
HAL Id: hal-01596081
https://hal.sorbonne-universite.fr/hal-01596081

Submitted on 27 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Network representation of protein interactions: Theory
of graph description and analysis

Dennis Kurzbach

To cite this version:
Dennis Kurzbach. Network representation of protein interactions: Theory of graph description and
analysis. Protein Science, 2016, 25 (9), pp.1617 - 1627. �10.1002/pro.2963�. �hal-01596081�

https://hal.sorbonne-universite.fr/hal-01596081
https://hal.archives-ouvertes.fr


Network representation of protein
interactions: theory of graph
description and analysis

Dennis Kurzbach*

�Ecole Normale Sup�erieure, Laboratoire Des Biomol�ecules (LBM, UMR 7203), 24 Rue Lhomond, Paris 75230, France

Abstract: A methodological framework is presented for the graph theoretical interpretation of NMR

data of protein interactions. The proposed analysis generalizes the idea of network representations
of protein structures by expanding it to protein interactions. This approach is based on regulariza-

tion of residue-resolved NMR relaxation times and chemical shift data and subsequent construc-

tion of an adjacency matrix that represents the underlying protein interaction as a graph or
network. The network nodes represent protein residues. Two nodes are connected if two residues

are functionally correlated during the protein interaction event. The analysis of the resulting net-

work enables the quantification of the importance of each amino acid of a protein for its interac-
tions. Furthermore, the determination of the pattern of correlations between residues yields

insights into the functional architecture of an interaction. This is of special interest for intrinsically

disordered proteins, since the structural (three-dimensional) architecture of these proteins and
their complexes is difficult to determine. The power of the proposed methodology is demonstrated

at the example of the interaction between the intrinsically disordered protein osteopontin and its

natural ligand heparin.

Keywords: protein interactions; nuclear magnetic resonance; graph theory; network description;

chemical shift; relaxation

Introduction

The study of protein interactions represents one of the

most important aspects of modern molecular biology.

The development of medicinal therapeutics as well as

prevention of various diseases can benefit from a com-

prehensive knowledge of structural dynamics, binding

sites or affinities of the relevant proteins. In the past

decades, nuclear magnetic resonance (NMR) spectros-

copy has become a widespread tool for the investigation

of structural and kinetic aspects of protein interactions

at atomic resolution.1–4 Especially, for the study of

structural dynamics of intrinsically disordered proteins

(IDPs), NMR provides an irreplaceable method as crys-

tallography is not applicable.5–8 However, NMR data is

frequently not easy to interpret. Allosteric restructur-

ing, folding-upon-binding, etc., often lead to compli-

cated effects along the entire primary sequence of the

protein making it difficult to understand the usually

residue-resolved NMR-observations.9,10 Here we pres-

ent a methodology to quantitatively analyze residue-

resolved NMR data of protein interactions based on

graph theory. The latter has already found numerous

successful applications not only in the analysis of

protein structure11 and dynamics,12 but also in fields

Understanding the interactions of proteins with their natural tar-
gets is one of the most important tasks of modern molecular
biology. Here a method is presented that allows to determine
intramolecular correlations between the amino acids involved in
aprotein’s interaction. This elucidates the functional constitution
of the underlying interaction mechanism.
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of science like biological interaction networks,13

social network analysis14 or artificial neural net-

works.15 Here graph theory is employed for the pre-

cise determination of interaction sites and functional

particularities of protein–ligand binding events. A

graph representing the network of residue–residue

correlations in a protein interaction provides means

to quantify the functional connectivity between

amino acids as well as the centrality of each single

residue. This analysis is related to network represen-

tations of proteins,11 since a graph can be regarded

as a representation of a network with a certain num-

ber of nodes and a particular distribution of edges

connecting these nodes. In other words, we present a

method based on prototypical NMR data of proteins

to unravel and analyze the complicated pattern of

correlations between residues by depicting these cor-

relations as connections between nodes, which repre-

sent protein residues in a network.11,16,17 A plethora

of information can be obtained from the graph repre-

sentation of protein interactions concerning residue

collectivity, centrality, edge density, etc.

The proposed method combines data from dif-

ferent NMR experiments on a protein interaction

into a unified representation. The latter exhibits

an improved apparent signal-to-noise ratio, which

significantly enhances the sensitivity for weak

effects. Thus, the functional interplay between

multiple interactions sites can readily be revealed

and analyzed, even for very weak binders. The

graph analysis is facilely applied to routinely

detected NMR data as it does not require any

chemical or biological modification of the investi-

gated sample nor any specific experimental hard-

ware. Yet, it yields a substantial amount of

information that might remain undiscovered by

conventional means of data analysis.

In the following, we develop the theory of the

network representation of a protein interaction and

describe in detail the construction of the associated

graph. We demonstrate the graph analysis, its

advantages and its properties at the example of the

well-documented osteopontin–heparin interaction. In

part two of this contributions we investigate in

detail five further examples of protein interactions

to validate and test the here presented methodology.

At these examples we highlight the advantages

gained by our methods in more detail. We show how

the proposed graph analysis allows for precise

determination of binding sites from data sets that

are complicated to understand by means of conven-

tional analysis as they contain multiple binding sites

and diffuse interaction patterns. These examples

involve three folded proteins YqcA,18 calmodulin

(CaM)19,20 and the cold shock protein A (CspA);21 as

well as two IDPs: Myc22,23 and the brain acid soluble

protein 1 (BASP1).24

Results

Data normalization
For the present study, we investigate residue-resolved

data from different two-dimensional NMR experi-

ments. Each experiment yields an independent NMR

parameter, P, for each amino acid of a protein’s pri-

mary sequence. Typically, NMR monitors protein

interactions via changes in parameters like chemical

shift (CS), transverse relaxation rates (R2) or hetero-

nuclear 15N{1H} Overhauser enhancements (NOE,

g).4,25 We focus on differential values of these parame-

ters, denoted here as DP. The latter is defined as the

value of a parameter found for the holo-form (ligand

bound) of a protein minus the value corresponding to

its apo-form (ligand free). The various abovemen-

tioned differential NMR parameters report on differ-

ent aspects of a protein interaction: Changes in CS

(i.e., DCS) due to the binding of a ligand to a protein

depend on variations of the chemical environment of

the typically observed amide 15N-nitrogens and pro-

tons, 1HN, of the protein backbone. For proteins

changes in 15N transverse relaxation rates, DR2, typi-

cally report on variations of the average amplitude of

backbone motions on the nanosecond timescale. The

differential NOE, Dg, reports complementarily on

alterations in mobility on the picosecond timescale.

Note that we generally analyze DCS values sep-

arately for amide protons, 1HN, and backbone amide,
15N, nitrogens. Such, for a single protein interaction

one may readily obtain four independent residue-

resolved data sets of differential values DCS(1HN),

DCS(15N), DR2, and Dg.

To quantitatively relate DCS(1HN), DCS(15N), DR2,

and Dg to each other we have to normalize these inde-

pendent parameters in a common way. (We will focus on

the four abovementioned parameters throughout this

contribution, although further parameters might be

available in many cases.) This means, the data originat-

ing from different experiments must be simultaneously

referenced to a universal scale. Hence, normalization

must not be applied individually for each experiment,

but must include some common scaling. This is compli-

cated by the fact that one wants to compare values that

span different ranges and that have different units. For

example, a change of 5 s1 in R2 may not be very large,

but a change of 5 ppm in CS would be quite drastic for

an 1HN nucleus. To compare different NMR parameters

we propose a two-step solution. In a first step, each

NMR parameter is normalized by dividing it by a

“global” standard deviation denoted rglobal. Here,

“global” indicates that this standard deviation corre-

sponds to the width of a hypothetical probability distri-

bution of all possible values that an NMR parameter

can adopt—independent of a particular experimental

context. The four individual rglobal values that “globally”

normalize the four NMR parameters (CS(1HN), CS(15N),

R2, and g) are obtained through computation of the



standard deviation from all measured values found in

the Biological Magnetic Resonance Data Bank (BMRB)

database26 for each of these observables.

For R2 and g, all available entries in the BMRB

were found employing home-written Python scripts.

The data were then filtered according to magnetic

field strength, that is, only values corresponding to

the field strength used in the experiments to mea-

sure R2 and g were taken into account to derive

rglobal. Such, for a given field strength rglobal was

calculated as:

rglobal5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i

xi2hxið Þ2
vuut (1)

Here N is the number of values found for a particu-

lar observable and magnetic field strength in the

BMRB. xi denotes one of these values and <x> the

mean over these values. As an example, in the case

of R2 measured at 14 T experimental field strength

we would take all values found in the BMRB for
15N–R2 values of protein amides at 14 T and com-

pute the standard deviation of the obtained distribu-

tion of values. rglobal provides a “global” estimate of

the distribution or span of possible values of R2. The

same argument holds for g. Hence, we can conclude

that rglobal of R2 and g constitutes a global average

of the corresponding differential values DR2 and Dg
since the latter denote shifts inside the range of pos-

sible values of R2 and g, which in return is approxi-

mated by rglobal. This range constitutes the desired

universal scale for the normalization of DR2 and Dg.

In principle, an equivalent argumentation holds

for DCS(1HN) and DCS(15N). However, it has to be

taken into account that the rglobal parameter needed

for normalization of DCS depends on the type of amino

acid under investigation. Hence, the primary sequence

of the protein has to be taken into account for normal-

ization. The standard deviations, rglobal, of chemical

shifts for each amino acid type are directly provided by

the BMRB26 for 15N as well as for 1HN. We individually

normalize the data for both nuclei to bring them to a

common scale. For a residue-resolved data set of chemi-

cal shift changes of either 1HN or 15N we divide every

entry by rglobal found in the BMRB for the underlying

amino acid. Through this, a combination of chemical

shifts into chemical shift perturbation is not necessary.

Summing up, in order to compare DCS(1HN),

DCS(15N), DR2, and Dg we bring them to a unified

scale normalized to an approximation of their global

average values. This may simply be expressed as:

P�5P=rglobal;P (2)

where P stands for DCS, DR2, DR1, or Dg and rglobal,P

indicates the rglobal value associated with the NMR

parameter P. The asterisk denotes the globally nor-

malized value for of an NMR parameter. Other more

common statistical methods like range normalization

or standard scoring would entail problems concern-

ing the balance between the different NMR parame-

ters. In contrast, normalization by rglobal brings all

parameters, P, to a universal scale, such that the dif-

ferent NMR parameters become numerically compa-

rable. The values of P* have the same significance

for each NMR parameter. For instance, a value of 1

for DCS(1HN)* and DR�2 found for a given amide in a

ligand–protein binding event indicates in both cases

a similarly strong influence of the ligand on

CS(1HN)* and R�2 of the protein amide. This is not

the case for the non-normalized parameters

DCS(1HN) and DR2. Here a value of 5 ppm or 5 Hz,

respectively, cannot be numerically compared. The

normalization via rglobal makes NMR parameters

from different experiments comparable in terms of

their significance. DCS* and DR�2 still have different

meanings, since they report on different aspects of

a protein interaction, but the significance of their

values are all referenced to a unified scale.

In Figure 1, the distribution found for 15N–R2

and g in the BMRB are exemplarily shown for 600

and 800 MHz proton Lamor frequency (xH). The

standard deviations of these distributions yield

rglobal,R2 and rglobal,g. To derive rglobal, more than

14,000 values of R2 and g were obtained. For

xH 5 600 MHz we find rglobal,R2 5 5.41 Hz and

rglobal,g 5 0.24. For xH 5 800 MHz we find

rglobal,R2 5 14.02 Hz and rglobal,g 5 0.18.

In Figure 2, DCS(1HN), DCS(15N), DR2, and Dg are

exemplarily shown for the well-studied osteopontin

(OPN)/heparin interaction [adopted from Ref. 9]. OPN

is an intrinsically disordered protein (IDP) involved in

metastasis and several kinds of cancer. Its regulatory

function involves binding to CD44 receptors employing

heparin as a cofactor.27–29 Characterized as an IDP,

this protein does not have a rigid three-dimensional

structure. Instead, it can be described as a flexible coil

comprising a more compact patch between amino acid

(aa) 100 and 190 of its primary sequence.9 Earlier stud-

ies on the OPN–heparin interaction localized a heparin

binding site between aa 140 and aa 160 of OPN. During

the binding event aa 100–140 (containing two RGD

motifs that are central to CD44 receptor binding27–29)

are dispatched from the compacted patch of the IDP

leading to a thermodynamic compensation of the loss

in configurational entropy due to the protein–heparin

association.9 In Figure 2(A) one can clearly see that the

binding site and the compensatory site show changes

in DCS(1HN) and DCS(15N) indicating changes in chem-

ical environment of the affected residues due to the

presence of the ligand. Furthermore, aa 140–160 dis-

play increased R2 values. This indicates reduced micro-

second dynamics due to the presence of bound heparin,

which restricts the motional freedom at the binding



site. In contrast, aa 100–140 exhibit increased picosec-

ond dynamics as reported by a negative Dg. This aug-

mented mobility entails the entropic compensation of

the binding event. Employing the rglobal-based refer-

encing introduced above [see (1)), (2)] we arrive at the

normalized NMR parameters DCS(1HN)*, DCS(15N)*,

DR�2 and Dg* shown in Figure 2(B). Note that DR�2 and

Dg* are larger than DCS(1HN)* and DCS(15N)*. This is

in agreement with the experimental observation that,

on the one hand, the chemical shift of the detected

resonances does not change strongly since the protein

remains disordered also in the presence of Heparin,

while, on the other hand, the relaxation parameters

display more drastic changes due to the inherent flexi-

bility of OPN, which allows for significant changes in

local backbone dynamics.

Construction of the graph representation. The

argument of equivalent reference scales for

DCS(1HN)*, DCS(15N)*, DR�2, and Dg* is only valid in

an ideal case. In a real system, the rglobal-normalized

data from different experiments will not have an

exactly similar significance. The relative scales of

the different normalized observables will still be

slightly unequal since the relevant reference

ranges—as approximated by rglobal—do not consti-

tute rigid thresholds. Contrary, CS(1HN), CS(15N),

R2 and g values depend on factors like sample tem-

perature, pH, or protein concentration. Additionally,

R2 and g depend on the molecular size and correla-

tion times. Hence, rglobal—which approximates the

range of possible values over all data found in the

BMRB for a given parameter—may constitute a

rather unprecise normalization factor for a particu-

lar protein interaction, as it neither takes protein

Figure 1. Histograms of 15N-R2 and g values of protein back-

bone amides found in the BMRB at 600 (left) and 800 MHz proton

Lamor frequency (right). Note that the distributions are not scaled

to correlation times or protein sizes. This might transform the dis-

tributions into monomodal functions and will be treated else-

where. For the present purpose, the unscaled distributions yield

the desired information.

Figure 2. NMR observables DCS(1HN), DCS(15N), DR2, and Dg as a function of residue position for the OPN–heparin interaction (left)

and normalized NMR observables parameters DCS(1HN)*, DCS(15N)*, DR�2, and Dg* derived according to Eqs. (1), and (2) (right).



sizes and dynamics into account nor experimental

conditions. This problem induces a bias of the rglobal-

normalized DP* values. Thus, the DP* values found

for the different NMR parameters as well as for dif-

ferent protein interactions cannot be compared

quantitatively. To eliminate the resulting uncertain-

ties in the DP* values we employ a regularization

procedure in the next step.30 This embraces conver-

sion of the normalized differential NMR data into a

single covariance matrix, Cov. This n 3 n matrix

has the dimension of the number of residues in the

primary sequence of the protein under investigation.

The diagonal elements of this matrix are ordered in

the sense of the primary sequence meaning that the

first diagonal element corresponds to the variance

over the four NMR parameters observed for residue

one the primary sequence, the second diagonal ele-

ment analogously corresponds to the second residue

of the primary sequence, etc. Subsequently, this

matrix will be “digitized” in a second step.

This unification approach is predicated on the

intuition that the different NMR parameters

detected for a particular protein interaction are

based on a single conformational ensemble of protein

structures although they might report on different

aspects of the ensemble.

Employing the rglobal-normalized, residue

resolved NMR parameters, P*, we generate the

matrix Cov with elements:

covx;y5
1

N

XN
i

Pi xð Þ�2hP xð Þ�ið Þ Pi yð Þ�2hP yð Þ�ið Þ (3)

Here, i runs over the four normalized NMR parame-

ters, P*. x and y indicate residues of the primary

protein sequence. N denotes the number of data sets

(different NMR experiments), that is, here N 5 4.

<P(x)*> denotes the average over all four NMR

parameters for residue x. The diagonal elements of

Cov indicate for each single residue the variance

between the four NMR observables. The off-diagonal

elements, covx,y, with x 6¼ y, indicate covariance

between the two residues x and y. This means, if x

and y show the same deviation of DCS(1HN)*,

DCS(15N)*, DR�2, and Dg* from their mean value the

associated covariance element covx,y will be positive.

If the deviation from average is negative for x and

positive for y (or vice versa) the element covx,y will

be negative. Hence, if two residues are strongly

affected by a protein interaction and their associated

NMR parameters vary the connecting matrix ele-

ment covx,y will indicate a significant nonzero (posi-

tive or negative) covariance between these two

residues. (Note that correlation coefficients are not

applicable in the present case due to the residue

specific normalization, which would entail large cor-

relation coefficients between idle residues. Moreover,

one could also add further data sets like R1 to the

covariance matrix. Yet, changes in R1 are less pro-

nounced than changes in R2 and report on a similar

timescale. Thus, if R2 is available it should be pre-

ferred over R1.)

In order to eliminate the abovementioned uncer-

tainties in DP* values that propagate into the covar-

iance matrix it is transformed into a matrix A. A

has the same order as Cov, but all elements with

values larger than the noise level of the covariance

matrix are set to 1 and all other entries to 0. Varia-

tions of the elements of the covariance matrix due to

imperfect referencing of the four NMR parameters

are eliminated through this operation. In other

words, the uncertainties introduced by the rglobal

normalization (as it does not take into account the

particularities of each individual protein) propagate

into uncertainties in the elements covx,y. However,

these uncertainties are eliminated as all values are

“digitized” by the transformation into A. Thus, after

this regularization the entries of the adjacency

matrix are reliable despite a possibly biased DP*. In

this context, the normalization via rglobal is required

to roughly match the noise levels of the different

DP* sets. This prevents that a particular value for

an NMR parameter drops below the noise level of

any other NMR parameter set. This would lead to

the loss of the information contained in this value as

the corresponding covariance element would drop

below the noise level of the covariance matrix and

would be cut off during the normalization procedure.

Note that the signal-to-noise ratio of the covariance

matrix is generally quite high (as will be shown

below). Through this, differences between the noise

levels of the different DP* parameters (introduced

by a biased rglobal) are compensated and a reliable

digitization of the covariance matrix is guaranteed

(see the Supporting Information for details).

To derive A, the signs of the covariance ele-

ments are first eliminated by taking their square.

The average noise level, <n>, of the element-wise

squared covariance matrix is given by the variance

over all entries of this matrix. <n> defines a thresh-

old that divides the covariance matrix in such a way

that all entries that do not contain any information

(i.e., only noise) are set to zero, while all others are

set to 1. The elements of A can, thus, be defined as:

ax;y5
0; covx;y

2 < hni

1; covx;y
2 � hni

(
(4)

ax;x50

A is a matrix that combines all NMR parameters—

as determined for each residue of a protein—into a

representation of connections between these residues

based on correlated functional activity in a



molecular interaction. In this context, the first step

of our procedure (the normalization of the four NMR

parameters via rglobal) guarantees a comparable

noise level of each NMR parameter. This ensure

that important and significant observation of large

values of DCS(1HN)*, DCS(15N)*, DR�2, or Dg* always

entail large off-diagonal Cov-elements. Thus, no sig-

nificant observation is excluded from the analysis

through the transformation of Cov into A. In other

words, if the scales of DCS*, DR�2, DR�1, and Dg* are

roughly equivalent it is guaranteed that the noise

level of the matrix Cov represents an equal thresh-

old of significance for each NMR parameter. (Note

that the diagonal elements of the adjacency matrix

are set to zero, which excludes autocorrelation of

residues from the graph representation.) Through

the transformation of Cov into A, we “digitize” all

elements of the covariance matrix. Thus, we avoid

the subtle problem of correctly weighting the differ-

ent observations of relaxation parameters and chem-

ical shifts. For a perfectly weighted normalization

factor one would need to take into account the par-

ticularities of each individual sample and parameter.

In contrast, the here proposed adjacency matrix

takes all significant DP* values similarly into

account eliminating all deficiencies of the covariance

matrix.

Figure 3(A) shows the covariance matrix [cf.

Eq. (3)] derived from the data presented in Figure 2.

Both axes correspond to the residue index of OPN.

Strong covariance can be observed between residues

in the heparin binding site (aa 140–160) and the

compensatory site (aa 100–140), which are both sub-

ject to pronounced DCS(1HN)*, DCS(15N)*, DR�2, and

Dg* values [see Fig. 2(B)]. The two sites are corre-

lated among each other, as can be deduced from the

large covx,y
2 values connecting them. Residues

located in the “hotspot” (around aa 150) of the

heparin binding site exhibit a particularly large

covariance among themselves.

The average noise level, <n>, of the covariance

matrix is represented as yellow plain in Figure 3(A).

It divides the covariance matrix in two parts. One

part with matrix elements larger than <n> and

another part with matrix element smaller than

<n>. These two parts define the zero and nonzero

elements of the matrix A according to Eqs. (3) and

(4). The matrix A derived from the matrix in Figure

3(A) is shown in Figure 3(B).

Note that we combine four different NMR data

sets into a unified representation, that is, the covari-

ance matrix. Through this, the signal-to-noise ratio

of the covariance matrix (SNRCOV) exceeds the SNR

of the individual DP* data sets (SNRNMR). The mag-

nitude of this gain depends on many factors like the

number of residues affected by the interaction, the

distribution of affected sites along the primary

sequence etc. Under optimal conditions, the SNRCOV

exceeds SNRNMR by an order of magnitude. This

renders the network representation of protein inter-

actions a powerful tool for the analysis of weak pro-

tein–ligand complexes as their formation frequently

entail very small DP* values. In this context, error

propagation from NMR data to the covariance and

adjacency matrices is negligible, too, as we digitize

the covariance matrix (see Supporting Information

for details). The main remaining source of error in

our analyses is the experimental noise. This source

of error is yet reduced by the unification of different

data sets and the gain in SNR. A loss of information

is excluded as the string separation of signals from

noise guarantees a reliable construction of the adja-

cency matrix. (Details and simulations on the

dependence of SNRCOV on SNRNMR can be found in

Supporting Information.)

Figure 3. (a) Graphical display of the covariance matrix

(squared values) corresponding to the OPN/heparin interac-

tion. The yellow plain depicts the noise level, <n>, found for

the covariance matrix (see text). (b) Adjacency matrix derived

for the OPN/heparin interaction if all values smaller than <n>

in (a) are set to 0 and all other values to 1 [blue dots, cf.

Eqs. (3), (4)]. The adjacency matrix can be grouped into three

clusters of residues as indicated at the bottom of the figure

(red: heparin binding site, yellow: compensatory site, purple:

residual affected residues).



Significance of the adjacency matrix

The matrix A can be regarded as an adjacency

matrix if we picture the covariances/correlations

among the residues of OPN as connections in a net-

work: Each diagonal element of A represents a node

of this network. Each node is associated with a resi-

due in the backbone of the protein that was investi-

gated by NMR. Two nodes, x and y, are connected by

an edge if the matrix element ax,y that connects the

two nodes equals 1. If ax,y 5 0, x and y are not

directly connected. In other words, A represents the

NMR data in a unified manner by relating residues

that display significant changes (covariance) in the

different NMR parameters due to the ligand bind-

ing. Thus, A constitutes a graph or network of

covariance/correlations among residues in a protein

interaction. It can be regarded as a functional repre-

sentation of the protein interaction as it depicts the

“correlated implication” of two (functional) residues

in the binding event.

This representation allows to determine the

“connectivity” between different functional sites of a

protein—an important piece of information for the

understanding of protein interactions. (More exam-

ples are given in part two of this contribution.)

Note that the transformation of the covariance

matrix into the adjacency matrix [cf. Eq. (4)]

becomes more and more unprecise as the number of

signals in the DP* residue plots increases (see Sup-

porting Information for details). It has to be taken

into account that the variance of the covariance

matrix is increasing with the number elevated DP*

values. This might lead to a possible loss of informa-

tion during the regularization procedure as weak

signals might drop below the cut off level of the

covariance matrix, Var(Cov). However, as the SNR

of the covariance matrix is typically quite high this

risk can be neglected in most cases. Several exam-

ples are given in part two that show that the adja-

cency matrix can reliably be constructed also for

very complicated protein–ligand interaction patterns.

In the context of “digitized” covariance matrices

it should be mentioned that Selvaratnam et al. have

already shown how to combine covariance analyses

of different NMR CS data sets from different ligands

and cluster analysis to identify several allosterically

active patches along a protein backbone.31,32 In this

approach residue-resolved correlation coefficients

(covx,y/rxry, where rx denotes the standard deviation

for residue x) are calculated from sets of chemical

shifts obtained from different complexes of the same

protein with different ligands. In contrast to covari-

ance matrix elements correlation coefficients tend to

correlate spectral noise. Thus, Selvaratnam et al.

introduce a cutoff at a very large correlation coeffi-

cient of 0.98 and set all values below this threshold

to zero.

The here proposed method has the advantage

that it uses a covariance matrix that is digitized on

the basis of its own noise level. This minimizes the

probability to lose significant data points through

the cut off procedure. Furthermore, one does not

need different ligands, which are frequently not

available. We here use data sets that stem exclu-

sively from a single interaction. Thus, while the

method of Selvaratnam et al. is superior for the

analysis allosterically active epitopes, the here pro-

posed method is superior to observe features that

are unique to an interaction with a certain ligand.

A further possibility to obtain different NMR

data sets and to combine them mathematically into

a unified representation is the monitoring of pH-

dependent chemical shift changes and a subsequent

principle component analysis of the different CS

sets. This method, as introduced by Sakurai and

Goto33 allows to identify structural changes of a pro-

tein under varying the buffer (pH) conditions.

Br€uschweiler and co-workers as well as Karplus

and co-workers34 applied a covariance analysis to

molecular dynamics simulations of proteins to yield

covariance matrices that correlate the dynamics of

the different residues. This method identifies intra-

molecular dynamics.35 In contrast, we here focus on

intermolecular phenomena. In general one should

differentiate between the well-established intramo-

lecular contact maps between protein residues that

give rise to a network representation of a protein

structure,36 and the here presented connectivity-

based representation of intermolecular interactions.

Examples for successful application of intramolecu-

lar contact maps are the work by Nussinov and co-

workers who developed a way to use the intramolec-

ular network representation of protein structures to

classify structural disorder11 or the work by Konrat

and co-workers who showed how to use the network

representation of proteins to predict pH-dependent

conformational changes.37

Analysis of the functional network of the

OPN/heparin interaction

The adjacency matrix A represents a network of

residues that are involved in the interaction of a pro-

tein. The adjacency matrix can be regarded as a repre-

sentation of the graph or network indicating the

functional particularities—i.e., correlations among

residues—of protein–ligand interactions. A schematic

display of the network structure corresponding to the

OPN/heparin interaction is shown in Figure 4.

The three hubs or clusters of the network corre-

spond to the binding site (red), the affected site

(yellow) and residual connected residues of OPN

(purple). Note that an edge here stems from pro-

nounced covariance between any two residues,

which are represented by the nodes in Figure 4.

Hence, the edges indicate a functional correlation



between two residues. In Figure 4(a), strong correla-

tion between the two clusters can be observed that

represent the binding and the affected sites. This

indicates that these two sites are functionality

coupled in the Heparin binding event. This is in

agreement with earlier studies based on computa-

tional metastructure analysis, electron paramagnetic

resonance (EPR), NMR, and isothermal titration cal-

orimetry (ITC).5,9,38 These studies show that the

apo-form of OPN samples cooperatively folded, com-

pacted states that base on electrostatic as they dis-

solve under high salt conditions.9 The electrostatic

interaction that stabilizes these states is constituted

by clusters of negatively charged residues in the

compensatory site and positively charged residues in

the binding epitope. The mutual attraction between

these two sites leads to the observed compaction of

OPNs core. When the negatively charged Heparin

binds to OPN it is attracted by the positively

charged binding site and at the same time repels

the negatively charged compensatory site. This leads

to a compensation of the configurational entropy loss

due to the binding event. The depicted network in

Figure 4 may, thus, be regarded as a display of this

functional correlation between the binding epitope and

the compensatory sites in the OPN–heparin interaction.

Since the adjacency matrix, A, can be regarded

as a description of a graph it can be analyzed on a

graph theoretical basis, which is a well-established

branch of mathematics.39 Parameters such as the

degree, d, local clustering coefficient, C, and eigen-

value centrality, W, of any node/residue, x, of can be

defined.39 In the case at hand, these paramters corr-

spond to the functional connectivity of the different

amino acids of a protein.

The degree, dx, of a residue x is defined by the

number of edges connecting the residue x to any

other residue y:

dx5
X

y

ax;y (6)

The local clustering coefficient is defined as follows:

If we denote a node representing a residue x, as tx

(which is not an element of A, but an element of the

group of nodes, L, of the network described by A)

and an edge between two residues x and y as exy

(which is an element of the group of edges E of the

network), we can define the local clustering coeffi-

cient of a residue x as:

Cx5
2j ey;k : ty; tk 2 L; ey;k 2 E
� �

j
kx kx21ð Þ (7)

Here kx is the number of neighbors of node tx. The

denominator in Eq. (6) corresponds to the number of

possible edges between the neighbors of a particular

node, while the numerator indicates the number of

actually realized edges between the neighbors of this

node. Equation (6) can further be graphically

explained. In Figure 5(A), a graph is depicted with

4 nodes and 4 edges.

The node of interest, tx, is connected to three

other nodes via three separate edges. Hence, the

number of neighboring edges is three. The degree of

node tx is, thus, dx 5 3. The number of edges

between these three neighboring edges is 1 (high-

lighted as edge ey,k in Fig. 5). Thus, the local cluster

coefficient for tx amounts to Cx 5 1/3.

The eigenvector centrality of tx can be defined as:

Wx5k21
X

y

ax;yWy (8)

Here k denotes the lead eigenvalue of A, which is

the largest eigenvalue of the adjacency matrix. The

associated lead eigenvector W has only positive

entries. Wx can be regarded as the average

Figure 4. Display of the correlation network of the OPN/hep-

arin interaction. It is represented with three pronounced hubs

as indicated by the blue loops. These hubs correspond to

the binding site, the affected site and residual correlated resi-

dues Isolated nodes are ignored. Every spot corresponds to

a node, that is, to a diagonal element of the adjacency matrix

and every line indicates an edge between two nodes, that is,

a nonzero off-diagonal matrix elements of A. The residue

patches of the primary sequence corresponding to the nodes

are indicated at the bottom; see Figure 3 for the correspond-

ing nodes in the adjacency matrix. The clustering was per-

formed by means of binary hierarchical clustering using an

Euclidean distance norm and a predefined number of three

clusters. The graphical visualization was done using Mathe-

matica 10’s spring electrical embedding method.



eigenvector centrality of all residues that are con-

nected by an edge to residue x. Hence, its definition

is in a sense recursive.

The node centrality can be regarded as a mea-

sure of the importance of a node for a network. This

means, if a node with high centrality is deleted form

the graph, its constitution will change significantly.

Contrary, if a residue with Wx 5 0 is deleted the

architecture of the network described by the graph

does not change at all. This means for a protein

interaction that if a residue corresponding to a high

Wx is altered or deleted, for example, due to a point

mutation, the interaction of the protein with its

ligand is likely to be influenced or even suppressed.

Note that the study of eigenvector centralities is

based on the extraction of eigenvalues/modes of the

correlation network. In the context of the analysis of

biomacromolecules Br€uschweiler and co-workers as

well as Karplus and co-workers34 spearheaded the

analysis of eigenmodes in the context of NMR to

unravel collective motions in proteins. These methods

yet base on molecular dynamics simulations, while the

here proposed method identifies regions of importance

(high eigenvector centrality) for an interaction with a

ligand without the need for computational input.

In the context of protein interactions, it should be

mentioned that graph theoretical approaches to the

analysis and derivation of protein structures and

dynamics have already been successfully applied in the

past.40 For example, Kaptein and co-workers apply

graph theory to assign intramolecular NOEs.41

W€uthrich and co-workers use graph theoretical

concepts for the sequential resonance assignment in

multidimensional protein spectra.42 Jacobs et al. apply

graph theory to predict the flexibility of proteins.12 We

here expand the application of this branch of mathe-

matics to the analysis of intermolecular phenomena.

Graph analysis at the example of

the OPN–heparin interaction

Figure 6 displays the eigenvector centrality, W, local

clustering coefficient, C, and local node degree, d,

derived from the adjacency matrix shown in Figure

3(B) for the OPN/heparin interaction. All three

measures show increased values around the binding

site (aa 140–160) and the compensatory site (aa

100–140). For these residues a high eigenvector cen-

trality, W, means a central function in the interac-

tion with heparin. Their deletion would likely alter

the interaction. A large local clustering coefficient,

C, means that these residues are embedded in a

densely connected graph neighborhood (cf. Eq. (6)

and Fig. 5); that is, a large number of correlated res-

idues is neighboring each of them. This can be

expected for the directly affected sites, where the

presence of the ligand simultaneously affects differ-

ent (correlated) residues. The large degree, d, of the

residues in the binding and compensatory site

means that each of them is functionally correlated

with many other residues [cf. Eq. (6)]. Thus, the

important residues for the interaction can be distin-

guished from the others through higher values of W,

C, and d. The binding site shows especially high

measures in C, and d. Hence, it can be distinguished

from the compensatory site. Its “hotspot” can be pre-

cisely localized to residues 159–166. These results

are in agreement with the above mentioned earlier

biochemical studies based on EPR, NMR, and ITC9

which indicate that the primary binding epitope is

located between residue 160 and 180, while the com-

pensatory site is located between residues 100 and

140. The electrostatic interaction between these two

sites is modulated by the heavily charged heparin

ligand leading to pronounced changes in the

observed NMR parameters. Our method precisely

locates these two sites in agreement with the earlier

studies and additionally allows to distinguish the

binding epitope from the expelled site via the local

clustering coefficient, C, as shown in Figure 6.

Note that the local clustering coefficient only dis-

plays large values upon pronounced changes in an all

NMR parameters of a particular residue, since the local

clustering coefficient is based on the connectivity of

neighboring nodes (see Fig. 5). This connectivity will

only be high if the residue of interest is embedded in a

dense network of correlations. This in return requires

that the site containing the residue is strongly affected

by the ligand, which will result in changes in all

observable NMR parameters. In contrast, W and d are

dependent on the direct functional connections of a res-

idue, that is, the number of its edges. Since the adja-

cency matrix already exhibits an edge if only one of the

input data sets is affected by the interaction, W and d
show elevated values as soon as one NMR parameter of

a residue deviates significantly from zero. One might

say that these two measures are more sensitive to

changes in dynamics and structure of the observed pro-

tein, while C is more reliable in distinguishing the

important sites of the interaction.

Note that none of the three used metrics, W, d,

and C, is creating false positive values nor are they

Figure 5. A graph with four nodes and four edges. For the

node tx, dx 5 3, and Cx 5 1/3 [cf. Eqs. (5), (6)].



differently insensitive to the NMR data as they are

all based on the same adjacency matrix. The differ-

ent aspects of the NMR data highlighted by the

three different measures reflect the particularities of

the adjacency matrix that in return reflects the

functional structure of the input data.

In part two of this contribution the power of the

graph analysis will be demonstrated at further

examples. It will be shown how the three different

measures, W, d, and C allow for the identification of

binding patterns that are only complicated to deter-

mine by conventional means.

Discussion
The methodology presented here is centered around

the idea that all information about a protein interac-

tion is based on a unique conformational ensemble.

Hence, all data sets concerning this interaction

reflect certain aspects of the protein’s conformational

space. The functional architecture of this space is

represented (at least in parts) by our adjacency mat-

rices. The combination of all four NMR parameters

into one single graph, thus, aims at a partial recon-

struction of the functional residue correlations in

the conformational ensemble of a protein in one of

its interactions.

The method may readily be applied to standard

NMR data sets gained from conventional samples. A

widespread application might, hence, be anticipated.

The here proposed analysis generalizes the idea

of network representations of protein structures by

expanding it to protein interactions. This enables

the definition of mathematical precise means for

the quantification of residue activity in a protein

interaction going beyond the established means of

data interpretation. The network representation of a

protein interaction yields a universally tool that

might help to quantitatively compare the importance

of residues as well as the functional connectivity

between residues in a protein.
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