A. S. Klymchenko, Solvatochromic and fluorogenic dyes as environment-sensitive probes: Design and biological applications Dark dyes-bright complexes: Fluorogenic protein labeling, Acc. Chem. Res. Curr. Opin. Chem. Biol, vol.2017, issue.27, pp.366-375, 2015.
DOI : 10.1021/acs.accounts.6b00517

L. Jullien and A. Gautier, Fluorogen-based reporters for fluorescence imaging: a review, Methods and Applications in Fluorescence, vol.3, issue.4, p.42007
DOI : 10.1088/2050-6120/3/4/042007

URL : http://iopscience.iop.org/article/10.1088/2050-6120/3/4/042007/pdf

O. 'hare, H. Johnsson, K. Gautier, A. , M. J. Johnsson et al., Chemical probes shed light on protein function How to obtain labeled proteins and what to do with them, Curr. Opin. Struct. Biol. Curr. Opin. Biotechnol, vol.17, issue.21, pp.488-494, 2007.

B. Griffin, S. Adams, and R. Tsien, Specific Covalent Labeling of Recombinant Protein Molecules Inside Live Cells, Science, vol.281, issue.5374, pp.269-272, 1998.
DOI : 10.1126/science.281.5374.269

M. Andresen, R. Schmitz-salue, and S. Jakobs, Short Tetracysteine Tags to ??-Tubulin Demonstrate the Significance of Small Labels for Live Cell Imaging, Molecular Biology of the Cell, vol.15, issue.12, pp.5616-5622, 2004.
DOI : 10.1091/mbc.E04-06-0454

C. Hoffmann, G. Gaietta, M. Bunemann, S. Adams, S. Oberdorff-maass et al., A FlAsH-based FRET approach to determine G protein???coupled receptor activation in living cells, Nature Methods, vol.357, issue.3, pp.171-176, 2005.
DOI : 10.1074/jbc.C400302200

B. Martin, B. Giepmans, S. Adams, and R. Tsien, Mammalian cell???based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity, Nature Biotechnology, vol.58, issue.10, pp.1308-1314, 2005.
DOI : 10.1038/nbt1066

A. Keppler, S. Gendreizig, T. Gronemeyer, H. Pick, H. Vogel et al., A general method for the covalent labeling of fusion proteins with small molecules in vivo, Nature Biotechnology, vol.37, issue.1, pp.86-89, 2003.
DOI : 10.1007/s002800050427

A. Keppler, H. Pick, C. Arrivoli, H. Vogel, and K. Johnsson, Labeling of fusion proteins with synthetic fluorophores in live cells, Proc. Natl. Acad. Sci, pp.9955-9959, 2004.
DOI : 10.1046/j.0022-2720.2001.001007.x

A. Juillerat, T. Gronemeyer, A. Keppler, S. Gendreizig, H. Pick et al., Directed Evolution of O6-Alkylguanine-DNA Alkyltransferase for Efficient Labeling of Fusion Proteins with Small Molecules In Vivo, Chemistry & Biology, vol.10, issue.4, pp.313-317, 2003.
DOI : 10.1016/S1074-5521(03)00068-1

A. Juillerat, C. Heinis, I. Sielaff, J. Barnikow, H. Jaccard et al., Engineering Substrate Specificity of O6-Alkylguanine-DNA Alkyltransferase for Specific Protein Labeling in Living Cells, ChemBioChem, vol.32, issue.7, pp.1263-1269, 2005.
DOI : 10.1016/j.ymeth.2003.10.007

T. Gronemeyer, C. Chidley, A. Juillerat, C. Heinis, and K. Johnsson, Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling, Protein Engineering Design and Selection, vol.19, issue.7, pp.309-316, 2006.
DOI : 10.1093/protein/gzl014

A. Gautier, A. Juillerat, C. Heinis, I. R. Corrêa, . Jr et al., An Engineered Protein Tag for Multiprotein Labeling in Living Cells, Chemistry & Biology, vol.15, issue.2, pp.128-136, 2008.
DOI : 10.1016/j.chembiol.2008.01.007

URL : http://doi.org/10.1016/j.chembiol.2008.01.007

G. Los, L. Encell, M. Mcdougall, D. Hartzell, N. Karassina et al., HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis, ACS Chemical Biology, vol.3, issue.6, pp.373-382, 2008.
DOI : 10.1021/cb800025k

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.476.1097

T. Komatsu, K. Johnsson, H. Okuno, H. Bito, and T. Inoue, Real-Time Measurements of Protein Dynamics Using Fluorescence Activation-Coupled Protein Labeling Method, Journal of the American Chemical Society, vol.133, issue.17, pp.6745-6751, 2011.
DOI : 10.1021/ja200225m

X. Sun, A. Zhang, B. Baker, L. Sun, A. Howard et al., Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging, ChemBioChem, vol.107, issue.14, pp.2217-2226, 2011.
DOI : 10.1073/pnas.1002025107

C. Jing and V. W. Cornish, A Fluorogenic TMP-Tag for High Signal-to-Background Intracellular Live Cell Imaging, ACS Chemical Biology, vol.8, issue.8, pp.1704-1712, 2013.
DOI : 10.1021/cb300657r

G. Lukinavicius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang et al., A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins, Nature Chemistry, vol.101, issue.2, pp.132-139, 2013.
DOI : 10.1016/j.bpj.2011.09.006

J. B. Grimm, B. P. English, J. Chen, J. P. Slaughter, Z. Zhang et al., A general method to improve fluorophores for live-cell and single-molecule microscopy, Nature Methods, vol.3, issue.3, pp.244-250
DOI : 10.1364/OL.33.000156

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344395

S. Rizzo and H. Waldmann, Fluorogenic probes for live-cell imaging of the cytoskeleton, Nat. Meth, vol.2014, issue.11, pp.731-733

K. Johnsson, Fluorogenic probes for multicolor imaging in living cells, J. Am. Chem. Soc, vol.2016, issue.138, pp.9365-9368

E. Prifti, L. Reymond, M. Umebayashi, R. Hovius, H. Riezman et al., A Fluorogenic Probe for SNAP-Tagged Plasma Membrane Proteins Based on the Solvatochromic Molecule Nile Red, ACS Chemical Biology, vol.9, issue.3, pp.606-612
DOI : 10.1021/cb400819c

Y. Hori, H. Ueno, S. Mizukami, and K. Kikuchi, Photoactive Yellow Protein-Based Protein Labeling System with Turn-On Fluorescence Intensity, Journal of the American Chemical Society, vol.131, issue.46, pp.16610-16611, 2009.
DOI : 10.1021/ja904800k

Y. Hori, K. Nakaki, M. Sato, S. Mizukami, and K. Kikuchi, Development of Protein-Labeling Probes with a Redesigned Fluorogenic Switch Based on Intramolecular Association for No-Wash Live-Cell Imaging, Angewandte Chemie International Edition, vol.73, issue.23, pp.5611-5614, 2012.
DOI : 10.1021/ac001016a

Y. Hori, T. Norinobu, M. Sato, K. Arita, M. Shirakawa et al., Development of Fluorogenic Probes for Quick No-Wash Live-Cell Imaging of Intracellular Proteins, Journal of the American Chemical Society, vol.135, issue.33, pp.12360-12365, 2013.
DOI : 10.1021/ja405745v

Y. Hori, S. Hirayama, M. Sato, and K. Kikuchi, Redesign of a Fluorogenic Labeling System To Improve Surface Charge, Brightness, and Binding Kinetics for Imaging the Functional Localization of Bromodomains, Angewandte Chemie, vol.73, issue.48, pp.14576-14579, 2015.
DOI : 10.1158/0008-5472.CAN-12-3292

Y. Kamikawa, Y. Hori, K. Yamashita, L. Jin, S. Hirayama et al., Design of a protein tag and fluorogenic probe with modular structure for live-cell imaging of intracellular proteins, Chem. Sci., vol.23, issue.1, pp.308-314, 2016.
DOI : 10.1016/0021-9991(77)90098-5

S. Hirayama, Y. Hori, Z. Benedek, T. Suzuki, and K. Kikuchi, Fluorogenic probes reveal a role of GLUT4 N-glycosylation in intracellular trafficking, Nature Chemical Biology, vol.12, issue.10, pp.853-859, 2016.
DOI : 10.1039/tf9575300646

I. Yapici, K. S. Lee, T. Berbasova, M. Nosrati, X. Jia et al., ???Turn-On??? Protein Fluorescence: In Situ Formation of Cyanine Dyes, Journal of the American Chemical Society, vol.137, issue.3, pp.2015-1073
DOI : 10.1021/ja506376j

L. Herwig, A. J. Rice, C. N. Bedbrook, R. K. Zhang, A. Lignell et al., Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore, Cell Chemical Biology, vol.24, issue.3, pp.2017-415
DOI : 10.1016/j.chembiol.2017.02.008

T. Iwaki, C. Torigoe, M. Noji, and M. Nakanishi, Antibodies for fluorescent molecular rotors, Biochemistry, vol.32, issue.29, pp.7589-7592, 1993.
DOI : 10.1021/bi00080a034

A. Simeonov, M. Matsushita, E. A. Juban, E. H. Thompson, T. Z. Hoffman et al., Blue-Fluorescent Antibodies, Science, vol.290, issue.5490, pp.307-313, 2000.
DOI : 10.1126/science.290.5490.307

E. W. Debler, G. F. Kaufmann, M. M. Meijler, and A. Heine, Deeply Inverted Electron-Hole Recombination in a Luminescent Antibody-Stilbene Complex, Science, vol.98, issue.18, pp.1232-1235, 2008.
DOI : 10.1073/pnas.181342398

C. Szent-gyorgyi, B. A. Schmidt, Y. Creeger, G. W. Fisher, K. L. Zakel et al., Fluorogen-activating single-chain antibodies for imaging cell surface proteins, Nature Biotechnology, vol.95, issue.2, pp.235-240, 2008.
DOI : 10.1038/nbt1368

B. P. Yates, M. A. Peck, and P. B. Berget, Directed Evolution of a Fluorogen-Activating Single Chain Antibody for Function and Enhanced Brightness in the Cytoplasm, Molecular Biotechnology, vol.12, issue.7, pp.829-841, 2012.
DOI : 10.1093/protein/12.5.417

C. A. Telmer, R. Verma, H. Teng, S. Andreko, L. Law et al., Rapid, Specific, No-wash, Far-red Fluorogen Activation in Subcellular Compartments by Targeted Fluorogen Activating Proteins, ACS Chemical Biology, vol.10, issue.5, pp.1239-1246, 2015.
DOI : 10.1021/cb500957k

URL : http://doi.org/10.1021/cb500957k

H. Ozhalici-unal, C. L. Pow, S. A. Marks, L. D. Jesper, G. L. Silva et al., A rainbow of fluoromodules: A promiscuous scFv protein binds to and activates a diverse set of fluorogenic cyanine dyes, J. Am. Chem. Soc, vol.130, pp.12620-12621, 2008.

K. J. Zanotti, G. L. Silva, Y. Creeger, K. L. Robertson, A. S. Waggoner et al., Blue fluorescent dye-protein complexes based on fluorogenic cyanine dyes and single chain antibody fragments, Org. Biomol. Chem., vol.5, issue.4, pp.1012-1020, 2011.
DOI : 10.1002/cbic.200300701

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163152

J. Holleran, D. Brown, M. H. Fuhrman, S. A. Adler, G. W. Fisher et al., Fluorogen-activating proteins as biosensors of cell-surface proteins in living cells, Cytometry Part A, vol.75, issue.8, pp.776-782, 2010.
DOI : 10.1002/cyto.a.20925

G. W. Fisher, S. A. Adler, M. H. Fuhrman, A. S. Waggoner, M. P. Bruchez et al., Detection and Quantification of ??2AR Internalization in Living Cells Using FAP-Based Biosensor Technology, Journal of Biomolecular Screening, vol.15, issue.6, pp.703-709, 2010.
DOI : 10.1177/1087057110370892

Q. Yan, B. F. Schmidt, L. A. Perkins, M. Naganbabu, S. Saurabh et al., Near-instant surface-selective fluorogenic protein quantification using sulfonated triarylmethane dyes and fluorogen activating proteins, Org. Biomol. Chem., vol.219, issue.7, pp.2078-2086, 2015.
DOI : 10.1126/science.6681676

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318720

J. P. Holleran, M. L. Glover, K. W. Peters, C. A. Bertrand, S. C. Watkins et al., Pharmacological rescue of the mutant cystic fibrosis transmembrane conductance regulator (CFTR) detected by use of a novel fluorescence platform, Mol. Med, vol.18, pp.685-696, 2012.

Y. Wu, P. H. Tapia, G. W. Fisher, A. S. Waggoner, J. Jarvik et al., High-throughput flow cytometry compatible biosensor based on fluorogen activating protein technology, Cytometry Part A, vol.130, issue.2, pp.220-226, 2013.
DOI : 10.1021/ja805042p

URL : http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.22242/pdf

Y. Wu, P. H. Tapia, G. W. Fisher, P. C. Simons, J. J. Strouse et al., Discovery of Regulators of Receptor Internalization with High-Throughput Flow Cytometry, Molecular Pharmacology, vol.82, issue.4, pp.645-657, 2012.
DOI : 10.1124/mol.112.079897

G. W. Fisher, M. H. Fuhrman, S. A. Adler, C. Szent-gyorgyi, A. S. Waggoner et al., Self-Checking Cell-Based Assays for GPCR Desensitization and Resensitization, Journal of Biomolecular Screening, vol.83, issue.8, pp.1220-1226
DOI : 10.1002/cyto.a.22242

URL : http://journals.sagepub.com/doi/pdf/10.1177/1087057114534299

J. C. Snyder, T. F. Pack, L. K. Rochelle, S. K. Chakraborty, M. Zhang et al., A rapid and affordable screening platform for membrane protein trafficking, BMC Biology, vol.11, issue.3???4, pp.1-10
DOI : 10.1016/S1359-6446(05)03686-X

URL : https://bmcbiol.biomedcentral.com/track/pdf/10.1186/s12915-015-0216-3?site=bmcbiol.biomedcentral.com

C. P. Pratt, J. He, Y. Wang, A. L. Barth, and M. P. Bruchez, Fluorogenic Green-Inside Red-Outside (GIRO) Labeling Approach Reveals Adenylyl Cyclase-Dependent Control of BK?? Surface Expression, Bioconjugate Chemistry, vol.26, issue.9, pp.1963-1971
DOI : 10.1021/acs.bioconjchem.5b00409

URL : http://doi.org/10.1021/acs.bioconjchem.5b00409

J. A. Fitzpatrick, Q. Yan, J. J. Sieber, M. Dyba, and U. Schwarz, STED Nanoscopy in Living Cells Using Fluorogen Activating Proteins, STED nanoscopy in living cells using fluorogen activating proteins, pp.1843-1847, 2009.
DOI : 10.1021/bc900249e

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957894

S. Saurabh, A. M. Perez, C. J. Comerci, L. Shapiro, and W. Moerner, Super-resolution Imaging of Live Bacteria Cells Using a Genetically Directed, Highly Photostable Fluoromodule, Journal of the American Chemical Society, vol.138, issue.33, pp.10398-10401, 2016.
DOI : 10.1021/jacs.6b05943

S. L. Schwartz, Q. Yan, C. A. Telmer, K. A. Lidke, M. P. Bruchez et al., Fluorogen-Activating Proteins Provide Tunable Labeling Densities for Tracking Fc??RI Independent of IgE, ACS Chemical Biology, vol.10, issue.2, pp.539-546, 2014.
DOI : 10.1021/cb5005146

Q. Yan, S. L. Schwartz, S. Maji, F. Huang, C. Szent-gyorgyi et al., Localization Microscopy using Noncovalent Fluorogen Activation by Genetically Encoded Fluorogen-Activating Proteins., ChemPhysChem, vol.7, issue.4, pp.687-695, 2014.
DOI : 10.1038/nmeth.1449

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967550

M. Plamont, E. Billon-denis, S. Maurin, C. Gauron, F. M. Pimenta et al., Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo, Proc. Natl. Acad. Sci. USA 2016, pp.497-502
DOI : 10.1523/JNEUROSCI.5711-08.2009

URL : https://hal.archives-ouvertes.fr/hal-01259909

C. Li, M. Plamont, H. L. Sladitschek, V. Rodrigues, I. Aujard et al., Dynamic multi-color protein labeling in living cells, Chem. Sci, 2017.
DOI : 10.1039/c7sc01364g

URL : http://pubs.rsc.org/en/content/articlepdf/2017/sc/c7sc01364g

J. R. Babendure, S. R. Adams, and R. Y. Tsien, Aptamers Switch on Fluorescence of Triphenylmethane Dyes, Journal of the American Chemical Society, vol.125, issue.48, pp.14716-14717, 2003.
DOI : 10.1021/ja037994o

M. N. Stojanovic and D. M. Kolpashchikov, Modular Aptameric Sensors, Journal of the American Chemical Society, vol.126, issue.30, pp.9266-9270, 2004.
DOI : 10.1021/ja032013t

B. A. Sparano and K. Koide, A Strategy for the Development of Small-Molecule-Based Sensors That Strongly Fluoresce When Bound to a Specific RNA, Journal of the American Chemical Society, vol.127, issue.43, pp.14954-14955, 2005.
DOI : 10.1021/ja0530319

S. Sando, A. Narita, M. Hayami, and Y. Aoyama, Transcription monitoring using fused RNA with a dye-binding light-up aptamer as a tag: a blue fluorescent RNA, Chemical Communications, vol.126, issue.33, pp.3858-3860, 2008.
DOI : 10.1177/24.1.943439

T. P. Constantin, G. L. Silva, K. L. Robertson, T. P. Hamilton, K. Fague et al., Synthesis of New Fluorogenic Cyanine Dyes and Incorporation into RNA Fluoromodules, Organic Letters, vol.10, issue.8, pp.1561-1564, 2008.
DOI : 10.1021/ol702920e

R. Pei, J. Rothman, Y. Xie, and M. N. Stojanovic, Light-up properties of complexes between thiazole orange-small molecule conjugates and aptamers, Nucleic Acids Research, vol.37, issue.8, 2009.
DOI : 10.1093/nar/gkp154

J. Lee, K. H. Lee, J. Jeon, A. Dragulescu-andrasi, F. Xiao et al., Combining SELEX Screening and Rational Design to Develop Light-Up Fluorophore???RNA Aptamer Pairs for RNA Tagging, ACS Chemical Biology, vol.5, issue.11, pp.1065-1074, 2010.
DOI : 10.1021/cb1001894

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044212

M. Famulok, Chemical biology: Green fluorescent RNA, Nature, vol.263, issue.7003, pp.976-977, 2004.
DOI : 10.1021/ja038822u

S. Tyagi, Imaging intracellular RNA distribution and dynamics in living cells, Nature Methods, vol.124, issue.5, pp.331-338, 2009.
DOI : 10.1038/nmeth.1321

B. A. Armitage, Imaging of RNA in live cells, Current Opinion in Chemical Biology, vol.15, issue.6, pp.806-812, 2011.
DOI : 10.1016/j.cbpa.2011.10.006

J. S. Paige, K. Y. Wu, and S. R. Jaffrey, RNA Mimics of Green Fluorescent Protein, Science, vol.73, issue.5, pp.642-646, 2011.
DOI : 10.1016/S0006-3495(97)78307-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314379

R. L. Strack, M. D. Disney, and S. R. Jaffrey, A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat???containing RNA, Nature Methods, vol.10, issue.12, pp.1219-1224
DOI : 10.2144/000112056

G. S. Filonov, J. D. Moon, N. Svensen, S. R. Jaffrey, and . Broccoli, Broccoli: Rapid Selection of an RNA Mimic of Green Fluorescent Protein by Fluorescence-Based Selection and Directed Evolution, Journal of the American Chemical Society, vol.136, issue.46, pp.16299-16308, 2014.
DOI : 10.1021/ja508478x

W. Weber, V. Helms, J. A. Mccammon, and P. W. Langhoff, Shedding light on the dark and weakly fluorescent states of green fluorescent proteins, Proc. Natl. Acad. Sci, pp.6177-6182, 1999.
DOI : 10.1021/bi970563w

P. Wang, J. Querard, S. Maurin, S. S. Nath, T. Le-saux et al., Photochemical properties of Spinach and its use in selective imaging, Chemical Science, vol.16, issue.7, pp.2865-2873, 2013.
DOI : 10.1002/chem.201000541

K. D. Warner, M. C. Chen, W. Song, R. L. Strack, A. Thorn et al., Structural basis for activity of highly efficient RNA mimics of green fluorescent protein, Nature Structural & Molecular Biology, vol.276, issue.8, pp.658-663, 2014.
DOI : 10.1107/S0021889895007047

J. S. Paige, T. Nguyen-duc, W. Song, and S. R. Jaffrey, Fluorescence Imaging of Cellular Metabolites with RNA, Science, vol.5, issue.4, p.1194
DOI : 10.1038/nchembio.153

W. Song, R. L. Strack, and S. R. Jaffrey, Imaging bacterial protein expression using genetically encoded RNA sensors, Nature Methods, vol.260, issue.9, pp.873-875
DOI : 10.1038/nmeth861

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758421

M. You, J. L. Litke, and S. R. Jaffrey, Imaging metabolite dynamics in living cells using a Spinach-based riboswitch, Proc. Natl. Acad. Sci. USA 2015, pp.2756-2765
DOI : 10.1038/nmeth.2701

C. A. Kellenberger, S. C. Wilson, J. Sales-lee, and M. C. Hammond, RNA-Based Fluorescent Biosensors for Live Cell Imaging of Second Messengers Cyclic di-GMP and Cyclic AMP-GMP, Journal of the American Chemical Society, vol.135, issue.13, pp.4906-4909, 2013.
DOI : 10.1021/ja311960g

E. V. Dolgosheina, S. C. Jeng, S. S. Panchapakesan, R. Cojocaru, P. S. Chen et al., RNA Mango Aptamer-Fluorophore: A Bright, High-Affinity Complex for RNA Labeling and Tracking, ACS Chemical Biology, vol.9, issue.10, pp.2412-2420
DOI : 10.1021/cb500499x