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Abstract: The spatiotemporal fluorescence imaging of biological processes requires effective tools
to label intracellular biomolecules in living systems. This review presents a brief overview of
recent labeling strategies that permits one to make protein and RNA strongly fluorescent using
synthetic fluorogenic probes. Genetically encoded tags selectively binding the exogenously applied
molecules ensure high labeling selectivity, while high imaging contrast is achieved using fluorogenic
chromophores that are fluorescent only when bound to their cognate tag, and are otherwise dark.
Beyond avoiding the need for removal of unbound synthetic dyes, these approaches allow the
development of sophisticated imaging assays, and open exciting prospects for advanced imaging,
particularly for multiplexed imaging and super-resolution microscopy.

Keywords: fluorogenic probes; protein labeling; RNA labeling

1. Introduction

Cells and organisms are complex machines driven by a set of dynamic biological events tightly
orchestrated in space and time. Our understanding of their inner workings is intricately related to our
ability to observe how their constituents (e.g. proteins, nucleic acids, lipids, glycans, and metabolites)
organize and interact. Among all the imaging modalities available, light microscopy has revolutionized
biological research. Microscopes that enable fluorescence imaging in live cells and animals have been
indispensable in our current understanding of biological processes. Nowadays, the recent advances
in optical fluorescence microscopy allow the observation of the dynamics of biomolecules in 3D at
sub-second resolution and at the diffraction limit or below.

Beyond advances in optics and detectors, biological imaging has strongly benefited from the
development of molecular tools to fluorescently label biomolecules. The most widely applied approach
in cell biology is the use of autofluorescent proteins (AFPs) to light up proteins, organelles, cellular
structures, and cells. The ability to genetically fuse AFPs to a protein of interest provides absolute
labeling specificity. AFPs allow specific identification and tracking of proteins in the complex
environment of a cell, or of cells in the mosaic architecture of a tissue/organism. In the last two
decades, the discovery and engineering of a large collection of AFPs with new and improved
photophysical/photochemical properties have facilitated the development of multicolor imaging,
the design of biosensors able to report on cellular physiology, and the blossoming of new microscopy
techniques such as super-resolution microscopy.

Recently, the fluorescence toolkit has been expanded with methods for labeling biomolecules
with exogenously applied small synthetic fluorescent probes. These innovative technologies offer
additional labeling refinement and broaden fluorescent labeling to more diverse cellular molecules,
such as RNA. Selectivity is ensured through fusion to a genetic tag that binds selectively tailored
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fluorescent molecules. The modular nature of such an approach enables one to tune the synthetic part
by molecular engineering, in order to address biological questions with the molecular diversity offered
by modern chemistry. To be usable within living systems, the genetic tag must fold and function in
various cellular compartments, while the fluorescent probes must be non-toxic, membrane-permeant,
and must not show unspecific interaction/reaction with cell components. A way to avoid unspecific
background in cells and achieve high imaging contrast is to use fluorescent probes that display no
fluorescence until labeling occurs (Figure 1A). Such probes are often called fluorogenic probes to
highlight their ability to generate fluorescence upon reaction/interaction with their target. Ideal
fluorogenic probes display large binding-induced changes (>100-fold) of the fluorescence intensity to
allow the visualization of labelled targets over freely diffusing probes. Fluorogenic response upon
binding can be achieved by changes in fluorescence quantum yield, spectral position or chromophore
absorption coefficient (Figure 1B,C) [1–3]. In this review, we present a brief overview of recent labeling
approaches that achieve high imaging contrast relying on genetically encoded protein or RNA tags
that bind and activate fluorogenic synthetic molecules (so-called fluorogens).
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Figure 1. Fluorogenic labeling. (A) Selective fluorogenic labeling through genetic fusion to a tag
(protein or RNA) able to bind a synthetic fluorogenic chromophore (so-called fluorogen) and activate
its fluorescence; (B) Binding-induced fluorogenic response can result from various processes such as
(i) unquenching of intramolecularly quenched fluorophores, (ii) fluorescence increase upon polarity
change or (iii) conformational locking of molecular rotors or conjugated push-pull systems; (C) Main
synthetic fluorogenic chromophores utilized for the development of fluorogenic labeling methods. The
maximal emission wavelengths of the fluorogens bound to their cognate tag are given. Abbreviations:
DFHBI = 3,5-difluoro-4-hydroxybenzylidene imidazolidinone; HBR = 4-hydroxybenzylidene rhodanine.
The design of (B) was inspired from Reference [1].
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2. Covalent Versus Non-Covalent Labeling

Labeling with fluorogenic probes can be covalent, relying on chemical or enzymatic reaction,
or non-covalent, relying on binding equilibrium. Covalent strategies provide new experimental
possibilities such as pulse-chase labeling for the study of protein synthesis, trafficking, and
turn-over [4,5]. In addition, imaging contrast can be further increased due to the possibility of washing
away excess probes. Non-covalent labeling strategies also offer exciting prospects. Labeling can be
very fast since no covalent bond has to be created. Moreover, when the dissociation rate is sufficiently
high, washing away the fluorogen can reverse labeling, switching off fluorescence. Systems displaying
a high dissociation rate also have the potential of displaying increased photostability because of
continuous fluorogen recycling. Finally, fine-tuning of the on rate and off rate constants can provide
“blinking” systems that could be well suited for super-resolution microscopy. A potential downside of
non-covalent labeling is that the probe must be present throughout the experiment, requiring careful
upstream studies of their toxicity and their influence on cellular processes.

3. Covalent Fluorogenic Labeling

Early examples of fluorogenic probes reacting with peptidic tags are FlAsH and ReAsH,
two biarsenical derivatives of fluorescein and resorufin that bind to proteins tagged with a tetracysteine
motif with very high affinity and a large increase in fluorescence intensity [6]. Bis-1,2-ethanedithiol
(EDT) adducts FlAsH-EDT2 and ReAsH-EDT2 are weakly fluorescent, however, when EDT is replaced
with the tetracysteine tag, FlAsH and ReAsH become strongly fluorescent, lighting up proteins in live
cells. The small size of the tetracysteine motif makes it one of the smallest genetic tags and is a proven
advantage over AFPs [7–9]. However, tetracysteine labeling is limited to reducing environments,
suffers from spontaneous unspecific background staining, and displays low signal-to-noise ratio
when imaging low-abundant or diffusing proteins. Despite these limitations, the development and
optimization [10] of the biarsenical-tetracysteine tagging system remains a landmark demonstration of
the power of coupling synthetic fluorogenic probes to proteins.

Labeling selectivity was improved through the development of self-labeling tags, albeit at the
expense of the tag size. The most advanced technologies nowadays are the commercially available
SNAP-tag, CLIP-tag, and Halo-tag [11–17]. SNAP-tag is a 20 kDa protein evolved from the human
DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) [11–15]. SNAP-tag transfers the
functionalized benzyl group of O6-benzylguanine (BG) derivatives to its active site cysteine, thus
allowing irreversible covalent labeling of fusion proteins. SNAP-tag accepts a broad variety of
chemical functionalities on BG, making it one of the most versatile tags currently available. CLIP-tag
is an engineered variant of SNAP-tag reacting selectively with O2-benzylcytosine (BC) substrates
instead of BG. SNAP-tag and CLIP-tag are fully orthogonal reactivity-wise enabling multicolor
protein labeling [16]. Halo-tag, on the other hand, is a 33 kDa protein engineered from a bacterial
haloalkane dehydrogenase [17]. Halo-tag was designed to covalently bind chloroalkane ligands.
Early developments of fluorogenic SNAP-tag substrates relied on Förster Resonance Energy Transfer
(FRET) between a fluorophore and a quencher [18]. Upon reaction with SNAP-tag, the fluorophore
and the quencher are physically separated, unquenching the fluorophore and thus leading to a large
fluorescence increase. This work showed that fluorogenic SNAP-tag labeling was well suited to
study protein activity in real-time with high temporal resolution. Varying the chemical nature of
the fluorophore and the quencher provided intramolecularly quenched substrates for multicolor
labeling [19]. Note that the use of intramolecularly quenched substrates is a general strategy that has
been also used with other self-labeling tags, such as trimethoprim-based chemical tags [20]. More
recently, silicon-rhodamine (SiR) dyes allowed the generation of far-red fluorogenic substrates for
SNAP-tag, CLIP-tag, and Halo-tag [21]. The fluorogenic response in these substrates relies on a ground
state isomerization that breaks the dye conjugation. In an aqueous solution, SiR adopts mainly a closed,
UV absorbing, spirolactone form, while it undergoes ring opening in less polar environments such as
protein vicinity, giving a far-red fluorescent zwitterionic opened form strongly absorbing at 640–650 nm
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and emitting at 660–670 nm. The high cell-permeability and fluorogenicity of SiR-based substrates
allowed the imaging of fusion proteins in living cells and tissues. The high photostability of SiR (and
analogous azetidine containing JF646 [22]) has proven to be particularly adapted for super-resolution
imaging in live cells with Stochastic Optical Reconstruction Microscopy (STORM) and Stimulated
Emission Depletion (STED) microscopy. Furthermore, SiR was exploited to design fluorogenic probes
for actin and tubulin imaging in living cells [23]. These probes allowed the imaging of cytoskeletal
structures in living cells, such as the microtubules of the centrosome or ring-shaped actin-containing
structures in axons, with sub-diffraction resolution using STED. Two-color super-resolution imaging
was recently made possible thanks to the development of a SiR derivative with excitation and emission
maxima at 690 and 715 nm, respectively [24]. Fluorogenic SNAP-tag substrates were also obtained
using the solvatochromic membrane dye Nile Red. SNAP-tag anchoring of Nile Red allowed specific
labeling of cell membrane-anchored proteins through selective activation by the proximal plasma
membrane [25].

The size of AFPs and self-labeling tags is a general concern when tagging a protein. Biologists
are always seeking for small genetic tags to minimize steric and functional perturbations in fusion
proteins and reduce the size of the genetic material to be introduced within genomes. The last
decade has seen the development of small protein tags specifically designed for fluorogenic covalent
labeling. The first small tag proven to be well suited for fluorogenic protein labeling is the PYP-tag
based on the 14-kDa photoactive yellow protein (PYP) from Halorhodospira Halophila. PYP is a
monomeric blue-light photoreceptor whose sensing ability is due to the photoisomerization of its
parahydroxycinnamic acid chromophore covalently attached as a thioester to Cys69. PYP and its
ligands are not present in animal cells, allowing its use as a bioorthogonal genetic tag. As a labeling
tag, apo-PYP was shown to react selectively with coumarin and cinnamic acid thioester derivatives
through transthioesterification reactions [26,27]. The first generations of PYP fluorogenic substrates
relied on quenching mechanisms based on intramolecular association between a fluorescent dye and a
quencher [26,27]. Their use was hampered, however, by rather slow labeling kinetics. Rapid fluorogenic
labeling of PYP-tagged proteins in live cells was achieved by using 7-dimethylaminocoumarin thioester
derivatives [28]. 7-dimethylaminocoumarin derivatives are environment-sensitive fluorophores that
are barely fluorescent in polar aqueous milieu, but fluoresce in the non-polar environment of a
protein interior [28]. Mutagenesis of PYP combined with engineering of the electrophilicity of the
thioester derivatives allowed further improvement of brightness and binding kinetics [29,30]. Recently,
fluorogenic PYP-tag probes with various fluorescence colors were designed for the spatiotemporal
study of proteins in living cells [31]. The use of probes of different colors that can label selectively
cytoplasmic or plasma-membrane proteins allowed the understanding of the precise effect of the
N-glycan of Glucose transporter 4 (GLUT4) on its insulin-dependent intracellular transport [31].

Apart from PYP, other small protein scaffolds have been considered as genetic tags with minimal
size. Recently, the 15-kDa cellular retinoic acid binding protein II (CRABPII) was transformed into a
small protein tag for fluorogenic labeling. CRABPII is a transport protein binding cellular retinoic acids.
CRABPII is known to bind various synthetic retinoids and to tolerate mutations. A non-fluorescent,
cell-permeant merocyanine aldehyde precursor was proven to efficiently label CRABPII mutants
bearing a binding site lysine in bacteria [32]. Within minutes, formation of a protonated iminium gives
a strongly red fluorescent cyanine dye, whose fluorescence is maximized by the reduced torsional
freedom within the CRABPII cavity. A similar fluorogenic strategy was recently used to evolve a
microbial rhodopsin into a protein displaying bright and near-infrared fluorescence [33]. Through
an elegant directed evolution approach, Archaerhodopsin-3 was engineered to bind a synthetic
merocyanine retinal in place of the natural retinal, and optimize the fluorescence properties of the
resulting covalent complex.
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4. Non-Covalent Fluorogenic Labeling

Parallel to the development of covalent fluorogenic protein labeling strategies, methods based on
the non-covalent interaction between a protein tag and a fluorogenic dye have emerged. Non-covalent
labeling provides experimentalists with novel exciting possibilities to label proteins on demand in a
fully reversible fashion (vide supra). Most non-covalent fluorogenic labeling techniques exploit the
fluorescence increase observed in some push-pull fluorogenic dyes upon immobilization. Several
excited-state processes can be responsible for the environmental sensitivity of these dyes. The
disruption of dye planarity through internal rotation is a source of nonradiative relaxation of the
excited state through twisted intramolecular charge transfer (TICT) in polar media. Internal conversion
effected by isomerization about a double bond is another source of low fluorescence. In both cases,
fluorescence increase can be observed in protein cavities that are able to slow down internal rotations
or isomerization, as was shown in early works with the generation of antibodies activating the
fluorescence of fluorogenic molecular rotors [34] and trans-stilbenes [34–36].

Genetically encodable fluorogen-activating proteins (FAP) generating fluorescence through the
immobilization of fluorogenic molecular rotors were evolved from single-chain antibodies [37]. FAPs
binding modified thiazole orange (TO) and malachite green (MG) were first generated by screening a
yeast surface-displayed library of human single-chain antibodies (scFvs) by fluorescence-activating cell
sorting (FACS). Selected FAPs bind TO and MG with nanomolar affinity and increase their respectively
green and red fluorescence to brightness levels encountered in AFPs [37]. These first FAPs contained
internal disulfide bonds, which restricted their use to non-reducing environments such as the cell
surface and secretory pathways [37]. The engineering of disulfide-free FAPs improved labeling in the
cytoplasm and various other reducing subcellular compartments [38,39]. Selection of scFvs against
other fluorogens successfully extended the chromatic palette of FAPs [40,41]. Of particular interest,
some scFv promiscuously activate various dimethylindol red (DIR) analogs, providing access to
wavelengths ranging from the blue to the near infrared [40].

Beside the far-red emitting MG-ester that shows good cell permeability and enables efficient
labeling inside living cells [39], most FAP’s fluorogens are poorly cell permeant because of the
presence of charges that prevent membrane crossing. This inability to cross membranes was
positively used to selectively label membrane proteins without labeling the intracellular pool of
proteins [42,43]. MG derivatives with optimized cell exclusion and labeling kinetics allowed the
quantitative analysis of endocytosis and recycling of FAP-tagged receptors by simple add-and-read
protocols [44]. This approach provides an experimental simplicity not encountered with traditional
surface immunofluorescence assays, opening great prospects for high-throughput quantification of cell
surface proteins using high-throughput flow cytometers [45–47] and plate readers [48,49]. In addition,
pulse-chase labeling with two fluorogens of different colors was shown to allow for the quantification
of receptor recycling through the ratiometric measurement of internalized versus non-internalized
receptors upon agonist activation [48,50].

These fluorogen-based reporters were furthermore shown to open great prospects for
super-resolution microscopy and single molecule tracking. Highly photostable far-red MG-based FAPs
were shown to be well-suited for live cell imaging with STED nanoscopy in mammalian cells and
bacteria [51,52]. The experimental control on fluorogen concentration further renders it possible to
label a subset of proteins independently of their expression level, allowing the tracking of single
receptors [53]. This property also enabled the random sampling of a sparse subset of emitting
molecules for super-resolution imaging [54]. Stochastic sampling is normally obtained through
photoswitching of (i) photoswitchable fluorescent proteins, as used in photoactivation localization
microsocopy (PALM), or (ii) dyes, as used in STORM. By using the reversible binding of diffusing
fluorogens present at low levels, it is theoretically possible to obtain stochastic blinking without the
need for photoactivation light, because a fluorescent signal appears as a diffraction-limited spot on a
target when fluorogen binds to it, while the signal turns off when the fluorogen dissociates from the
target or is photobleached. Relying on such stochastic binding-based blinking, FAP-tagged proteins
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could be imaged with sub-diffraction resolution [54], demonstrating the great potential of non-covalent
fluorogenic reporters for super-resolution imaging.

The fluorogenic toolbox was recently expanded with the development of FAST
(fluorescence-activating and absorption-shifting tag). FAST is a variant of the 14 kDa PYP engineered
by directed evolution to non-covalently bind hydroxybenzylidene rhodanine (HBR) derivatives
and activate their fluorescence [55]. HBR and its analogs are composed of an electron-donating
phenol ring conjugated to an electron-withdrawing rhodanine heterocycle. This push-pull structure
deexcites non-radiatively in solution, but relaxes radiatively to the ground state within the cavity
of FAST. In addition to fluorescence activation, HBR derivatives undergo an absorption red-shift of
>80 nm upon binding to FAST, enabling one to distinguish bound fluorogens from free ones by the
choice of the excitation wavelength, further increasing the fluorogenic response. HBR derivatives are
highly cell-permeant, allowing protein labeling within a few seconds in a large number of cellular
localizations and hosts [55]. FAST is the first fluorogen-based system shown to allow protein labeling
in living model organisms [55]. Interestingly, the color of FAST can be experimentally tuned by using
a collection of HBR analogs that give the possibility to make FAST fluoresce green-yellow, orange,
or red light [56]. This spectral versatility enables one to adapt the color of FAST to the experimental
spectral constraints without the need for recloning the tag, providing an experimental versatility not
encountered with AFPs. Fluorogen binding in FAST is non-covalent and highly dynamic, enabling
reversible labeling by fluorogen washout, making FAST a fluorescence switch that can be switched
on and off at will by the addition or removal of the fluorogen within a few seconds. The ability to
dynamically swap color by exchanging fluorogens emitting either green or red light provides a unique
signature that was used to selectively image FAST in spectrally crowded environments. The evaluation
of the degree of anticorrelation of the green and red fluorescence signals upon color swapping by
two-color cross-correlation allowed the selective imaging of FAST-tagged proteins in cells expressing
both green and red fluorescent proteins, although spectral discrimination was impossible in such
conditions [56]. This example shows the general potential of non-covalent fluorogenic reporters for the
development of new innovative imaging methods for advanced biological imaging.

Apart from protein labeling, the concept of fluorogenic labeling has great potential for observing
other classes of biomolecules for which no genetically encoded fluorescent tags are available. Early
studies showed that RNA aptamers could be evolved to selectively bind fluorogenic chromophores
and activate their fluorescence [57–63], opening exciting ways for imaging RNA in living cells using
aptamers as genetically encoded RNA tags [64–66]. The most advanced fluorogen-activating RNA
aptamers for imaging RNA in living cells are from the Spinach family. Spinach [67], and its optimized
version Spinach 2 [68], and Broccoli [69], are RNA aptamers that recognize derivatives of the fluorogenic
3,5-difluoro-4-hydroxybenzylidene imidazolidinone (DFHBI), an analog of the green fluorescent
protein (GFP) chromophore 4-hydroxybenzylidene imidazolidinone (HBI). HBI is fluorogenic, and
only fluoresces in the beta-barrel of GFP. Bare HBI is weakly fluorescent in solution, in agreement with
accessible radiationless decay channels along the cis-trans photoisomerization path [70,71]. Similarly,
DFHBI only fluoresces when bound and immobilized within Spinach RNA aptamers [72], which
allows high contrast imaging of Spinach-tagged RNA molecules in living cells [67–69]. Beside RNA
imaging, the Spinach technology presents great potentials for the design of fluorogenic biosensors
as demonstrated by the generation of biosensors able to light up upon specific interactions with
endogenous metabolites and proteins in live bacteria through the allosteric coupling of Spinach with
recognition aptameric modules [73–76]. The recent development of the RNA Mango aptamer, which
binds a series of thiazole orange derivatives, extended the color palette available for RNA labeling to
the red edge of the visible spectrum [77].

5. Conclusions

Fluorogenic labeling is a general concept for imaging biomolecules with high contrast in living
systems, with great potential for pushing the limit of biological imaging. Modern biology necessitates
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more and more advanced probes and technologies to match the increasing complexity of the questions
under investigation. Fluorogenic bioorthogonal labeling methods provide an additional level of
labeling sophistication as the fluorescence labeling can be controlled at will by the addition of a
synthetic bioorthogonal molecule, opening great prospects for on-demand applications. Robust
methods are now available for labeling proteins or RNA in various compartments in living cells and,
more recently, in living model organisms, which should allow biorthogonal fluorogenic labeling
technologies to become key players for the study of complex biological processes. Moreover,
some of the presented technologies display unprecedented attributes—such as a small size, an
oxygen-independent fluorescence, tunable spectral properties and binding-induced blinking—that
make them interesting alternatives to classical autofluorescent proteins and open great prospects
for advanced imaging such as super-resolution microscopies. Future developments coupling
fluorogen-based reporters to sensing modules should provide powerful new technologies for
measuring intracellular activities with unprecedented temporal and spatial resolutions.
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