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Abstract 46 

Cardiovascular diseases (CVD) and type 2 diabetes (T2D) are closely interrelated complex diseases likely 47 

sharing overlapping pathogenesis driven by aberrant activities in gene networks. However, the molecular 48 

circuitries underlying the pathogenic commonalities remain poorly understood. We sought to identify the 49 

shared gene networks and their key intervening drivers for both CVD and T2D by conducting a 50 

comprehensive integrative analysis driven by five multi-ethnic genome-wide association studies (GWAS) 51 

for CVD and T2D, expression quantitative trait loci (eQTLs), ENCODE, and tissue-specific gene network 52 

models (both co-expression and graphical models) from CVD and T2D relevant tissues. We identified 53 

pathways regulating the metabolism of lipids, glucose, and branched-chain amino acids, along with those 54 

governing oxidation, extracellular matrix, immune response, and neuronal system as shared pathogenic 55 

processes for both diseases. Further, we uncovered 15 key drivers including HMGCR, CAV1, IGF1 and 56 

PCOLCE, whose network neighbors collectively account for approximately 35% of known GWAS hits 57 

for CVD and 22% for T2D.  Finally, we cross-validated the regulatory role of the top key drivers using in 58 

vitro siRNA knockdown, in vivo gene knockout, and two Hybrid Mouse Diversity Panels each comprised 59 

of >100 strains. Findings from this in-depth assessment of genetic and functional data from multiple 60 

human cohorts provide strong support that common sets of tissue-specific molecular networks drive the 61 

pathogenesis of both CVD and T2D across ethnicities and help prioritize new therapeutic avenues for 62 

both CVD and T2D. 63 

 64 

Author summary 65 

Cardiovascular disease (CVD) and type 2 diabetes (T2D) are two tightly interrelated diseases that are 66 

leading epidemics and causes of deaths around the world, with T2D increasing the risk of CVD. 67 

Elucidating the mechanistic connections between the two diseases will offer critical insights for the 68 

development of novel therapeutic avenues to target both simultaneously. Because of the challenging 69 
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complexity of CVD and T2D, involving numerous risk factors, multiple tissues, and multidimensional 70 

molecular alterations, few have attempted such an investigation.  We herein report a comprehensive and 71 

in-depth data-driven assessment of the shared mechanisms between CVD and T2D by integrating 72 

genomics data from diverse human populations including African Americans, Caucasian Americans, and 73 

Hispanic Americans with tissue-specific functional genomics information. We identified shared pathways 74 

and gene networks informed by CVD and T2D genetic risks across populations, confirming the 75 

importance of well-established processes, as well as unraveling previously under-appreciated processes 76 

such as extracellular matrix, branched-chain amino acid metabolism, and neuronal system for both 77 

diseases. Further incorporation of tissue-specific regulatory networks pinpointed potential key regulators 78 

that orchestrate the biological processes shared between the two diseases, which were cross-validated 79 

using cell culture and mouse models. This study suggests potential new therapeutic targets that warrant 80 

further investigation for both CVD and T2D.   81 
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Introduction 82 

Cardiovascular disease (CVD) and type 2 diabetes (T2D) are two leading causes of death in the United 83 

States [1]. Patients with T2D are at two to six times higher risk of developing CVD compared to those 84 

without T2D [2], indicating the importance of targeting common pathogenic pathways to improve the 85 

prevention, diagnosis, and treatment for these two diseases.  While decades of work has revealed 86 

dyslipidemia, dysglycemia, inflammation, and hemodynamic disturbances as common pathophysiological 87 

intermediates for both CVD and T2D [3-5], very few studies have directly investigated the genomic 88 

architectures shared by the two diseases.  While genetic factors are known to play a fundamental role in 89 

the pathogenesis of both CVD and T2D [6], a direct comparison of the top risk variants between these 90 

diseases has revealed few overlapping loci in genome-wide association studies (GWAS) from multiple 91 

large consortia.  Aside from the speculation that the strongest genetic risks may be disease-specific, the 92 

agnostic approach requiring the application of strict statistical adjustment for multiple comparisons also 93 

increases false negative rate because of the lack of “genome-wide significance”.  94 

To meet these challenges, we and others have previously shown that hidden disease mechanisms can be 95 

unraveled through the assessment of the combined activities of genetic loci with weak to moderate effects 96 

on disease susceptibility by integrating GWAS with functional genomics and regulatory gene networks 97 

[7-11]. Importantly, such high-level integration approaches are able to overcome substantial heterogeneity 98 

between independent datasets and extract robust biological signals across molecular layers, tissue types, 99 

and even species [8, 12-14].  This advantage is mainly conferred by the aggregation of genetic signals 100 

from individual studies onto a comparable ground – molecular pathways and gene networks, before 101 

conducting meta-analysis across studies [14, 15].  In other words, even if the genetic variants and linkage 102 

architecture can be different between studies, the biological processes implicated are more reproducible 103 

and comparable across studies [16]. In the current investigation, we employed a systematic data-driven 104 

approach that leveraged multi-dimensional omics datasets including GWAS, tissue-specific expression 105 

quantitative trait loci (eQTLs), ENCODE, and tissue-specific gene networks (Fig 1). GWAS datasets 106 
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were from three well-characterized and high-quality prospective cohorts of African Americans (AA), 107 

European Americans (EA), and Hispanic Americans (HA) - the national Women’s Health Initiative (WHI) 108 

[8], the Framingham Heart Study (FHS) [17], and the Jackson Heart Study (JHS) [18]. To maximize the 109 

reproducibility of our findings across different populations, we also incorporated meta-analyses of CVD 110 

and T2D genetics from CARDIoGRAMplusC4D [19] and DIAGRAM [20].  Further, we 111 

comprehensively curated functional genomics and gene networks derived from 25 tissue or cell types 112 

relevant to CVD and T2D. A streamlined integration of these rich data sources using our Mergeomics 113 

pipeline [14, 15] enabled the identification of shared pathways, gene subnetworks, and key regulators for 114 

both CVD and T2D across cohorts and ethnicities. Finally, we validated the subnetworks using adipocyte 115 

and knockout mouse models, and confirmed their associations with cardiometabolic traits in the Hybrid 116 

Mouse Diversity Panel (HMDP) comprised of >100 mouse strains [21-23].  117 

Results 118 

Identification of Co-expression Modules Genetically Associated with CVD and T2D across Cohorts 119 

We first investigated whether genetic risk variants of CVD and T2D from GWAS of each cohort/ethnicity 120 

were aggregated in a functionally coherent manner by integrating GWAS with tissue-specific eQTLs or 121 

ENCODE information and gene co-expression networks that define functional units of genes (Fig 1A). 122 

Briefly, co-expression networks were constructed from an array of transcriptomic datasets of various 123 

tissues relevant to CVD and T2D (details in Methods). These modules were mainly used to define sets of 124 

functionally related genes in a data-driven manner. Genes within the co-expression modules (a module 125 

captures functionally related genes) were mapped to single nucleotide polymorphisms (SNPs) that most 126 

likely regulate gene functions via tissue-specific eQTLs or ENCODE information.  SNPs were filtered by 127 

linkage disequilibrium (LD) and then a chi-square like statistic was used to assess whether a co-128 

expression module shows enrichment of potential functional disease SNPs compared to random chance 129 

using the marker set enrichment analysis (MSEA) implemented in our Mergeomics pipeline (details in 130 
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Methods) [14]. Subsequently, meta-analyses across individual MSEA results at the co-expression module 131 

level were conducted using the Meta-MSEA function in Mergeomics to retrieve robust signals across 132 

studies. Among the 2,672 co-expression modules tested, 131 were found to be significant as defined by 133 

false discovery rate (FDR) < 5% in Meta-MSEA across studies (Table 1, S1 Table). Moreover, the 134 

majority of the disease relevant tissues or cell types included in our analysis yielded informative signal, 135 

supporting the systemic pathogenic perturbations known for CVD and T2D (S1 Fig). Of the significant 136 

modules identified, 79 were associated with CVD and 54 with T2D. Two modules were associated with 137 

both diseases, with one enriched for “carbohydrate metabolism” genes and the other over-represented 138 

with “other glycan degradation; known T2D genes” (Fig 2A, S1 Table). Examination of these two shared 139 

modules showed that the genetic signals driving the module significance were largely different between 140 

CVD and T2D, with 14.8% lead SNPs overlapping for the carbohydrate metabolism module and 5.8%   141 

lead SNPs overlapping for the glycan degradation module between diseases. These results indicate that 142 

the GWAS signals for the two diseases in each module do not necessarily overlap, but the CVD and T2D 143 

genes are likely functionally connected since they are co-expressed in the same modules and annotated 144 

with coherent functions. Additionally, the majority of the CVD modules and T2D modules were 145 

identified in more than one ethnic group based on MSEA analysis of individual studies, supporting 146 

consistency across ethnicities (Fig 2B).  147 

Shared Biological Processes among the CVD/T2D-associated Co-expression Modules  148 

Apart from the two directly overlapping modules, between the CVD- and T2D-associated modules there 149 

were many overlapping genes, indicating additional shared functions that contribute to both diseases (S2 150 

Fig). Upon annotating the disease-associated modules using functional categories curated in Kyoto 151 

Encyclopedia of Genes and Genomes (KEGG) and Reactome while correcting for the overlaps between 152 

pathways (method details in S1 Text; S3 Fig; S2 Table), we found significant functional overlaps 153 

between the CVD and T2D modules (overlap p = 3.1e-15 by Fisher’s exact test, Fig 2C). We further 154 

ranked all the enriched functional categories by the number of CVD/T2D modules that were annotated 155 

Mis en forme : Police :Non Gras
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with each functional term (Fig 3), which showed a wide spectrum of biological processes shared by both 156 

CVD and T2D across ethnicities and cohorts. Of the top ranked processes for the significant co-157 

expression modules identified, we observed well-established pathogenic processes such as lipid and fatty 158 

acid metabolism [24], glucose metabolism [25], oxidation [26], and cytokine signaling [27]. Pathways 159 

previously implicated mainly for T2D such as beta-cell function were also found to be shared for both 160 

CVD and T2D. Interestingly, our completely data-driven approach also identified extracellular matrix 161 

(ECM) and branched chain amino acids (BCAA) metabolism as top functional categories whose roles in 162 

the development of cardiometabolic disorders have only been implicated in recent experimental work [28-163 

30]. Furthermore, our analysis also revealed under-appreciated processes involving the neuronal system 164 

and transport of small molecules.  165 

Identification and Prioritization of Key Drivers (KDs) and Subnetworks for the CVD/T2D-166 

associated Modules 167 

The coexpression networks used above mainly served to capture coexpression patterns between genes and 168 

to define data-driven gene sets that contain functionally related genes, but they do not carry detailed 169 

topology information on gene-gene regulatory relationships.  To dissect the gene-gene interactions within 170 

and between the 131 disease-associated modules, and to identify key perturbation points shared for both 171 

CVD and T2D modules, we used the GIANT networks [31] and Bayesian networks (BNs) from 25 CVD 172 

and T2D relevant tissue and cell types, which provide detailed topological information on gene-gene 173 

regulatory relationships necessary for the wKDA analysis. The BNs used in our study were generated 174 

using similar sets of mouse and human gene expression datasets as used for the co-expression networks, 175 

but additionally incorporated genetic data to model causal gene regulatory networks, whereas the GIANT 176 

networks were derived based on independent gene expression datasets and protein interaction information. 177 

We included both types of gene regulatory networks to increase the coverage of functional connections 178 

between genes and only considered KDs identified in both to enhance the robustness of KD prediction. 179 
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Specifically, all genes in each of the co-expression modules genetically associated with CVD or T2D as 180 

identified in our study were mapped onto the GIANT and BN graphical networks to identify KDs using 181 

the weighted key driver analysis (wKDA) implemented in Mergeomics [14], where KDs were defined as 182 

genes whose local network neighborhoods demonstrate significant enrichment of genes from disease-183 

associated modules (details in Methods; concept depicted in S4 Fig). Of note, wKDA gives higher 184 

weight to network edges that are consistent across network models constructed from independent studies, 185 

therefore alleviating potential bias caused by dataset heterogeneity. We identified 226 KDs that were 186 

consistently captured in Bayesian and GIANT network at Bonferroni-corrected p-value < 0.05 (Fig 1B), 187 

among which 162 were KDs for both CVD and T2D associated modules. Bonferroni-correction was used 188 

here to focus on the strongest KDs for prioritization purposes. To further prioritize these 162 shared KDs, 189 

tissue-specific subnetworks of these KDs were evaluated using Meta-MSEA to rank the magnitude of 190 

their genetic association with CVD and T2D across cohorts, yielding 15 top-ranked KDs at FDR<10% in 191 

Meta-MSEA for CVD and T2D separately (combined FDR<1% for both diseases simultaneously) (Fig 192 

1B, Table 2). The top KD subnetworks were related to similar pathogenic processes highlighted in the 193 

previous section, including cholesterol biosynthesis, respiratory electron transport, immune system and 194 

ECM. We further inferred the directionality of the effects of each specific KD on both diseases using 195 

GWAS signals mapped to each KD based on eQTLs or chromosomal distance (details in Methods; 196 

results in S5 Fig). This analysis differentiated the KDs into those showing consistent direction of 197 

association for both CVD and T2D (ACLY, CAV1, SPARC, COL6A2, IGF1), inverse directions with CVD 198 

and T2D (HMGCR, IDI1), and uncertain directions (Table 2). Therefore, the shared KDs do not 199 

necessarily affect the risks for the two diseases in the same direction. 200 

Shared KDs and Subnetworks Orchestrate Known CVD and T2D Genes 201 

The KDs and subnetworks were identified based on the full spectrum of genetic evidence (from strong to 202 

moderate and subtle) from the various GWAS datasets examined in the current study. To assess whether 203 

the top KD subnetworks were enriched for previously known disease genes that mostly represent the 204 
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strong and replicated genes as a means of cross-validation, we manually curated previously reported 205 

genes associated with CVD, T2D, and intermediate metabolic traits related to CVD, T2D (glucose, insulin, 206 

lipids, obesity) from DisGeNET [32] and the NHGRI GWAS Catalog [6] (Fig 1C, genes listed in S3 207 

Table). The connection between the top 15 KDs and known genes for CVD, T2D and relevant 208 

cardiometabolic traits was confirmed by the significant over-representation of the known disease genes in 209 

KD subnetworks, with fold enrichment as large as 8, confirming the strong biological importance of these 210 

KDs (Fig 4A). Further, the top 15 KDs showed direct connections to 28 GWAS hits reaching genome-211 

wide significance (p < 5e-8) for CVD and 16 for T2D, which account for 35% (fold = 3.35, p = 7.18e-10) 212 

and 22% (fold = 2.16, p = 8.08e-4) of all reported significant GWAS signals for CVD and T2D in GWAS 213 

catalog, respectively. Two of the 15 top KDs, namely HMGCR and IGF1, were previously identified as 214 

signals of genome-wide significance for obesity, lipids and T2D, all risk factors of CVD. Additionally, 215 

network visualization revealed tissue-specific KDs and interactions of CVD and T2D genes in many 216 

disease-relevant tissues including adipose, adrenal gland, artery, blood, digestive tract (small intestine, 217 

colon), hypothalamus, islet, liver, lymphocyte, skeletal muscle, thyroid, and vascular endothelium (Fig 218 

4B). PCOLCE represents an intriguing hypothalamus-specific KD that interacts with important energy 219 

homeostasis genes like leptin receptor LEPR, suggesting a role of neurohormonal control in CVD and 220 

T2D pathogenesis. In contrast, CAV1 appeared to interact extensively with other KDs in peripheral tissues, 221 

especially in the adipose tissue. 222 

Experimental Validation of CAV1 Subnetworks using an in vitro Adipocyte Model and in vivo 223 

Knockout Mouse Model 224 

CAV1 is a robust KD for CVD- and T2D-associated modules across multiple tissues, with the adipose 225 

tissue subnetwork of CAV1 containing the largest number of neighboring genes (Fig 4B). In addition, 226 

adipose tissue is the only tissue where CAV1 is a KD in both the Bayesian networks and GIANT networks. 227 

These lines of evidence implicate the potential importance of CAV1 adipose subnetwork in the shared 228 

pathogenesis for both diseases. Indeed, Cav1-/- mice have been shown to alter the lipid profile, 229 
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susceptibility to atherosclerosis, and insulin resistance [33, 34]. To assess whether perturbation of this 230 

potential KD induces changes in the subnetwork genes as predicted by our network modeling, we 231 

performed validation by conducting siRNA-mediated knock down of Cav1 in differentiating mouse 3T3-232 

L1 adipocytes and by evaluating the whole transcriptome alteration in mouse gonadal adipose tissue 233 

between wild type and Cav1-/- mice [33] (Fig 1C; details in Methods). Of the 12 adipose network 234 

neighbors of Cav1 that were tested in vitro, 6 exhibited significant changes in expression level on day 2 235 

after ~60% Cav1 knockdown using two siRNAs against Cav1. In contrast, none of the 5 negative controls, 236 

which were randomly selected among adipocyte genes that are not connected to Cav1 or its first level 237 

neighbors in the adipose network, were affected after Cav1 perturbation (Fig 5A). Cav1 knockdown also 238 

led to decreased expression of Pparg, a major adipocyte differentiation regulator (S6 Fig), supporting a 239 

role of Cav1 in adipocyte differentiation as previously observed [35].  240 

In 3-month-old Cav1-/- mice which showed perturbed lipid and insulin sensitivity profiles, we observed 241 

1,474 differentially expressed genes (DEGs) at FDR<1%. We found that the first and second level 242 

neighbors of CAV1 in our predicted subnetwork showed significant enrichment for DEGs in adipose 243 

tissue induced by Cav1 knockout, with the degree of fold enrichment increasing as the statistical cutoff 244 

used to define DEGs became more stringent (Fig 5B; subnetwork view with DEGs in S7 Fig). On the 245 

contrary, the third and fourth level neighbors of CAV1 in our predicted subnetwork did not exhibit such 246 

enrichment of DEGs (Fig 5B). These experimental findings support that CAV1 is a key regulator of the 247 

subnetwork and the network structure predicted by our network modeling is reliable, although it is 248 

difficult to discern whether the network changes are related to alterations in adipocyte differentiation 249 

status. We also observed strong enrichment for the focal adhesion pathway in both the predicted Cav1 250 

adipose subnetwork (p=9.6e-14 by Fisher’s exact test, fold enrichment = 6.0) and the differential adipose 251 

genes in Cav1-/- mice (p = 6.9e-9, fold enrichment = 3.5). 252 
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Shared KDs Are Associated with CVD and T2D Traits in Experimental Mouse Models 253 

We further assessed the transcriptomic profiling in adipose (relevant to T2D and CVD) and aorta tissue 254 

(main site of CVD) in relation to 7 cardiometabolic phenotypes including adiposity, lipid levels 255 

(Triglyceride, LDL, HDL), fasting glucose, fasting insulin and HOMA-IR, across >100 mouse strains in 256 

two HMDP panels [21-23]. HMDP is a systems genetics resource that comprises more than 100 257 

commercially available mouse strains differing in genetic composition, and has emerged as a power tool 258 

to study complex human diseases [22, 36]. The biological relevance of HMDP to human pathophysiology 259 

has been reproducibly demonstrated [37-39].  Moreover, HMDP data was completely independent of the 260 

human-focused genetic datasets and the network datasets used in our primary integrative analysis (Fig 261 

1C). Here we selected two specific HMDP panels, high-fat (HF) and atherogenic (ATH), in which mice 262 

were either fed with a high-fat high-sucrose diet or underwent transgenic expression of human APOE-263 

Leiden and CETP gene as a pro-atherogenic background, respectively. These two panels were chosen for 264 

their representativeness of human T2D (the HF panel) and CVD (the ATH panel) pathology. First, we 265 

investigated the correlation between the expression of 14 top KDs (no probe for KD MSMO1 in HMDP) 266 

and cardiometabolic traits in the adipose and aorta tissues assessed in HMDP. All 14 KDs displayed 267 

significant trait association in HMDP, with the association for 11 KDs replicated in both the HF and ATH 268 

HMDP panels (Fig 6A). Next, we retrieved the adipose and aorta gene-trait correlation statistics for the 269 

top KD subnetwork genes, and used MSEA to test whether genes in the KD subnetworks displayed an 270 

overall overrepresentation of strong trait association in HMDP. Again, the 14 KD subnetworks showed 271 

significant trait association after Bonferroni correction (Fig 6B). These findings support that the close 272 

involvement of the KDs in cardiometabolic trait perturbation we predicted based on human datasets can 273 

be cross-validated in mouse models. 274 

Causal Implication of the Shared KD Subnetworks in Experimental Mouse Models 275 

Cav1 knockout in mice led to dysreuglation of the predicted subnetwork (Figure 5B) and significant 276 

alterations in cardiometabolic phenotypes [33, 34], supporting the causal role of CAV1 in both CVD and 277 
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T2D. To further investigate the potential causal role of the top KDs and their subnetworks in CVD and 278 

T2D, we conducted integrative analysis of the KD subnetworks to assess their disease association using 279 

GWAS results for the 7 cardiometabolic traits from HMDP and tissue-specific cis-eQTLs (Fig 1C). By 280 

mapping GWAS signals to genes using adipose or aorta eQTLs and testing for enrichment of genetic 281 

association with cardiometabolic traits within the KD subnetwork genes using MSEA, we found 282 

consistent and significant association between cardiometabolic traits and the subnetworks of KDs ACAT2, 283 

CAV1, COL6A2, IGF1, PCOLCE, and SPARC across adipose and aorta (Fig 6C). These results informed 284 

by mouse GWAS support a potential causal role of these top KDs in perturbing gene networks in multiple 285 

tissues to trigger CVD and T2D.  286 

Discussion 287 

CVD and T2D are highly correlated complex diseases and share many common risk factors. Multiple 288 

genetic variants may individually exert subtle to strong effects on disease pathogenesis, and in aggregate 289 

perturb diverse pathogenic pathways [8, 9, 13, 19, 20, 40].  In this systems-level, data-driven analysis of 290 

GWAS from several large and high-quality cohorts of diverse ethnicities, integrated with functional data 291 

(from ENCODE, eQTLs, tissue-specific co-expression and regulatory networks constructed from human 292 

and mouse experiments), we identified both known and novel pathways and gene subnetworks that were 293 

genetically linked to both CVD and T2D across cohorts and ethnicities. Further, KDs in tissue-specific 294 

subnetworks appear to regulate many known disease genes for increased risk of CVD and T2D.  Lastly, 295 

we experimentally validated the network topology using in vitro adipocyte and data from in vivo gene 296 

knockout models, and confirmed the role of the top KDs and subnetworks in both CVD and T2D traits in 297 

independent sets of mouse studies. 298 

The data-driven nature of the current study offers several strengths. First, we incorporated the full-scale of 299 

genetic variant-disease association from multiple cohorts, ethnicities and disease endpoints, allowing for 300 

the detection of subtle to moderate signals, as well as comparison and replication of results across 301 
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diseases and populations. More importantly, by focusing on results that demonstrate consistent 302 

significance at pathway and network level, we overcome the difficulties in harmonizing independent 303 

datasets that are complicated by substantial heterogeneity due to platform differences and population 304 

substructure. This is because disease signals across populations are more conserved at pathway level than 305 

at individual variant and gene levels [12, 14, 16]. Second, the comprehensive incorporation of tissue-306 

specific eQTLs, coupled with the use of tissue-specific networks, enhances our ability to achieve better 307 

functional mapping between genetic variants and genes, and uncover systems-level regulatory circuits for 308 

CVD and T2D in a tissue-specific fashion. Third, data-driven modules and networks used in this study 309 

increase the potential for novel discovery as gene-gene interactions are defined by data rather than prior 310 

knowledge. As the network models were from many independent studies reflecting diverse physiological 311 

conditions, leveraging these datasets and network models offers more comprehensive coverage of 312 

biological interactions than any given dataset can provide and has proven a valuable approach to unveil 313 

novel biological insights [9, 13, 41].  While some of our findings confirmed those from previous 314 

canonical pathway-based analysis on disease processes including ECM-receptor interaction and cell-315 

adhesion, and KDs such as SPARC [8], our data-driven approach in the current study uncovered 316 

numerous novel genes, pathways, and gene subnetworks. A likely reason for the enhanced discovery 317 

potential of co-expression modules is that several interacting pathways could be co-regulated in a single 318 

module, or a pathway could interact with other poorly annotated processes in a module to together confer 319 

disease risk. The use of modules capturing such interactions improves the statistical power, in contrast to 320 

testing the pathways individually. Lastly, we conducted cross-validation studies in support of the 321 

functional roles of specific KDs and subnetworks in CVD and T2D using independent experimental 322 

models.  323 

We acknowledge the following limitations in our study. First, our analyses were constrained by the 324 

coverage of functional datasets that are currently available, which causes uneven tissue coverage between 325 

data types and statistical bias towards more commonly profiled tissues such as adipose and liver, making 326 
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it difficult to achieve precise inference for all relevant tissues. Although we believe this does not 327 

necessarily undermine the validity of the main findings from our study, we acknowledge that we likely 328 

have missed relevant biology from tissues with fewer studies and smaller sample sizes. Further 329 

investigation is needed when additional relevant datasets become available. Secondly, our FDR estimates 330 

in MSEA do not take into consideration the gene overlap structure among co-expression modules, due to 331 

the challenge in accurately adjusting for the various degrees of overlaps between module pairs. To 332 

alleviate this limitation, we focus on modules and pathways demonstrating consistency across datasets 333 

and merge overlapping modules subsequently. Thirdly, although we conducted validation experiments on 334 

the CAV1 subnetwork in both in vitro and in vivo models and cross-validated the importance of the 335 

predicted top key drivers and subnetworks in two independent large-scale mouse population studies, 336 

further experiments are warranted to thoroughly test the causality of the predicted KDs and elucidate the 337 

detailed tissue-specific mechanisms of the KDs on CVD and T2D. This is particularly important 338 

considering the limited overlaps in the modules and KDs identified from our study and the ones identified 339 

in two recent multi-tissue network analysis of cardiometabolic diseases [10, 11]. Only 7 KDs overlapped 340 

including APOA1, CD2, CEBPD, CENPF, CSF1R, CTSS, UBE2S. Methodological differences in network 341 

inference and key driver analysis and differences in the pathophysiological conditions of the study 342 

populations could explain the discrepancies. Lastly, ethnic-specific and sex-specific mechanisms await 343 

future exploration.  344 

There are several direct implications that can be drawn from the results of our integrative analyses of both 345 

observational and experimental data. First, it appears that pathogenic pathways for CVD and T2D are 346 

indeed common in ethnically diverse populations. These shared pathways capture most of the critical 347 

processes that have been previously implicated in the development of either T2D or CVD, including 348 

metabolism of lipids and lipoproteins, glucose, fatty acids, bile acids metabolism, biological oxidation, 349 

coagulation, immune response, cytokine signaling, and PDGF signaling. Second, BCAA metabolism and 350 

ECM are among the top and common pathways identified. Our finding on BCAA is consistent with recent 351 
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work relating serum levels of BCAA to risk of CVD and T2D in large prospective cohorts [42, 43], 352 

although whether BCAA is a “pathophenotype” or strong pathogenic factor has been debated [28, 44].  353 

Our findings support a causal role of BCAA because 1) both CVD and T2D risk variants were enriched in 354 

the co-expression modules related to BCAA degradation, and 2) 15 genes in the BCAA pathway were 355 

part of the top KD subnetworks, representing a significant enrichment of BCAA genes (fold enrichment = 356 

3.02, Fisher’s exact test p = 1.4e-5). Of note, BCAA genes themselves carry few genetic risk variants for 357 

CVD and T2D, albeit their network neighboring genes are highly enriched for disease variants, which 358 

may result from negative evolutionary pressure due to the critical role of BCAA. More recently, Jang and 359 

colleagues have shown BCAA catabolism can cause insulin resistance, providing further support for the 360 

causal role of BCAA for both CVD and T2D [45].  Our finding on the role of ECM in both CVD and 361 

T2D is also in line with recent reports [8, 13, 29, 30, 46].  In the top enriched subnetworks, ECM genes 362 

appear to exert strong effect (Fig 4B) coordinating other processes such as cholesterol metabolism, 363 

energy homeostasis, and immune response across a wide range of peripheral tissues and endocrine axis.  364 

This substantiates the importance of ECM modeling as a mechanistic driver for CVD and T2D.  365 

Secondly, our comprehensive network modeling identified critical disease modulators and key targets 366 

whose functional roles were subsequently supported by multiple cross-validation efforts. This supports 367 

the use of network modeling to unravel and prioritize promising top targets that may have high 368 

pathogenic potential for both CVD and T2D. The KDs we identified can be considered as “highly 369 

confident” for the following reasons: 1) they are KDs for both CVD and T2D associated modules, 2) the 370 

tissue-specific subnetworks of these KDs show significant and replicable association with both diseases, 3) 371 

their subnetworks are highly enriched with known CVD and T2D genes, 4) in vitro siRNA knockdown 372 

and in vivo knockout mouse experiments confirm the role of a central KD CAV1 in regulating the 373 

downstream genes as predicted in our network model, and 5) both the expression levels of KDs and the 374 

genetic variants mapped to the KD subnetworks are significantly associated with CVD and T2D relevant 375 

traits in independent mouse populations with naturally occurring genetic variations.  376 
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Thirdly, most KDs are not GWAS signals reaching genome-wide significance, nor are they rare-variant 377 

carrying genes, indicating that standard genetic studies miss important genes that orchestrate known CVD 378 

and T2D genes.  The phenomenon may reflect a negative evolutionary pressure experienced by the KDs 379 

due to their crucial functions. In support of this hypothesis, we found a significant enrichment of human 380 

essential genes lacking functional variations among the 162 KDs identified in our study [47] (Fold = 1.41, 381 

p = 9.02e-3). This is consistent with previous findings [8, 9, 13] reaffirming the power and reliability of 382 

our approach in uncovering hidden biological insights particularly in a systematic integrative manner.  383 

The connections between KDs and other disease genes revealed by our study warrant future investigation 384 

into the potential gene-gene interactions. Indeed, a closer examination of the biological functions from the 385 

top shared KDs further corroborates their disease relevance. For instance, our network modeling 386 

identified HMGCR as a top KD, consistent with its primary role as the target for cholesterol-lowering 387 

HMG-CoA inhibitors, namely statins.  Our directionality inference analysis indicates that HMGCR is 388 

associated with CVD and T2D in opposite directions. This is consistent with the recent findings that 389 

genetic variations in HMGCR that decrease CVD risk cause slightly increased T2D risk, and statin drugs 390 

targeting HMGCR reduces CVD risk but increases T2D risk [48-50]. CAV1 and IGF1 represent two 391 

tightly connected multi-functional KDs. CAV1 null mice were found to have abnormal lipid levels, 392 

hyperglycemia, insulin resistance and atherosclerosis [33, 34]. Consistent with these observations, we 393 

found strong association of CAV1 expression levels as well as CAV1 network with diverse 394 

cardiometabolic traits in both human studies and mouse HMDP panels. Our data-driven approach also 395 

revealed the central role of CAV1 in adipose tissue by elucidating its connection to a large number of 396 

CVD and T2D GWAS genes and to genes involved in focal adhesion and inflammation (Fig 4), which  397 

could drive adipocyte insulin resistance [51, 52]. The regulatory effect of CAV1 on neighboring genes 398 

was subsequently validated using in vitro adipocyte and in vivo mouse models. Moreover, our network 399 

modeling also captured the central role of CAV1 in muscle and artery tissues, suggesting multi-tissue 400 

functions of CAV1 in the pathogenic crossroads for CVD and T2D. The other multi-functional KD, IGF1, 401 
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is itself a GWAS hit for fasting insulin and HOMA-IR. Despite being primarily secreted in liver, in our 402 

study IGF1 demonstrated an adrenal gland and muscle specific regulatory circuit with CVD and T2D 403 

genes, suggesting that it may confer risk to these diseases through the adrenal endocrine function and 404 

muscle insulin sensitivity. The three ECM KDs we identified, SPARC, PCOLCE and COL6A2, were 405 

especially interesting due to their consistent and strong impact on diverse cardiometabolic traits shown in 406 

our cross-validation analyses in HMDP (Fig 4, Fig 6). SPARC encodes osteonectin, which is primarily 407 

circulated by adipocytes. It inhibits adipogenesis and promotes adipose tissue fibrosis 50. SPARC is also 408 

associated with insulin resistance and coronary artery lesions 51, 52. PCOLCE (procollagen C-409 

endopeptidase enhancer) represents a novel regulator for hypothalamus ECM that could potentially 410 

disrupt the neuroendocrine system. COL6A2, on the other hand, provides new insights into how collagen 411 

may affect cardiometabolic disorders: in adrenal tissue COL6A2 is connected to IGF1R, the direct 412 

downstream effector for KD IGF1. Importantly, our directionality analysis suggests that while some KDs 413 

such as CAV1 may have similar directional effects on CVD and T2D, cases like HMGCR that show 414 

opposite effects on these diseases are also present. Therefore, it is important to test the directional 415 

predictions to prioritize targets that have the potential to ameliorate both diseases and deprioritize targets 416 

with opposite effects on the two diseases.   417 

In summary, through integration and modeling of a multitude of genetics and genomics datasets, we 418 

identified key molecular drivers, pathways, and gene subnetworks that are shared in the pathogenesis of 419 

CVD and T2D. Our findings offer a systems-level understanding of these highly clustered diseases and 420 

provide guidance on further basic mechanistic work and intervention studies. The shared key drivers and 421 

networks identified may serve as more effective therapeutic targets to help achieve systems-wide 422 

alleviation of pathogenic stress for cardiometabolic diseases, due to their central and systemic role in 423 

regulating scores of disease genes. Such network-based approach represents a new avenue for therapeutic 424 

intervention targeting common complex diseases. 425 
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Methods 426 

Identification of qualified SNPs from GWAS of CVD and T2D  427 

Detailed GWAS information including sample size, ethnicity and genotyping platform was described in 428 

S4 Table and S1 Text. Briefly, p-values of qualified single nucleotide polymorphisms (SNPs) at minor 429 

allele frequency > 0.05 and imputation quality > 0.3 for CVD and T2D were collected for all available 430 

GWAS datasets (WHI-SHARe, WHI-GARNET, JHS, FHS, CARDIoGRAMplusC4D [19], and 431 

DIAGRAM [20]). SNPs meeting the following criteria were further filtered out: 1) ranked in the bottom 432 

50% (weaker association) based on disease association p-values and 2) in strong linkage disequilibrium 433 

(LD) (r2 > 0.5) according to ethnicity-specific LD data from Hapmap V3 [53] and 1000 Genomes[54]. 434 

For each GWAS dataset, LD filtering was conducted by first ranking SNPs based on the association p 435 

values and then checking if the next highest ranked SNP was in LD with the top SNP. If the r2 was above 436 

0.5, the SNP with lower rank was removed. The step was repeated by always checking if the next SNP 437 

was in LD with any of the already accepted ones.  438 

Curation of Data-driven Gene Co-expression Network Modules 439 

Using the Weighted Gene Co-expression Network Analysis (WGCNA)[55], we constructed gene co-440 

expression modules capturing significant co-regulation patterns and functional relatedness among groups 441 

of genes in multiple CVD- or T2D-related tissues (including aortic endothelial cells, adipose, blood, liver, 442 

heart, islet, kidney, muscle and brain) obtained from nine human and mouse studies (S5 Table). Modules 443 

with size smaller than 10 genes were excluded to avoid statistical artifacts, yielding 2,672 co-expression 444 

modules. These coexpression modules were used as a collection of data-driven sets of functionally 445 

connected genes for downstream analysis. The potential biological functions of each module were 446 

annotated using pathway databases Reactome and KEGG, and statistical significance was determined by 447 

Fisher’s exact test with Bonferroni-corrected p< 0.05.  448 
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Curation of Functional Genomics from eQTLs and ENCODE 449 

eQTLs establish biologically meaningful connections between genetic variants and gene expression, and 450 

could serve as functional evidence in support of the potential causal role of candidate genes in pathogenic 451 

processes[56, 57]. We therefore conducted comprehensive curation for significant eQTLs in a total of 19 452 

tissues that have been identified by various consortia (including the Genotype-Tissue Expression (GTEx) 453 

[58], Muther [59] and Cardiogenics [60], and additional independent studies; S6 Table). Additional 454 

functional genomics resources from ENCODE were also curated to complement the eQTLs for SNP-gene 455 

mapping (S1 Text).  456 

Identification of Genetically-driven CVD and T2D Modules using Marker Set Enrichment Analysis 457 

(MSEA) 458 

MSEA was used to identify co-expression modules with over-representation of CVD- or T2D-associated 459 

genetic signals for each disease GWAS in each cohort/ethnicity in a study specific manner.  MSEA takes 460 

into three input: 1) Summary-level results of individual GWAS (WHI, FHS, JHS, CARDIoGRAM+C4D, 461 

DIAGRAM) for the LD-filtered SNPs; 2) SNP-gene mapping information, which could be determined by 462 

tissue-specific cis-eQTLs, ENCODE based functional annotation and chromosome distance based 463 

annotation. Cis-eQTLs is defined as eQTLs within 1MB of the transcription starting sites of genes. For 464 

ENCODE, we accessed the Regulome database and used the reported functional interactions to map SNPs 465 

to genes by chromosomal distance. Only SNPs within 50kb of the gene region and have functional 466 

evidence in Regulome database were kept; 3) Data-driven co-expression modules from multiple human 467 

and mouse studies as described above. Tissue-specificity was determined by the tissue origins of eQTLs 468 

and ethnic specificity was determined by the ethnicity of each GWAS cohort, since the human disease 469 

genetic signals and human eQTL mapping were the main driving factors to determine the significance of 470 

the modules. MSEA employs a chi-square like statistic with multiple quantile thresholds to assess 471 

whether a co-expression module shows enrichment of functional disease SNPs compared to random 472 

chance [14]. The varying quantile thresholds allows the statistic to be adoptable to studies of varying 473 
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sample size and statistical power. For the list of SNPs mapped to each gene-set, MSEA tested whether the 474 

SNP list exhibited significant enrichment of SNPs with stronger association with disease using a chi-475 

square like statistic: 𝜒 = ∑
𝑂𝑖−𝐸𝑖

√𝐸𝑖+𝜅

𝑛
𝑖=1 , where n denotes the number of quantile points (we used ten 476 

quantile points ranging from the top 50% to the top 99.9% based on the rank of GWAS p values), O and 477 

E denote the observed and expected counts of positive findings (i.e. signals above the quantile point), and 478 

κ = 1 is a stability parameter to reduce artefacts from low expected counts for small SNP sets. The null 479 

background was estimated by permuting gene labels to generate random gene sets matching the gene 480 

number of each co-expression module, while preserving the assignment of SNPs to genes, accounting for 481 

confounding factors such as gene size, LD block size and SNPs per loci.  For each co-expression module, 482 

10000 permuted gene sets were generated and enrichment P-values were determined from a Gaussian 483 

distribution approximated using the enrichment statistics from the 10000 permutations and the statistics of 484 

the co-expression module. Finally, Benjami-Hochberg FDR was estimated across all modules tested for 485 

each GWAS. 486 

To evaluate a module across multiple GWAS studies, we employed the Meta-MSEA analysis in 487 

Mergeomics, which conducts module-level meta-analysis to retrieve robust signals across studies. Meta-488 

MSEA takes advantage of the parametric estimation of p-values in MSEA by applying Stouffer’s Z score 489 

method to determine the meta-Z score, then converts it back to a meta P-value. The meta-FDR was 490 

calculated using Benjamini-Hochberg method. Co-expression modules with meta-FDR < 5% were 491 

considered significant and included in subsequent analyses. 492 

Identification of Key Drivers and Disease Subnetworks 493 

We used graphical gene-gene interaction networks including the GIANT networks [31] and Bayesian 494 

networks (BN) from 25 CVD and T2D relevant tissue and cell types (S7 Table, S1 Text) to identify KDs. 495 

If more than one dataset was available for a given tissue, a network was constructed for each dataset and 496 

all networks for the same tissue were combined as a union to represent the network of that tissue, with the 497 
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consistency of each network edge across datasets coded as edge weight. The co-expression modules 498 

genetically associated with CVD or T2D identified by Meta-MSEA were mapped onto these graphical 499 

networks to identify KDs using the weighted key driver analysis (wKDA) implemented in Mergeomics 500 

[14].  wKDA uniquely consider the edge weight information, either in the form of edge consistency score 501 

in the case of BNs or edge confidence score in the case of GIANT networks. Specifically, a network was 502 

first screened for suitable hub genes whose degree (number of genes connected to the hub) is in the top 25% 503 

of all network nodes. Once the hubs have been defined, their local one-edge neighborhoods, or 504 

“subnetworks” were extracted. All genes in each of the CVD and T2D-associated gene sets that were 505 

discovered by meta-MSEA were overlaid onto the hub subnetworks to see if a particular subnetwork was 506 

enriched for the genes in CVD/T2D associated gene sets. The edges that connect a hub to its neighbors 507 

are simplified into node strengths (strength = sum of adjacent edge weights) within the neighborhood, 508 

except for the hub itself. The test statistic for the wKDA is analogous to the one used for MSEA: 𝜒 =509 

𝑂−𝐸

√𝐸−𝜅
, except that the values O and E represent the observed and expected ratios of genes from CVD/T2D 510 

gene sets in a hub subnetwork. In particular, 𝐸 =
𝑁𝑘𝑁𝑝

𝑁
 is estimated based on the hub degree Nk, disease 511 

gene set size Np and the order of the full network N, with the implicit assumption that the weight 512 

distribution is isotropic across the network. Statistical significance of the disease-enriched hubs, 513 

henceforth KDs, is estimated by permuting the gene labels in the network for 10000 times and estimating 514 

the P-value based on the null distribution. To control for multiple testing, stringent Bonferroni adjustment 515 

was used to focus on the top robust KDs. KDs shared by CVD and T2D modules are prioritized based on 516 

the following criteria: i) Bonferroni-corrected p< 0.05 in wKDA, ii) replicated by both GIANT networks 517 

and Bayesian networks, and iii) the genetic association strength between the KD subnetworks (immediate 518 

network neighbors of the KDs) and CVD/T2D in Meta-MSEA. Finally, Cytoscape 3.3.0 [61] was used for 519 

disease subnetwork visualization.  520 
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Inference of the Direction of Genetic Effects of KD subnetworks 521 

We used the genetic effect direction of KDs as a proxy for probable effect direction of the KD 522 

subnetworks. For each KD, we retrieved their tissue-specific eQTLs as well as variants within 50kb of the 523 

gene region, whose genetic association information was available in both CARDIoGRAMplusC4D and 524 

DIAGRAM, the two large meta-consortia of GWAS for CVD and T2D. CVD/T2D association beta-525 

values of mapped variants of KDs were then extracted, and the signs of beta-values were examined to 526 

ensure they were based on the same reference alleles between GWAS. Lastly, for all mapped variants on 527 

each KD, the signs of the beta-value for CVD and T2D were compared and statistical significance of the 528 

proportion of variants with similar or opposite effect direction between diseases was determined by z-test.  529 

Validation of KD Subnetwork Topology Using siRNA Knockdown in Adipocytes 530 

We chose to validate the predicted adipose subnetwork of a top ranked KD of both CVD and T2D, Cav1, 531 

in 3T3-L1 adipocytes. Cells were cultured to confluence and adipocyte differentiation was induced using 532 

MDI differentiation medium (S1 Text). Two days after the initiation of differentiation, cells were 533 

transfected with 50 nM Cav1 siRNAs (3 distinct siRNAs were tested and two of the strongest ones were 534 

chosen) or a scrambled control siRNA. For each siRNA, two separate sets of transfection experiments 535 

were conducted, with three biological replicates in each experiment. Two days after transfection, cells 536 

were collected for total RNA extraction, reverse transcription and quantitative PCR measurement of 12 537 

predicted Cav1 subnetwork genes and 5 random genes not within the subnetwork as negative controls (S1 538 

Text). β-actin was used to normalize the expression level of target genes. 539 

Validation of KD Subnetwork Topology Using Cav1 null mice 540 

We accessed the gonadal white tissue gene expression data of 3-month-old wild type and Cav1-/- male 541 

mice (N=3/group) from Gene Expression Omnibus (GEO accession: GSE35431). Detailed description of 542 

the data collection procedures has been described previously [33]. Gene expression was profiled using 543 

Illumina MouseWG-6 v2.0 expression beadchip and normalized using robust spline. Differentially 544 
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expressed genes (DEGs) between genotype groups were identified using linear model implemented in the 545 

R package Limma and false discovery rate was estimated using the Benjamini-Hochberg procedure [62]. 546 

DEGs at different statistical cutoffs were compared to CAV1 subnetwork genes at different levels (i.e., 1, 547 

2, 3, or 4 edges away from CAV1) to assess overlap and significance of overlap was evaluated using 548 

Fisher’s exact test. 549 

Validation of KD Subnetworks Using Mouse HMDP Studies 550 

To further validate the role of KD subnetworks in CVD and T2D, we incorporated genetic, genomic and 551 

transcriptomic data from HMDP (comprised of >100 mouse strains differing by genetic composition) [21-552 

23]. HMDP data was from two panels, one with mice fed with a high-fat diet (HF-HMDP)[22], and the 553 

other with hyperlipidemic mice made by transgenic expression of human APOE-Leiden and CETP gene 554 

(ATH-HMDP)[23]. For HF-HMDP, we retrieved gene-trait correlation data for adipose tissue (due to its 555 

relevance to both CVD and T2D) and 7 core cardiometabolic traits including adiposity, fasting glucose 556 

level, fasting insulin level, LDL, HDL, triglycerides and homeostatic model assessment-insulin resistance 557 

(HOMA-IR). For ATH-HMDP, we retrieved aorta gene-trait correlation (aorta tissue is the main site for 558 

CVD in mice) for all 7 traits. In addition to assessing the trait association strengths of individual KDs, we 559 

also used MSEA to evaluate the aggregate association strength of the top CVD/T2D KD subnetworks 560 

with the traits at both transcription and genetic levels through transcriptome-wide association (TWAS) 561 

and GWAS in HF-HMDP and ATH-HMDP (S1 Text). 562 
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Supporting Information Captions 779 

S1 Text. Supplemental methods and references. 780 

S1 Fig. Number of significant co-expression modules found by different gene-SNP mapping types. 781 

S2 Fig. Heatmap of pair-wise overlapping ratio (Jaccard index) between the 79 co-expression modules associated with CVD (y-axis) and 54 782 

modules (x-axis) associated with T2D. 783 

S3 Fig. Overlap ratio plots between co-expression modules and the annotated functional terms. All the annotated pathways reach >5% overlap 784 

ratio either on the pathway side or on the module side. Specifically, a majority (251 out of 278, 90.3%) of the annotated pathways had >=5% of 785 

genes overlapping with the modules to which they were assigned. For the 27 annotated pathways where <5% pathway genes were represented, 786 

these were the cases where the co-expression modules were small and the pathways were large, but all of them showed overlap of >5% module 787 

genes. The minimum, maximum, mean and median numbers of the overlapping genes for the annotations are 5, 170, 19 and 13, respectively.  788 

S4 Fig. Concept of key driver analysis (KDA). KDA requires gene regulatory networks capturing gene-gene interactions. Hub genes that show 789 

high degrees of connections to other networks genes are first identified, and their adjacent network neighbors (subnetworks) were extracted. All 790 

genes in each CVD/T2D associated module are used as input and mapped onto each hub subnetwork to assess whether a hub subnetwork was 791 

enriched for the genes in the input modules. The hubs whose subnetworks show significant enrichment of CVD/T2D module genes are defined as 792 

potential key drivers. 793 
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S5 Fig. Scatter plots of the GWAS beta-values of variants mapped to the top 15 KDs. (A) Gene-variant mapping based on eQTLs only; (B) Gene-794 

variant mapping based on eQTLs and chromosomal distance. Percentage indicates the proportion of mapped variants with the same effect 795 

direction between CVD and T2D. Statistical significance of the difference of the proportion from random expectation is determined by z-test. 796 

S6 Fig.  Expression changes in adipocyte differentiation state markers 3 days after the in vitro siRNA knockdown of Cav1. Statistical significance 797 

of genes was determined by Student’s t-test. N=3/group, mean ± SEM, **p < 0.01. 798 

S7 Fig. Visualization of CAV1 adipose subnetwork. Red color indicates significantly up-regulated genes (FDR < 1%) in Cav1-/- mice, and blue 799 

color indicates significantly down-regulated genes (FDR < 1%) in Cav1-/- mice. 800 

S1 Table. Summary of significant co-expression modules (FDR < 5%) associated with CVD or T2D. 801 

S2 Table. Functional annotation terms of the significant co-expression modules. 802 

S3 Table. List of previously reported genes associated with CVD, T2D, and intermediate metabolic traits related to CVD, T2D from DisGeNET 803 

and GWAS Catalog. 804 

S4 Table. Summary information of genome-wide association studies. 805 

S5 Table. Data resources and references for co-expression networks. 806 

S6 Table. Data resources and references for expression QTLs. 807 

S7 Table. Data resources and references for gene-gene regulatory networks  808 
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Figure Captions 809 

Fig 1. Framework of network-driven integrative genomics analyses. (A) Integration of genetics and functional genomics datasets to identify CVD 810 

and T2D associated co-expression modules. The GWAS studies for CVD and T2D were derived from three independent cohorts representing three 811 

ethnic populations: WHI (AA, EA, HA), FHS (EA), and JHS (AA). These independent datasets were supplemented with GWAS of coronary 812 

artery disease from CARDIoGRAMplusC4D and T2D from DIAGRAM to increase power. We also curated a comprehensive list of tissue-specific 813 

functional genomics datasets, including 2672 co-expression modules, human eQTLs of various tissues, and ENCODE based variants annotation. 814 

The significant modules were identified by MSEA and Meta-MSEA, and then annotated to reveal shared pathways for CVD and T2D. In MSEA, 815 

the co-expression modules were used to define data-driven gene sets each containing functionally related genes, tissue-specificity was determined 816 

based on the tissue-origins of the human eQTLs, and ethnic specificity was determined based on the ethnicity of each GWAS cohort. (B) 817 

Identification of disease key drivers and subnetworks. We utilized multi-tissue graphical networks to capture key drivers for disease associated co-818 

expression modules using wKDA, then prioritized KDs based on consistency and disease relevance of the subnetworks. (C) Validation of the top 819 

key drivers and their subnetworks via intersection with known human CVD and T2D genes from DisGeNET and GWAS catalog, in vitro 820 

adipocyte siRNA experiments, and cross-validation at both transcriptomic and genomic levels in the hybrid mouse diversity panels (HMDP).  821 

 822 

Fig 2. Venn Diagrams of overlap in significant co-expression modules and functional categories between diseases and ethnicities. A) Count of 823 

module overlaps by disease based on Meta-MSEA; B) Count of module overlaps for each disease by ethnicity based on MSEA of individual 824 
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studies. Co-expression modules captured in CARDIoGRAMplusC4D and DIAGRAM were not counted due to uncertain ethnic origin; C) Count 825 

of independent functional category overlaps by disease based on results from Meta-MSEA in panel A.  826 

 827 

Fig 3. Summary of 41 independent functional categories enriched in both CVD and T2D co-expression modules (Bonferroni-corrected p< 0.05 828 

based on Fisher’s exact test, number of direct overlapping genes > 5). Independent functional categories were defined as the categories with pair-829 

wise overlapping ratio < 10%. Red and blue block indicates that the significant CVD or T2D co-expression modules identified from the study and 830 

ethnicity origin are enriched for the particular functional category term. CAR+C4D:  CARDIoGRAMplusC4D; M: mixed ethnicities; AA: African 831 

Americans; HA: Hispanic Americans; EA: European Americans.  832 

 833 

Fig 4. Subnetworks of the top 15 shared KDs orchestrate known genes for CVD, T2D, obesity and lipids. A) Fold enrichment of KD subnetwork 834 

genes for known genes related to cardiometabolic traits reported in DisGeNET. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. B) Top KD 835 

subnetworks with GWAS hits (p < 1e-5 as reported in GWAS Catalog) for cardiometabolic traits. KDs are large nodes. Edge color denotes tissue-836 

origin. Only high-confidence edges (those with weight score in the top 20%) are visualized. 837 

 838 

Fig 5. Validation of CAV1 subnetwork using in vitro siRNA knockdown (A) and in vivo knockout mouse model (B). A) Fold change of expression 839 

level for CAV1 subnetwork and negative control genes 2 days after Cav1 knockdown using two siRNAs separately. Twelve CAV1 neighbors were 840 

randomly selected from the first and second level neighboring genes of CAV1 in adipose network. Five negative controls were randomly selected 841 
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from the genes not connected to CAV1 or its first level networks in adipose network. Statistical significance of genes was determined by linear 842 

model, adjusting for batch effect and siRNA differences. N=612/siRNA group, mean ± SEM, *p < 0.05, **p < 0.01, ***p<0.001. B) Overlap of 843 

CAV1 neighboring genes in the adipose tissue subnetwork at various distance levels with the differentially expressed genes in the gonadal adipose 844 

tissue in Cav1 knockout mice (N=3/group). Overlap p-value is determined by Fisher’s exact test. *Overlap p < 0.05 after Bonferroni correction.  845 

 846 

Fig 6. Associations of KDs and subnetworks with cardiometabolic traits in mice. (A) Association between KD expression and cardiometabolic 847 

traits in adipose tissue from HF-HMDP (HF) and aorta tissue from atherogenic-HMDP (ATH) as determined by Pearson correlation. *p< 0.05; 848 

**p< 0.05 after Bonferroni correction for the KD number; ***p< 0.05 after Bonferroni correction for the number of KDs and traits. (B) 849 

Transcriptomic-wide association of KD subnetworks and cardiometabolic traits in adipose tissue from HF-HMDP, and aorta tissue from 850 

atherogenic-HMDP, as evaluated by MSEA. (C) Genome-wide association of KD subnetworks and cardiometabolic traits based on adipose eQTL 851 

mapping in HF-HMDP, and aorta eQTL mapping in Atherogenic-HMDP, as determined by MSEA. p<0.05, p<3.3-3, and p<4.8e-4 correspond to 852 

uncorrected and Bonferroni-corrected p-values (correcting for the number of KDs or for the number of KD and trait combinations). 853 

  854 
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Tables 855 

Table 1. Summary of top co-expression modules associated with CVD or T2D (FDR < 1% in Meta-MSEA, in column FDRmeta) 856 

Disease 
Module 

ID 
Tissue Annotation 

Gene 

No. 

CAR+C4D/ 

DIAGRAM 
JHS FHS WHI WHI WHI 

Pmeta FDRmeta 

Mixed AA EA EA AA HA 

CVD 

 

4406 
O1, 

O2, O5 
NA 154 3.32E-10 NS - 2.83E-02 4.41E-03 NS 5.73E-09 <0.01% 

4522 
Adp, 

Lv, T 
Signaling by FGFR mutants 2072 1.03E-04 1.62E-02 - 3.80E-02 5.53E-03 2.86E-02 3.39E-08 <0.01% 

4540 O4, O5 NA 1233 9.72E-04 NS - NS 1.50E-02 5.52E-04 5.07E-07 0.06% 

5242 Adr Cholesterol Biosynthesis 306 4.19E-06 4.71E-02 - NS 2.31E-02 NS 2.64E-06 0.08% 

4087 
Adp, 

Dg 

Carboxylic acid metabolic 

process 
158 2.34E-06 NS - NS 8.63E-03 2.17E-02 4.24E-06 0.09% 

4019 Ly 
Transmembrane transport of 

small molecules 
2876 1.89E-03 4.46E-02 - NS NS 6.85E-04 7.91E-06 0.20% 

4941 O4, O5 Establishment of localization 908 8.97E-06 1.52E-02 - NS NS 3.94E-02 2.72E-06 0.21% 

5023 Ly 
TCA cycle and respiratory 

electron transport 
2890 NS 6.37E-05 - 1.53E-03 NS 1.50E-02 1.15E-05 0.22% 

blue O2, O4 Cell cycle 657 1.08E-02 NS - NS NS 1.77E-04 3.85E-06 0.30% 

5329 Adr Biological oxidations 1028 NS 2.32E-02 - 5.01E-03 3.26E-02 2.26E-02 2.21E-05 0.35% 

124 O3, O4 NA 14 NS 1.48E-03 - NS 7.05E-07 NS 4.86E-06 0.55% 

4656 O3, O4 
Cellular protein complex 

assembly 
371 NS NS - NS 3.64E-03 2.27E-04 8.85E-06 0.67% 

4147 O5 NA 111 1.55E-02 2.06E-04 - NS 8.85E-03 NS 5.72E-06 0.68% 

4989 Adr 
Metabolism of amino acids and 

derivatives 
453 1.86E-03 7.41E-03 - NS 3.71E-04 NS 7.81E-05 0.82% 

 
  

 

   

  

    

T2D 

5323 Mn NA 38 8.68E-04 NS NS 2.25E-04 1.05E-03 NS 1.58E-07 0.02% 

5250 

Adp, 

Dg, 

Mn 

NA 37 4.78E-05 NS NS 3.01E-02 3.46E-07 NS 4.32E-07 0.03% 
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4880 Mn NA 141 8.96E-03 NS 1.18E-02 5.06E-04 NS NS 1.61E-06 0.06% 

6872 Mn NA 119 NS 1.26E-03 7.44E-03 7.79E-03 NS NS 1.26E-06 0.06% 

4879 Ms NA 376 3.18E-02 NS 5.88E-04 NS 2.66E-03 2.20E-03 1.19E-06 0.14% 

6533 Mn Cholesterol biosynthesis 48 NS 5.02E-03 NS NS NS 1.26E-06 1.06E-05 0.25% 

6977 
Bld, 

O3 
NA 40 3.66E-02 NS 4.01E-05 NS 1.81E-02 4.05E-02 1.71E-06 0.39% 

6675 Mn Cholesterol biosynthesis 152 3.72E-03 3.35E-02 NS NS NS 2.06E-05 2.56E-05 0.52% 

37 O2 NA 34 1.94E-03 5.53E-03 NS NS 9.38E-04 NS 4.95E-06 0.57% 

4302 Adp NA 40 2.07E-03 NS NS 4.80E-03 4.05E-06 NS 9.89E-06 0.71% 

6690 Adr 
Complement and coagulation 

cascades 
641 1.93E-02 1.01E-04 NS 2.24E-02 NS NS 1.36E-05 0.86% 

4059 Dg 
SLC mediated transmembrane 

transport 
51 NS 3.05E-02 5.80E-03 NS 1.50E-02 NS 1.29E-05 0.86% 

4937 Dg Amino acid metabolic process 80 9.21E-03 NS 5.88E-03 NS 1.37E-03 NS 2.11E-05 0.89% 

5059 Ve 
TCA cycle and respiratory 

electron transport 
164 7.31E-04 NS 2.74E-02 8.66E-04 NS NS 6.64E-06 0.95% 

Module IDs were randomly assigned IDs to co-expression modules. The annotation refers to the top functional category enriched in the co-857 

expression modules (Bonferroni-corrected p< 0.05 based on Fisher’s exact test, number of direct overlapping genes > 5). Numbers in scientific 858 

format were p-values from MSEA or Meta-MSEA analysis, and those reaching FDR < 20% in individual cohort analysis via MSEA (not the 859 

FDRmeta in Meta-MSEA) are highlighted in bold. CAR+C4D: CARDIoGRAMplusC4D; Mixed: mixed ethnicities; JHS: Jackson Heart Study; FHS: 860 

Framingham Heart Study; WHI: Women’s Health Initiative; AA: African Americans; HA: Hispanic Americans; EA: European Americans; Pmeta 861 

and FDRmeta: p and FDR values from Meta-MSEA analysis across cohorts. Adp – adipose tissue; Adr - adrenal gland; Bld – Blood; Dg - digestive 862 

tract; Lv – liver; Ly – lymphocyte; Ms – muscle; O1 –  chromosomal distance mapping based on a 50kb window; O2 – ENCODE-based 863 

Regulome SNPs; O3 – combining all tissue-specific eQTLs into a single multi-tissue eSNP set; O4 – merging eQTL sets with Regulome data; O5 864 

– combined mapping (distance, eQTLs, ENCODE); T – thyroid gland; Ve – vascular endothelium.  865 
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Table 2. Summary of the 15 key drivers and their corresponding subnetworks shared by CVD and T2D 866 

Key 

drivers 

Gene 

name 

Sub

-net 

size 

Tissues 𝑷𝑪𝑽𝑫 𝑭𝑫𝑹𝑪𝑽𝑫 𝑷𝑻𝟐𝑫 𝑭𝑫𝑹𝑻𝟐𝑫 

No. of 

CVD 

module 

No. of 

T2D 

module 

Suggestive 

genetic 

effect 

direction 

(CVD/T2D) 

Subnetwork function 

ACAT2 
Acetyl-CoA 

Acetyltransferase 2 
192 

Adp, Dg, 

Lv, Ms, 

T 

1.24E-03 5.32% 5.37E-03 4.35% 6 7 uncertain 
Cell cycle; Cholesterol 

biosynthesis 

ACLY ATP Citrate Lyase 129 

Adp, Dg, 

Lv, Ms 5.96E-04 6.17% 5.78E-05 0.47% 5 6 consistent 

Cholesterol 

biosynthesis; Steroid 

biosynthesis 

CAV1 Caveolin 1 954 

Adp, 

Adr, Art, 

Dg, Ms, 

T, Ve 

1.24E-05 0.20% 3.96E-05 0.32% 7 4 consistent 
Immune system; Focal 

adhesion 

COL6A2 
Collagen Type VI 

Alpha 2 Chain 
294 

Adp, 

Adr, Dg, 

Ms, T 

2.47E-03 4.45% 4.97E-05 0.40% 2 1 consistent Extracellular matrix 

COX7A2 

Cytochrome C 

Oxidase Subunit 

7A2 

152 

Adp, 

Adr, Art, 

Bld, Dg, 

Lv, Ly 

2.34E-04 3.79% 1.31E-04 1.85% 1 4 uncertain 
Respiratory electron 

transport 

DBI 
Diazepam Binding 

Inhibitor 
181 

Adp, Art, 

Bld, Dg, 

Is, Lv, 

Ly, Ms 

1.57E-03 7.70% 1.33E-02 6.75% 5 5 uncertain 
Respiratory electron 

transport 

HMGCR 

3-Hydroxy-3-

Methylglutaryl-

CoA Reductase 

75 

Art, Dg, 

Lv, Ms 7.53E-03 9.09% 7.28E-03 4.87% 1 5 opposite 

Cholesterol 

biosynthesis; Steroid 

biosynthesis 

IDI1 

isopentenyl-

diphosphate delta 

isomerase 1 

89 

Adp, Art, 

Dg, Is, 

Lv, Ms, 

T 

6.77E-03 8.95% 2.13E-03 3.46% 3 4 opposite 

Cholesterol 

biosynthesis; Steroid 

biosynthesis 

IGF1 insulin like growth 993 Adr, Ms 2.65E-03 5.37% 3.71E-04 1.20% 7 2 consistent Immune system; Focal 
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factor 1 adhesion 

MCAM 
melanoma cell 

adhesion molecule 
183 

Adp, 

Adr, Art, 

Ms, T 

2.65E-03 7.16% 1.93E-03 5.22% 4 2 

uncertain 

Extracellular matrix 

MEST 
mesoderm specific 

transcript 
132 

Adp, 

Adr, Lv, 

Ms 

1.66E-03 3.36% 6.84E-04 1.58% 4 2 

uncertain 
Fibroblast growth factor 

signaling 

MSMO1 
methylsterol 

monooxygenase 1 
133 

Adp, Art, 

Dg, Lv, 

Ms, T,  

2.38E-03 7.70% 4.34E-05 0.63% 1 4 

uncertain Cholesterol 

biosynthesis; Steroid 

biosynthesis 

PCOLCE 

procollagen C-

endopeptidase 

enhancer 

307 

Adp, 

Adr, Art, 

Hy, Lv, 

Ms 

1.14E-03 6.17% 1.71E-06 0.03% 2 2 uncertain Extracellular matrix 

SPARC 

secreted protein 

acidic and cysteine 

rich 

482 

Adp, 

Adr, Art, 

Dg, Lv, 

Ms, Ve  

1.81E-03 9.63% 2.02E-03 8.18% 5 3 consistent Extracellular matrix 

ZFP36 
ZFP36 ring finger 

protein 
176 

Adp, 

Adr, Art, 

Lv, Ly, 

Ms 

1.42E-03 8.45% 1.64E-02 7.69% 3 3 uncertain 
Hypoxia-inducible 

factors; CD40 signaling 

P and FDR values were based on Meta-MSEA analysis of the KD subnetworks for enrichment of CVD or T2D GWAS signals across cohorts. The 867 

subnetwork size indicates the number of neighboring genes directly connected to a KD when all the tissue-specific networks where the KD was 868 

found are combined. No. of module columns indicate the number of CVD or T2D–associated co-expression modules from which each KD was 869 

identified. Suggestive genetic effect direction was designated “consistent” or “opposite” if the proportion of variants having consistent or opposite 870 

effect direction in CVD or T2D was statistically significant in either eQTL mapping or chromosomal distance mapping. Otherwise, “uncertain” 871 

was called. Subnetwork function was annotated based on KEGG and Reactome databases. Adp – adipose tissue; Adr - adrenal gland; Art – artery; 872 

Dg -  digestive tract; Is – Islet; Hy – hypothalamus; Lv – liver; Ly – lymphocyte; Ms – muscle; T: thyroid gland; Ve: vascular endothelium. 873 


