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ABSTRACT
While it is well known that menu usage follows a Zipfian
distribution, there has been little interest in the impact of menu
item frequency distribution on user’s behavior. In this note,
we explore the effects of frequency distribution on average
menu performance as well as individual item performance.
We compare three frequency distributions of menu item usage:
Uniform; Zipfian with s=1 and Zipfian with s=2. The results
show that (1) user’s behavior is sensitive to different frequency
distributions at both menu and item level; (2) individual item
selection time depends on, not only its frequency, but also the
frequency of other items in the menu. Finally, we discuss how
these findings might have impacts on menu design, empirical
studies and menu modelling.
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INTRODUCTION
Linear menus remain the primary graphical widget in desktop
applications and consumer electronics for selecting commands.
As a consequence many scientific efforts have been devoted
to better understand user’s behavior in linear menus[2, 5, 6]
and how the menu features impact performance. For instance,
several empirical studies described how menu length, menu
organization or target position affect performance [4, 21].

Beyond menu features, the behavior of the user is also con-
strained by, and adapted to, the statistical structure of the
environment [22, 23]. One important, but neglected, statisti-
cal property of menu use, is that the natural ecology of tasks
tends to result in menu items being selected according to a
Zipfian distribution, i.e., a highly skewed distribution with the
most frequent items tending to be selected far more frequently
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than the long-tail distribution of low frequency items. While
it is well known [6, 8, 9], the consequences of the distribution
for behavior have not been systematically investigated. Indeed,
many previous studies rely either on a Uniform distribution
[2, 4, 5, 16, 20] when comparing selection time, or a variant
of a Zipfian distribution [1, 11] when focusing on the average
menu selection time. However, it is unclear if these obser-
vations hold when given a different, and more ecologically
plausible, frequency distribution.

In this note, we investigate the effects of frequency distribu-
tion on both individual Item selection time and Menu selection
time1. To achieve this, we compare the performance of 2 Zip-
fian distributions (s = 1 & s = 2) and the Uniform distribution
as a baseline by carefully manipulating the item frequency
factor. Our results show that frequency distributions affect
user behavior at both the menu level and item level but in an
opposite manner. The most surprising result is that individual
item selection time does not only depend on its own frequency
but also the frequency of other items in the menu. We then
discuss how these effects might be of relevance to efforts to
design more learnable interfaces and/or training regimes for
intermediate skill-level users [3].

THE UNIFORM AND ZIPFIAN DISTRIBUTIONS
While uniform distribution does not reflect menu usage in real
worlds [8, 9, 10, 12], it has been used in many menu studies [2,
4, 5, 16, 20] because it is easy to experimentally control. In
contrast, Zipfian distribution is more difficult to control in spite
of better modelling item frequency distribution in common
applications [6, 8, 9]. It describes the fact that few items are
selected very frequently while many items are seldom used. A
Zipfian distribution is defined as:

f (k;s,N) = 1�ks

∑N
n=1(1�ns) (1)

Where N is the number of elements, k ∈ [1,N] is the rank of
the considered element (with k = 1 the element with the highest
frequency) and s is the value of the exponent characterizing the
distribution. For instance, for a menu with 12 items (N = 12)
and s=1, it means that the most frequent item (k =1) is selected
12 times more often than the least frequent item. Therefore,
1We define Menu selection time as the average selection time for
the whole menu including all the items. Item selection time is the
selection time for an individual item.

CHI 2017



Frequency
distribution

Selection count for 12 items
(decreasing order)

Distance
(R2) | d

Uniform 6, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 2 n/a | 0.26
Zipfian s=1 15, 6, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1 >0.99 | 0.14
Zipfian s=2 28, 6, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0 >0.99 | 0.19

Table 1. Distribuions used in the experiment: Names, multiset of item
frequencies, the r-squared and pairwise distance. These distributions
have 4 item frequencies in common (C = 4) marked in bold.

it may trigger some confound effects if the experiment is not
delicately designed, e.g., a target item might be faster to select
because it is located on the top of the menu or because it is
more frequently selected than other items due to practice.

It results that Zipfian distribution was only used when (1)
comparing the average menu selection time (rather than item
selection time) of different menu techniques, or (2) assuming
that the layout is similar enough so that the correspondence
between item location in the menu and item frequency do not
bias the results. For instance, Cockburn et al. [6] compared the
Menu performance of four linear menu techniques (e.g., split
menus or Morphing menus) with a single Zipfian distribution.
Other studies used a variant of Zipfian distribution [1, 11]
where one frequency corresponds to two items (instead of a
single item). While this distribution does not have empirical
or theoretical foundations, it reduces the complexity of the
experimental design by diminishing the impact of the most
frequent items on the total performance of the menu technique.

Finally, Sears and Shneiderman [24] as well as Lee and
Yoon [18] used a non-uniform distribution (which is not a
Zipfian distribution). They show that the frequency distribu-
tion has an impact on the choice of the most effective menu
technique. For instance, Split menus and Folded menus are
more efficient than traditional linear menus when the two or
three most frequent items appear respectively more than 30%
and 90% of the time. However, these studies did not use a
Zipfian distribution "in order to control experimental complex-
ity" [18] and focused only on the average menu selection time
rather than item selection time.

The definition of the frequency distribution thus differs be-
tween experiments and is rarely manipulated while this factor
might have an impact on performance and menu design.

USER STUDY
In this study we primary investigate the effects of FREQUENCY

DISTRIBUTION, ITEM FREQUENCY, on both item selection time and
menu selection time, but we also control TARGET LOCATION and
PRACTICE. The core aspect of the experimental design is the
control of the correspondence between TARGET LOCATION in the
menu and ITEM FREQUENCY to compare item selection time. To
achieve this, we subtly manipulate FREQUENCY DISTRIBUTION so
that each distribution has a a subset of items with the same
frequency for comparison purpose. To focus on the main
effects, we considered a single menu length with 12 items and
a single menu organization (Unordered). We now detail the
experimental design.

Frequency Distributions and Item Frequency
FREQUENCY DISTRIBUTION. We considered 3 frequency distribu-
tions: two Zipfian distributions with s = 1 and s = 2 as well as
Uniform distribution as a baseline.

ITEM FREQUENCY. The definition of the item frequency should
satisfy some constraints in order to precisely compare item
performance:

1. The total duration of the experiment should not exceed one
hour. From a pilot study, we estimated that the total number
of selections should be limited to 48 per block.

2. Each condition has the same number of selections per block.

3. Item frequency should be adapted so that the item selection
count per block is an integer.

4. The distance between the generated and the original dis-
tributions should be as close as possible. We used R2 to
measure their similarity as in [6]. We also used Pairwise dis-
tance (d) as R2 is not appropriate for Uniform distribution.
The distance d:

d = 1
N
×
���� N�

i=1
(Gi −Oi)2 (2)

Where Gi is the generated and Oi is the original frequency
distribution. Both distances are given in the table 1.

5. The distributions should maximize the number of item fre-
quencies that they have in common for comparison purpose.
This constraint is the most difficult to satisfy and is mea-
sured as C = �Zs=1 ∩Zs=2 ∩U � where Z and U are the sets
(without diplactes) of item frequencies for, respectively the
Zipfian and Uniform distribution.

Given the above-mentioned constraints, we generated all pos-
sible configurations containing between 35 and 48 selections
per block. The optimal number of selection was 45 selections
per block with the configurations shown in Table 1. We ob-
serve that the above-mentioned constraints are all met and
particularly, the generated distributions are very closed from
the original distributions as indicated by R2 > 0.99 or d < 0.5
and the number of item selection in common (C) is 4.

Item Frequency and Target Location
The ideal design would be to counter-balance all item frequen-
cies and target locations in a way that participants can test all
possible configurations. However, the design space is enor-
mous, which is not compatible with a feasible experiment time
frame. We reduce the experimental complexity by focusing
on a subset of ITEM FREQUENCY and TARGET LOCATION:

● We focused on the item frequencies shared by the three
distributions (marked in bold in Table 1): 6, 4, 3, 2.

● We thus chose a subset of 4 locations: 1, 4, 7, 10. We did
not consider the last item to avoid possible bias related to
the last-item effect [2].

● The correspondence between item frequency and item loca-
tion was counterbalanced across all participants, i.e., each
selected item frequency is assigned to each target location
an equal number of times.

● The other item frequencies were randomly assigned to the
other item locations and participants did not have the most
frequent items (15 in s=1 and 28 in s=2) at the same location
across conditions.



Participants and Apparatus
Twenty-four participants (6 females), raging in age 23 to 37
years (median = 26.7, s = 3.48), were recruited from our
institution and received a handful of candies for their partic-
ipation. All of them were right-handed and interacted with
WIMP menus regularly. The experiment was conducted on
a Linux desktop at 1280 × 1024 resolution with the use of
mouse at the same sensibility and acceleration.

Task, Stimulus and Procedure
Participants were instructed to select the target items as fast
and accurately as possible but were not informed of the fre-
quency distribution they used. The sequence of action for a
trial is the following. The user first moves the cursor above a
button located on the bottom of the screen. Then the stimulus
appears just above this button and indicates the target item.
The user has to click on another button located on the upper
part of the screen to open the menu, search the target item and
select it. The button to display the stimulus and the one to open
the menu was far enough to let enough time for participants
to interpret the stimulus before opening the menu. A trial fin-
ishes when the target item is selected (i.e., a wrong selection
requires the user to reopen the menu to select the target item).
The selection time starts when the user opens the menu and
finishes when the target item is selected. Participants were
forced to take a break between blocks and between conditions,
but they could also take a break between trials.

Design
A repeated measures within-subject design was conducted.
Each participant tested the three FREQUENCY DISTRIBUTION. The
order of frequency distribution was counter-balanced between
participants. ITEM FREQUENCY was counter-balanced between
TARGET LOCATION. For each condition, participants performed 5
blocks (PRACTICE). In summary, the design was: 24 Participants× 3 FREQUENCY DISTRIBUTION × 5 Blocks × 45 Selections =
16,200 trials.

FINDINGS
We removed trials including wrong selections (4.1%) and out-
liers (0.5%). The Shapiro-Wilk normality test verified that
wrong selections and outliers were randomly distributed across
participants, frequency distributions and target locations. Ta-
ble 2 and 3 summarize the main effects and interaction effects
from ANOVA for respectively menu selection time and item
selection time. The full table and additional graphs are avail-
able in supplementary material. For the following section,
we focus on the effects of FREQUENCY DISTRIBUTION and ITEM

FREQUENCY effects on Menu and Item selection time.

Menu Selection time

We used the whole data set (15,455 trials) to analyze menu
selection time. Fig.1-Left features an overview of Menu

Factors df, den F p
FREQUENCY DISTRIBUTION (FD) 2, 46 58.4 < 0.0001
PRACTICE (P) 4, 92 98.8 < 0.0001
FD × P 8, 184 79.2 < 0.001

Table 2. Effects of FREQUENCY DISTRIBUTION and PRACTICE on Menu
selection time.
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Figure 1. Left: Menu selection time in 3 FREQUENCY DISTRIBUTION
across blocks. Right: Individual Item selection time in 3 FREQUENCY
DISTRIBUTION.

Factors df, den F p
FREQUENCY DISTRIBUTION (FD) 2, 46 24.1 < 0.001
ITEM FREQUENCY (IF ) 3, 69 12.5 < 0.05
TARGET LOCATION (TL) 3, 69 11.9 < 0.05
PRACTICE (P) 4, 92 31.2 < 0.001
FD × IF 6, 138 18.7 < 0.05
FD × TL 6, 138 13.3 < 0.05
FD × P 8, 184 29.8 < 0.001
IF × TL 9, 207 7.8 < 0.05
IF × P 12, 276 17.5 < 0.001

Table 3. Full factorial ANOVA on Item selection time. Only significant
effects regarding FREQUENCY DISTRIBUTION and ITEM FREQUENCY are
shown here.

selection time in 3 FREQUENCY DISTRIBUTION across blocks.
ANOVA shows a significant effect for PRACTICE with a post-
hoc Tukey test confirming that selection time decreases over
time. ANOVA also reveals an effect of FREQUENCY DISTRIBUTION.
A post-hoc Tukey test shows that Zipfian with s = 2 (2.31s)
is significant faster than Zipfian with s = 1 (2.52s) which is
significantly faster than Uniform distribution (2.71s). The
FREQUENCY DISTRIBUTION × PRACTICE interaction effect is also
significant and shows that FREQUENCY DISTRIBUTION effect de-
creases with PRACTICE, with no difference between FREQUENCY

DISTRIBUTION at the fifth block. This result confirms that us-
ing skewed Zipfian distributions reduces the average menu
selection time since users only select a subset of items very
frequently.

Item selection time

We analyzed the effect of the controlled frequency (6,4,3,2)
on item selection time. (This frequency was used in a subset
of 5,156 trials.) ANOVA confirmed known effects such as
the effects of TARGET LOCATION and PRACTICE (Table 3) on Item
selection time. More interesting, ANOVA reveals a signifi-
cant effect of FREQUENCY DISTRIBUTION (FD) and ITEM FREQUENCY

(fitemshort) as well as a FD × and IF interaction effect on Item
selection time which is illustrated in Fig.1-Right. Post-hoc
Tukey tests show that Item selection time increases when ITEM

FREQUENCY decreases (6: 2.58s; 4: 2.63s; 3: 2.69s; 2: 2.77s)
and that Zipfian with s = 2 (2.82s) is significant slower than
Zipfian with s = 1 (2.67s) which is significantly slower than
Uniform (2.53s). These results are surprising as they contrast
with those obtained for Menu selection time (Fig. 1-Left) as the
performances are in the opposite order. The interaction effect
illustrated in Fig. 1-Right shows that the difference of Item
selection time between FREQUENCY DISTRIBUTION increases when
ITEM FREQUENCY decreases. Finally, the FREQUENCY DISTRIBUTION



× PRACTICE interaction effect reveals that the difference of Item
selection time between FREQUENCY DISTRIBUTION increases with
PRACTICE. This also contrasts with the results obtained for
Menu selection time where FREQUENCY DISTRIBUTION shows no
difference for overall Menu selection time when users are well
practized (Fig. 1-Left).

DISCUSSION
The main finding is that individual item selection time depends
not only on its own frequency but also on the frequency of
other items in the menu (i.e. the whole frequency distribu-
tion). More precisely, items are selected faster in the Uniform
distribution condition than in the skewed distribution (Figure
1-Right). This finding is surprising as it contrasts with average
menu selection time illustrated in Figure 1-Left where menus
with skewed distribution are faster to select than menus with
Uniform distribution.

It is reasonable to expect that the Hick-Hyman Law (HHL)
[13, 15] should offer an explanation for this phenomenon,
since it demonstrates that human response time is a function
of the information conveyed by a particular stimulus. More
precisely, HHL indicates that response time is a linear func-
tion of H, the weighted surprisal value (also called average
uncertainty) [25], H = −∑ pi× log2(pi) with pi is the proba-
bility of appearance of an item. While HHL may reflect the
phenomenon observed for the average menu selection time
(i.e. skewed distributions are faster to select), it is unclear
how it can be applied to individual item selection time. The
original Hick’s [13] and Hyman’s [15] experiments only con-
cerned the whole distribution, yet later studies [6, 25] have
applied HHL to individual item selection time: The former
claimed that "decision time depends on the entropy of each
item" T = a+ b× (−log2(pi)) [6] and the latter introduced−log2(pi) as "surprisal value for a particular trial" [25]. How-
ever, there has been no validation for this application. More
importantly, HHL applies only to expert users. In the original
experiments [13, 15], participants were trained for more than
8,000 practice trials before starting the test. In contrast, our
study involves novice and intermediate users [17].

Instead, the phenomenon might be explained by assuming that
users maintain a probability distribution over item locations
and that they continually update this distribution, perhaps us-
ing Bayes rule, as new evidence is observed. Importantly, this
model would not only involve updating the location distribu-
tion of the target item but of all items that would be viewed
during search for the target item. We refer to this as inciden-
tal learning because the model would learn about items that
are incidental to the target. Importantly, with this model, the
location of the small number of frequent target items in a Zip-
fian distribution would be learnt very quickly but once these
locations were learnt, incidental learning would be reduced
because the model would move directly to the target without
visiting medium and low frequency items. In contrast, the
location of items in the Uniform distribution would be learnt
more evenly with incidental learning distributed over the lo-
cation distribution of the entire set of items. This increased
use of incidental learning in Uniform distributed menus would
give the learning advantage observed in the experiment.

Implications
A correctly parameterized distribution of menu items is es-
sential for ecologically valid investigation of menus. Intu-
itively, Zipfian distributions lead to faster overall performance,
counter-intuitively, they lead to slower performance of indi-
vidual items with matched probability. These results have
implications both for scientists testing theories and for prac-
titioners conducting usability testing. In the former case the
validity of a theory of interaction will be questionable in the
absence of a parameterized distribution. In the latter case, the
validity of the claim that one interface is better than another
may depend on the ecologically determined distribution.

Modeling. There is a continuous effort to encapsulate HCI
knowledge by building models of users’ behavior. Recently,
models of menu performance [2, 5, 6] do not only predict
average menu selection time, but also item selection time. Our
results indicate that we should take frequency distribution
into account when modeling menu performance so that the
distribution is correctly parameterized and the investigation is
ecologically valid.

Menu design. In real life, command selection with radical
Zipfian distribution is ubiquitous (i.e., Copy and Paste). In-
deed, analyses of software containing many commands such
as AudoCad show that users only use a subset of the available
commands [19]. This implies that users’ performance is often
impaired by not using the appropriate functions, possibly due
to the lack of awareness of the menu content [7, 14].

Using a flat frequency distribution might impair short-term
performance, but it might also improve long-term performance
by favoring the transition from novice to expert behavior. In-
deed, when a person uses a menu, they may not only learn
about the location of the target item, but also incidentally learn
about the locations of non-target items, which are encountered
while looking for the target. More such non-target learning
will occur when more search is required for the user to find
the target. In practice, the way designers assign commands
or command shortcuts to software functionalities should be
thought so that to improve menu awareness.

Empirical studies. Since empirical studies are essential for
both modeling and menu design, we therefore advocate a bet-
ter consideration of frequency distribution when elaborating
experimental designs. While difficult to manipulate, our re-
sults show that frequency distribution has an impact on users’
behavior and some possible interaction might occur with other
factors such as task nature.

In conclusion, this work advances the knowledge of menu
selection by a better understanding of the impact of item fre-
quency and frequency distribution on both item and menu
selection time. This effect is counter-intuitive but relevant to
efforts to design more learnable interfaces.
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