$
(3)
(4)

where s is the surface a root and n is the number of roots in the modelled soil volume.

Fig. S1: Diagram illustrating interactions between two roots in one dimension. Roots are separated by distance 2d. Horizontal arrows indicate the influences zones developed by root 1 and 2 while vertical dashed lines show their respective limits. In this diagram, the increase in supply occurs in the region shown as a thick horizontal line.

Fig S2: Phosphorus uptake efficiency (Eq. 9) relative to the uptake of a single root as a function of root density (d_R , log scale). Symbols follow the same convention as in Figure 3 and 5 of the main text. Lines are coloured for d_R values for which conditions $r^{I}_{95} < r_{max}(d_R)$ (condition 2) and $2*r^{I}_{05} > r_{max}(d_R)$ (condition 3) are met. Colours correspond to the value of r_P^{I}/r^{I}_{S95} . The vertical line indicates the density over which condition 1 is not met. See main text for details.

Table 1

	Symbol	Definition	Units
	C_P	P concentration in soil solution	mmol _P cm ⁻³
	S_P	P supply	mmol _P s ⁻¹
	L_P	Nutrient losses	mmol _P s ⁻¹
Phosphorus	A_P	Total plant absorption rate	mmol _P s ⁻¹
	UE_P	Plant uptake efficiency	$\operatorname{mmol}_{\operatorname{P}}_{\operatorname{1}}\operatorname{cm}^{-1}\operatorname{s}^{-1}$
	З	Nutrient uptake efficiency	mol P/ mol C
	C_C	Citrate concentration in soil solution	mmol _C cm ⁻³
Exudate	L_C	Exudate losses	mmol _C s ⁻¹
	$r^{l}c$	Extent of citrate accumulation zone around a single root	mm
Root zone of influence	r ¹ s05, r ¹ s95	Extent of increased P supply zones around a single root	mm
	$r^{l}P$	Extent of P depletion zone around a single root	mm
	tc	Extent of citrate accumulation when roots are in interaction	mm
Territories	<i>ts</i> 95, <i>ts</i> 05	Extent of increased P supply when roots are in interaction	mm
	t_P	Extent of P depletion zone when roots are in interaction	mm

Table 2

Symbol	V	Values	
heta	0.15	cm ³ cm ⁻³	7
$ heta_{th}$	0.1	cm ³ cm ⁻³	5
ho	1.16	g cm ³	7
$D_{l,P}$	8.2 10-6	$\mathrm{cm}^2\mathrm{s}^{-1}$	8
$k_{d,P}$	82.6	$\mathrm{cm}^3\mathrm{g}^{-1}$	5
μp	$10^{-3} - 10^{-7}$	mmol _P s ⁻¹	
$D_{l,C}$	6.2 10-6	$\mathrm{cm}^2\mathrm{s}^{-1}$	8
$K_{d,C}$	4.4	$\mathrm{cm}^3\mathrm{g}^{-1}$	1, 5
μ_C	10-5	mmol _C s ⁻¹	2, 3
Ks	10-5	mmol _C cm ⁻³	7
S_{min}	$10^{-12} - 10^{-11}_{11}$	$mmol_P cm^{-3} s^{-1}$	7
S _{max}	5 10-10	$mmol_P cm^{-3} s^{-1}$	7
n_R	1 - 600	unitless	
Imax	2 10-8	$mmol_P cm^{-2} s^{-1}$	7
K_U	10-4	mmol _P cm ⁻³	7
ec	10-10 - 10-8	$mmol_C cm^{-2} s^{-1}$	1,2,3,4

1:Jones and Darrah (1994), 2:Kirk et al. (1999a), 3:Kirk et al. (1999b), 4:Nielsen et al. (1994), 5: Oburger et al. (2011), 6: Olesen et al. (2001), 7:Raynaud et al. (2008), 8:Vanysek (2000).