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1 Introduction

Heterotic flux backgrounds are interesting models of string backgrounds. There is no in

principle impediment from using the R-NS string worldsheet formalism although compact

models with minimal or no supersymmetry remain challenging to construct.

In this work we study local Heterotic flux backgrounds on Hyper-Kähler four manifolds:

in particular the Gibbons-Hawking spaces [1] and the Atiyah-Hitchin manifold [2]. Key to

our configurations is that the gauge fields are Abelian and we take the large charge limit

such that TrF ∧ F dominates TrR ∧R in the Bianchi identity. This large-charge limit has

been previously studied on the Eguchi-Hanson space [3] and the conifold [4, 5] and this

type of limit is familiar from the large-charge supergravity limit crucial to the development

of holography [6] in type II and M-theory.

Our strategy is to first compute explicit solutions to the Hermitian-Yang-Mills equa-

tions on Hyper-Kähler spaces and then backreact them on the geometry. This backreaction

affects only the conformal mode of the metric but generates a non-trivial three-form flux.
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According to Aspinwall [7] we are studying Goldilocks theories with just the right amount

of supersymmetry; perhaps then not surprisingly we solve the supergravity background

exactly. For the Atiyah-Hitchin background it is nonetheless somewhat impressive that

we can both solve Hermitian-Yang-Mills exactly and integrate analytically the resulting

Poisson equation for the backreaction of this instanton.

The instanton we use on the Atiyah-Hitchin manifold is well known from a classic

duality paper by Ashoke Sen [8]. Perhaps the central result of our work is that the Heterotic

backreaction of this instanton can be made regular. This is somewhat non-trivial since the

negative mass of Atiyah-Hitchin induces a negative warp factor thus violating the desired

signature of space-time. We circumvent this in two ways: first by allowing the asymptotic

circle to be large and secondly by including smeared five-brane sources.

We also study the presence of electric H-flux and fundamental strings.The electric flux

modifies the BPS equations in a straightforward way and for each solution with magnetic

H-flux, the electric flux can be added through a harmonic function on the Hyper-Kähler

manifold. We analyze limits in which we recover AdS3 geometries but these reduce to the

known AdS3 × S3 ×HK4.

Upon completing this work we were made aware that our BPS equations have turned

up in five dimensional supergravity. The local equations we study can essentially be found

in [9, 10] but with very different global and regularity requirements. This is not surprising

since we can dimensionally reduce our solutions on R5 to get solutions of ungauged five di-

mensional supergravity. In addition, these equations also turn up in type II supergravity for

T 2 fibrations over Hyper-Kähler spaces and the type II analogue of the Gibbons-Hawking

solutions we find have been analyzed in [11]. It is straightforward to convert our solutions

on the Atiyah-Hitchin manifold to such type II backgrounds.

2 Hyper-Kähler heterotic backgrounds

The primary backgrounds we consider are of the form R1,5×HK4 where HK4 is a warped

Hyper-Kähler-four manifold. We consider a non-trivial three-form flux H(3), dilaton Φ and

Heterotic gauge field F . The background metric ansatz is:

ds2
10 = ds2

1,5 +H ds2
4 (2.1)

where ds2
4 is an Hyper-Kähler metric on a four-manifold HK4 and H a conformal factor.

The BPS equations are fairly standard:

e2φ = H (2.2a)

H(3) = − ∗4 dH (2.2b)

JaxF = 0, a = 1, 2, 3 (2.2c)

where the ∗4 is the Hodge dual w.r.t. the Hyper-Kähler metric on HK4 and Ja are the

three Kähler forms.

A major difficulty in finding explicit solutions of Heterotic supergravity with non-trivial

three-form flux is to satisfy the Bianchi identity at the appropriate order in α′. Following
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earlier works by some of the authors [3–5], our strategy will be to work in a large (fivebrane)

charge limit, ensuring that the contribution of the TrR ∧ R term is subdominant and can

be consistently neglected. The Heterotic Bianchi identity simplifies to

dH(3) = α′TrF ∧ F (2.3)

implying from the three-form ansatz (2.2b) that:

d ∗4 dH = −α′TrF ∧ F . (2.4)

2.1 Principal torus bundles and type IIA/IIB solutions

We consider a more general class of backgrounds, that can be viewed as local models of

the principal torus bundles over wrapped K3 surfaces introduced in [12] and discussed in

many works including [13–16]. They generalize the solutions based on Eguchi-Hanson space

presented in [17]. The general ansatz for such principal two-torus bundle T 2 ↪→M6
π→ HK4

over a Hyper-Kähler four-manifold is of the form

ds2
10 = ds2

1,3 +H ds2
4 +

U2

T2
|dx+ Tdy + π?α|2 , (2.5)

where α is a connection one-form on HK4 such that ϑ = dx + Tdy + π?α is a globally

defined one-form on M6 with

1

2π
dϑ = π?$ , $ = $1 + T$2 , $i ∈ H2(HK4,Z) , (2.6)

and by supersymmetry

Ja ∧$ = 0 , a = 1, 2, 3 . (2.7)

The expression for the three-form becomes then

H(3) = − ∗4 dH − α′U2

T2
Re
(
∗4dϑ ∧ ϑ̄

)
. (2.8)

By an appropriate choice of $ ∈ H2(HK4,Z) one can find solutions with dH(3) = 0,

which can also be obtained as supersymmetric solutions of type IIA or type IIB supergravity

with NS-NS fluxes, as was discussed in [3] and [18].

3 Gibbons-Hawking: ALE and ALF

We can solve explicitly (2.2) and (2.4) for the multicentered Gibbons-Hawking ALE and

ALF spaces, that we denote collectively by MGH. The corresponding Hyper-Kähler metrics

are given by:1

ds2
4 = V (x)−1(dτ + ω)2 + V (x)dx · dx , (3.1a)

dV = ∗3dω , (3.1b)

V = ε+ 2m
k∑
i=1

1

|x− xi|
, (3.1c)

1As usual ∗3 is the Hodge dual on R3.

– 3 –



J
H
E
P
0
8
(
2
0
1
7
)
1
3
8

where ε = 0 gives the ALE (multi Eguchi-Hanson) series and ε = 1 the ALF (multi Taub-

NUT) series. The periodicity of τ is determined by expanding around a pole of V (x)

to be:

τ ∼ τ + 8πm , (3.2)

and the triplet of Kähler forms is given by

Ja = (dτ + ω) ∧ dxa − V ∗3 dxa , a = 1, 2, 3 . (3.3)

We will consider heterotic supergravity solutions for warped ALE or ALF spaces sup-

ported by Abelian gauge bundles. To explicitly write the gauge fields we denote

Vi =
2m

|x− xi|
, dωi = ∗3dVi ; (3.4)

Then a representative of the topologically non-trivial gauge fields is locally given by

Ai = ωi −
Vi
V

(dτ + ω) . (3.5)

We note that
k∑
i=1

Ai = ε
dτ + ω

V
− dτ (3.6)

is topologically trivial since V −1(dτ + ω) is globally defined. Thus there are (k − 1) non-

trivial gauge fields, in agreement with the (k−1) non-trivial two-cycles. The corresponding

field strengths are

Fi = dAi = V ∗3 d

[
Vi
V

]
− d

[
Vi
V

]
∧ (dτ + ω) . (3.7)

It is straightforward to see that Fi are anti-self dual and solve Hermitian Yang-Mills2

∗4 Fi = −Fi , Ja ∧ Fj = 0 . (3.8)

For the Bianchi identity (2.4) we compute

Fi ∧ Fj = −2V ∗3 d
[
Vi
V

]
∧ d
[
Vj
V

]
∧ (dτ + ω) (3.9)

d ∗4 d
[
ViVj
V

]
= −Fi ∧ Fj (3.10)

so that if we take

F =
1

4m

k∑
i=1

dAi qi · T , (3.11)

2For a one form α on R3 we have ∗4α = −(dτ + ω) ∧ ∗3α. In particular this means that a function

which is invariant under the U(1) generated by ∂τ is harmonic on the Gibbons-Hawking space iff it is

harmonic on R3.
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where T ∈ U(1)16 is in the Cartan subalgebra of E8×E8 or SO(32) and qi the corresponding

charge vectors, and solve (2.4), we get the general solution:3

H = δ + h(x) +
α′

8m2V

k∑
i,j=1

ViVjqi · qj . (3.12)

Here δ = 0, 1 is an integration constant (not to be confused with ε a similar integration

constant in the Gibbons-Hawking warp factor V ) and h(x) is any harmonic function on

MGH. Taking h(x) to be invariant under ∂τ we have

h(x) =
1

m

∑
α

qα
|x− xα|

(3.13)

corresponding to mobile neutral five-brane sources inserted at xα.

In appendix A we show how the two center solution is related to the Eguchi-Hanson

solution that was discussed in particular in [3].

3.1 Five-brane and magnetic charges

At infinity we can compute the five-brane charge using (2.2b) and (3.12). We have

H(3) = (dτ + ω) ∧ ∗3dH (3.14)

and so4

dH = − α′

4mkr2

 k∑
i,j=1

qi · qj

 dr − 1

m

∑
α

qα
r2

+ . . . (3.15a)

H(3) =

− α′

4mk

k∑
i,j=1

qi · qj −
1

m

∑
α

qα

 (dτ + ω) ∧ Ω2 + . . . (3.15b)

and the Maxwell five-brane charge is

QM =
1

4π2α′

∫
S3/Zk

H(3) = − 2

k2

k∑
i,j=1

qi · qj −
∑
α

8qα
k
. (3.16)

One can also define a Page charge, which is quantized, as:

QP =
1

4π2α′

∫
S3/Zk

(
H(3) −A ∧ F

)
(3.17)

= −
∑
α

8qα
k
∈ Z .

3we have chosen to work with Hermitian gauge fields, normalized as Tr TαTβ = 2δαβ .
4The volume form of a three-sphere is

ds2S3 =
1

4

[
1

4m2
(dτ + ω)2 + dΩ2

2

]
2π2 =

∫
vol(S3) =

1

8

∫
1

2m
(dτ + ω) ∧ Ω2 .
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Magnetic charges. We take a basis of two cycles to be ∆i where the poles of the ∆i are

at xi and xi+1. Then the matrix of magnetic charges associated with the Abelian gauge

bundle are:

qi,j =
1

2π

∫
∆j

Fi =
qi · T
8πm

(∫
dτ

)∫ xj+1

xj

d

[
Vi
V

]
= qi · T [δj+1,i − δj,i] . (3.18)

3.2 Partial blow-down limits and fivebranes

The function V (x) has k-poles, now suppose that k′ of these poles are co-incident, which

correspond to a partial blow-down limit of the ALE or ALF space. In the present situation

some of the Abelian instantons (3.7) become point-like as the corresponding two-cycles

shrink and we expect heterotic five-brane to appear. We now check that in the region

around such a pole we obtain the near horizon of five-brane solution of Callan, Harvey and

Strominger [19, 20] where the three-sphere is orbifolded by Zk′ .
For simplicity we set xj = 0 for j = 1, . . . k′, and in the neighborhood of this pole the

functions H and V behaves like

H
r→0+' 1

r2

α′

2k′m
Q5 , V

r→0+' 4mk′

r2
(3.19)

hence the solution approaches

ds2
10

r→0+' ds2
1,5 + 2α′Q5

[
dr2

r2
+
r2

4

(
σ2

1 + σ2
3 +

( σ3

2k′m

)2
)]

(3.20a)

H(3)
r→0+' α′Q5

2
σ1 ∧ σ2 ∧

σ3

2k′m
(3.20b)

where the five-brane charge is given by:

Q5 =
k′∑

i,j=1

qi · qj . (3.21)

3.3 Double scaling limit

For the two-center Eguchi-Hanson solution (k = 2) there exists an interesting double scaling

limit [3], defined as:

gs → 0 , λ :=
gs
√
α′

a
fixed and finite , (3.22)

where a is the distance between the two centers. This limit decouples the asymptotically

locally Euclidian region, and λ becomes the effective coupling constant of the interacting

string theory.

In the spherical coordinates reviewed in appendix A the metric of the solution becomes

ds2 = ds1,5 +
α′Q5

2

[
dr2

r2(1− a4

r2
)

+
1

4

(
1− a4

r2

)
σ2

3 + dΩ2
2

]
(3.23)

– 6 –
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and the corresponding heterotic string theory admits an exactly solvable worldsheet CFT.

This space has an asymptotic linear dilaton hence admits a holographic description as a

little string theory [21] but, unlike the CHS background, is given by a smooth solution of

heterotic supergravity.

A double scaling limit can be described in principle for arbitrary k. Let us define

xi = ayi where the coordinates yi are dimension-less and a is a common scale factor. The

double-scaling limit can be then described exactly as before by eq. (3.22); in practice the

double scaling limit amounts to setting δ → 0 in (3.12).

It would be interesting to check if one could derive a worldsheet CFT for the double

scaled solutions when k > 2, in particular whenever the centers are arranged following a

simple pattern, for instance a homogeneous distribution on a circle.

4 Atiyah-Hitchin

The Atiyah-Hitchin space MAH is a four-dimensional smooth manifold with an explicit

Hyper-Kähler metric which at long distances approximates Taub-NUT with a negative

mass parameter. The original work is [2, 22] and an interesting simplification was given

in [23]. Our notation will follow a more recent work [10] where MAH was used as a potential

Euclidean Hyper-Kähler base manifold for five dimensional supergravity solutions. In [10]

regularity required the absence of closed time-like curves and this effectively excluded

physical solutions whereas for our computations the non-trivial regularity conditions are

essentially just positivity of the warp factor and we will find regular solutions.

The metric is

ds2
AH =

1

4
a2

1a
2
2a

2
3dη

2 +
1

4
a2

1σ
2
1 +

1

4
a2

2σ
2
2 +

1

4
a2

3σ
2
3 (4.1)

with the SU(2) invariant one-forms satifsying dσi = 1
2εijkσj ∧ σk given by

σ1 = cosψdθ + sinψ sin θdφ

σ2 = sinψdθ − cosψ sin θdφ

σ3 = dψ + cos θdφ

and the ai are subject to the following system of ODE’s:

ȧ1

a1
=

1

2

[
(a2 − a3)2 − a2

1

]
(4.2)

and cyclic permutations (dot is the derivative with respect to η). One defines new functions

quadratic in the ai:

w1 = a2a3 , w2 = a1a3 , w3 = a1a2 (4.3)

and then the system of ODE’s is then

(w1 + w2)′ = −2
w1w2

u2
(4.4)

(w2 + w3)′ = −2
w2w3

u2
(4.5)

(w3 + w1)′ = −2
w3w1

u2
(4.6)

– 7 –
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(prime is derivative with respect to θ) with solution

w1 = −uu′ − 1

2
u2 csc θ (4.7)

w2 = −uu′ + 1

2
u2 cot θ (4.8)

w3 = −uu′ + 1

2
u2 csc θ , (4.9)

where

u =
1

π

√
sin θK

(
sin2 θ

2

)
(4.10)

and η is given in terms of θ through

u2dη = dθ , η = −
∫ π

θ

dθ

u2
. (4.11)

For our gauge field ansatz we need an anti-self dual two form on MAH , this is then

guaranteed to solve Hermitian Yang-Mills without the need to construct the explicit Hyper-

Kähler structure.5 In a classic paper on dualities [8], Sen gave an integral expression for

exactly such an anti-self dual, harmonic two-form on MAH but the appearance of this

two-form dates back to the works [25–27]. Interestingly, from the work [10] we have the

closed-form expression of this two-form

Ω = h
(
a2

1dr ∧ σ1 − σ2 ∧ σ3

)
, (4.12)

h =
u2

w1 sin θ
2

. (4.13)

In [10] they consider self-dual forms but with a small modification of the frames this is

made anti-self dual. More precisely our choice of frames is

e0 =
a1a2a3

2
dη , ei =

ai
2
σi , (4.14)

whereas in [10] an additional minus sign in e0 was used. So we have locally

Ω = −d(hσ1) . (4.15)

In fact one can construct a triplet of anti-self dual forms Ω− and a triplet of self-dual forms

Ω+ in a similar manner:

Ωi− = −d(hiσi) , Ωi+ = d(h−1
i σi) (4.16)

with

h1 =
u2

w1 sin θ
2

, h2 =
u2

w2
, h3 =

u2

w3 cos θ2
, (4.17)

however only Ω1− = Ω is normalizable. Given that there is a single non-trivial two-cycle

in MAH one might be pleased to know that this normalizable form is dual to this two-

cycle but there was no guarantee that the dual two-form would have an SU(2) invariant

representative.

5One could in principle write down the Hyper-Kähler structure using the results of [24] or by computing

the Killing spinors.
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4.1 Bianchi identity

We take our gauge field to be

F = Ω q · H (4.18)

whereH ∈ U(1)16 is in the Cartan subalgebra of E8×E8 or SO(32) and q the corresponding

charge vector. The three-form flux is

H(3) = −H
′

4
σ1 ∧ σ2 ∧ σ3

(4.19)

and the Bianchi identity is

d ∗4 dH = −2q2Ω ∧ Ω , (4.20)

where q2 = q · q.

Quite remarkably, one can integrate this Poisson equation explicitly

H = h0 + h1η +
2q2

w1
(4.21)

where {h0, h1} are constant coefficients of the s-wave harmonic functions on MAH . The

last term is manifestly negative definite for the whole region 0 ≤ θ ≤ π but we will see

that one can compensate for this by a choice of harmonic function and obtain a positive

definite warpfactor.

4.2 Regularity

The regularity of MAH has been previously studied in detail, we repeat it here to help

determine regularity of our warp factor.

In the region θ ∼ π, we define a radial co-ordinate r = − log cos θ2 and using

K = r + log(4) + . . . (4.22)

u =

√
2

π
re−r/2 + . . . (4.23)

w1 = − r

π2
(4.24)

we find that the metric is

ds2
AH = dr2 + r2(σ2

1 + σ2
2) + σ2

3 + . . . (4.25)

and

1

w1
= −π

2

r
+O(r−2) (4.26)

η = −π
2

r
+
π log(4)

r2
+O(r−3) (4.27)

so that the asymptotic expansion of the warp factor is

H = h0 −
h1 + 2q2

r
+ . . . (4.28)

– 9 –
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In the region θ ∼ 0, we define a new radial variable ρ = θ2

64 and the metric is

ds2
AH = dρ2 + 4ρ2σ2

1 +
1

16
(σ2

2 + σ2
3) + . . . (4.29)

with

1

w1
= −4 + 32ρ2 + . . . (4.30)

η = log ρ2 + . . . (4.31)

so that the IR expansion of the warp factor is

H = (h0 − 8q2) + 64q2ρ2 + . . . (4.32)

From these expansions we see that with

h0 > 8q2 , h1 = 0 (4.33)

we have a positive warp factor which is regular everywhere. We define a rescaled radial

coordinate near θ ∼ π to be r̂ = h
1/2
0 r and ρ̂ = h

1/2
0 ρ near θ = 0 so that

θ ∼ π : ds10 = ds2
1,5 + dr̂2 + r̂2(σ2

1 + σ2
2) + h0σ

2
3 + . . . (4.34)

θ ∼ 0 : ds2
10 = ds2

1,5 + dρ̂2 + 4ρ̂2σ2
1 +

h0

16
(σ2

2 + σ2
3) + . . . (4.35)

and see that the cost of a positive warp factor is that both the circle at infinity and the

two-sphere at the bolt are large.

It is also important that the TrR− ∧ R− term in the Bianchi identity remains small

compared to TrF∧F . From explicit computations we find that the only possible divergences

in TrR− ∧R− appear through the warp factor as6 {H ′/H ,H ′′/H} which by tuning h0 can

be made sufficiently small with respect to TrF ∧ F . This confirms that our large charge

approximation remains valid and these warped Atiyah-Hitchin solutions are good Heterotic

backgrounds at leading order.

Alternatively we can obtain a positive warp factor through7

h0 = 1, h1 < −2q2 . (4.36)

This corresponds to smearing neutral five-branes on the S2 at θ = 0. Note that due to this

smearing, at the IR (θ = 0) the harmonic function parameterized by h1 scales like a source

in R2. In the UV (θ = π), due to the finite circle, the harmonic function scales like 1
r which

is that of a source in R3 not R4. The solution is of course singular for the usual reason that

smeared branes are singular but this is of a good type and is resolved in string theory.

6An explicit computation using the Chern connection can be found in [14] and agrees with our conclu-

sion here.
7The value of h0 could be chosen to be another non-zero number O(q0).
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4.3 Five-brane charge

Computing the five-brane charge requires understanding some global features of MAH .

From (4.25) and (4.29) we see that there are two inequivalent, emergent U(1) symmetries

in the UV and IR, which are broken in the bulk. From [23] we know that a regular manifold

requires the periodicities to be

0 ≤ ψ ≤ 2π, 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π (4.37)

as well as that the free Z2 symmetry

I1 : θ → π − θ , φ→ π + φ , ψ → −ψ (4.38)

is enforced. The horizontal space in the UV is thus RP3/I1.

Using (4.28) we have

H(3) =
[
(h1 + 2q2) + . . .

]
∧ σ1 ∧ σ2 ∧ σ3 (4.39)

compute the Maxwell five-brane charge to be

QM =
1

4πα′

∫
RP3/I1

H(3) = h1 + 2q2 . (4.40)

This is not required to be quantized. The Page charge is defined as in (3.17) and we find

QP = h1 (4.41)

which must be integral.

4.4 Gauge field charge

The gauge field charge is computed using (4.12) and (4.18) and the IR expansion

h = −2 + . . . (4.42)

Under the symmetry (4.38), the bolt remains a two sphere8 whose volume is 4π. We find

1

2π

∫
S2

F = 2q · H 1

2π

∫
S2

σ2 ∧ σ3

= 4q · H ∈ Z . (4.43)

5 Fundamental string sources and AdS3 solutions

Heterotic backgrounds with an R1,1 factor allow for the inclusion of F1-strings along R1,1 in

addition to the magnetic five-branes. The electric source of three form flux induces a non-

trivial warp factor and allows for AdS3 solutions. To include these fundamental strings,

8As explained in [23] there is an additional, optional Z2 symmetry usually denoted I3 which would

convert the bolt into an RP3.
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we first consider internal eight-manifolds X8 and then specialize the internal manifold to

be a product of Hyper-Kähler manifolds.

The metric and three form are

ds2
10 = e2Ads2

1,1 + ds2
8 (5.1)

H(3) = vol2 ∧ h(1) + h(3) (5.2)

where vol2 = e2Adx0∧dx1. Then we find that the BPS equations are a slight embellishment

of those found in [28]:

ΨxdΨ = d(φ−A) (5.3)

H(3) = h(1) ∧ vol2 + h(3) (5.4)

h(1) = −2dA (5.5)

h(3) = ∗8e2(φ−A)d
(
e2(A−φ)Ψ

)
(5.6)

where Ψ is the Spin(8) structure on M8:9

Ψ = e1234 + e1256 + e1278 + e3456 + e3478 + e5678

+e1357 − e1368 − e1458 − e1467 − e2358 − e2367 − e2457 + e2468 . (5.8)

We must supplement the BPS equations with the Bianchi identity (2.3) and then due to

the non-trivial warp-factor A, one must also impose the three form flux equation of motion:

0 = d
(
e−2φ ∗10 H(3)

)
⇒

{
0 = d

(
e−2φ ∗8 h(1)

)
0 = d

(
e2(A−φ) ∗8 h(3)

) . (5.9)

5.1 Product of Hyper-Kähler manifolds

Our solutions with string and five-brane charges have a natural splitting of the internal

eight manifold into a product of Hyper-Kähler manifolds10

ds2
10 = e2Ads2

R1,1 + ds2
M1

+ e2Bds2
M2

(5.10)

where Mi are both HyperKahler four manifolds, whose triplet of Kähler forms we denote

{Ji,ReΩi, ImΩi} . (5.11)

The functions A,B depend only on the co-ordinates yi of M2. The Spin(8) structure is

given by

Ψ =
1

2

(
J1 ∧ J1 + 2e2BJ1 ∧ J2 + e4BJ2 ∧ J2 + e2B(Ω1 ∧ Ω2 + Ω1 ∧ Ω2)

)
. (5.12)

9We note that with canonical holomorphic frames Ei = e2i−1 + ie2i such that ds28 = Ei ⊗ Ei the SU(4)

structure is J = 1
2i
Ei ∧ Ei , Ω = E1 ∧ E2 ∧ E3 ∧ E4 and

Ψ =
1

2

(
J ∧ J + Ω + Ω

)
. (5.7)

10One might consider an additional warp factor in front of ds2M1
however from [29, 30] we know that this

must be constant.
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We find the BPS conditions, Bianchi identity and equations of motion give11

φ = A+B (5.13)

h(3) = − ∗M2 d e
2B (5.14)

d ∗M2 d e
2B = −1

2
α′TrF ∧ F (5.15)

0 = d ∗M2 d e
−2A (5.16)

0 = J2xF (5.17)

so we see that the only additional pieces of data from the equations in section 2 is that

e2A is harmonic on M2 and the dilaton receives a shift proportional to A. For the Atiyah-

Hitchin manifold we can smear F1-strings on the S2 bolt in much the same way as we have

described for smearing 5-branes on the bolt around (4.36), that is by

e2A ∼ η . (5.18)

We will now be somewhat more explicit for the Gibbons-Hawking spaces.

5.2 AdS3 from Gibbons-Hawking

When M2 is a Gibbons-Hawking space, the U(1) invariant harmonic functions are

e−2A = 1 +
∑
r

q̂r
|x− xr|

(5.19)

corresponding to strings placed along R1,1 and at fixed points of ∂τ on M2.

If in addition we choose to place these strings at poles of V we recover AdS3 geometries

near such a pole. We put k′ poles of V as well as the strings at xr = xi = 0 then in the

vicinity of xi we have

e2A =
r

q̂0
, . . . e2B =

1

r

α′

4m
Q5 + . . . , V =

2mk′

r
+ . . . (5.20)

(5.21)

so that

ds2
10 =

r

q̂0
ds2

1,1 + +ds2
M1

+ 2α′k′2Q5

[
1

4

dr2

r2
+ ds2

S3/Zk

]
(5.22)

= 2α′k′2Q5

[
ds2
AdS3

+ ds2
S3/Zk

]
+ ds2

M1
(5.23)

e2φ =
α′Q5

4mq̂0
(5.24)

where r = ρ2 . The F1-charge is given as usual by

Q1 =
4mq̂0vol(M1)

α′3
. (5.25)

The gauge field vanishes in this limit and the background is sourced by three-form flux.

11Note that is E = eBẼ is an 8d frame ∗8E ∧ J1 ∧ J1 = 2 ∗8 E ∧ volM1 = 2e3B ∗M2 Ẽ = 2e2B ∗M2 E.
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6 Conclusions

The key aspect of our solutions with Abelian gauge bundles is that we have taken a large

charge limit and consistently suppressed the TrR∧R term in the Bianchi identity, which is

subdominant at leading order in the expansion in 1
q2

. We have shown how this large charge

limit can lead to exact supersymmetric flux backgrounds. and it is particularly interesting

the Atiyah-Hitchin manifold can provide a regular background. This configuration requires

some ingenuity to counteract the negative mass and result in a background of the correct

signature. This Atiyah-Hitchin based solution is distinctly different from those based on

Gibbons-Hawking; while the latter can be viewed as marginal deformations of the orbifold

of the CHS solutions the finite two-cycle in the Atiyah-Hitchin manifold cannot be blown

down. As such we do not have a worldsheet theory from which we can imagine obtaining

this as the background geometry.

In these backgrounds, the gauge fields are completely solved for by using the Her-

mitian Yang-Mills equations which then provide a source for the three-form flux. It is

conceivable that non-Abelian bundles could be constructed such that Tr F ∧ F dominates

TrR ∧R everywhere.12 Since the Kronheimer-Nakajima construction [33] gives a solution

of all instantons on ALE Gibbons-Hawking spaces, one could possibly even construct such

instantons, however most instantons will provide a source the Bianchi identity whose solu-

tion is a general function of four variables and thus unsolvable. A particularly neat class

of instantons is based on the ’t Hooft ansatz [34]:

A0 =
1

2
~G · ~σ , ~A =

1

2

[
~ω( ~G · ~σ)− V ( ~G× ~σ)

]
~G = −V −1~∇ log f (6.1)

with f harmonic on R3. For finite action, the centers of f are constrained to lie at the

poles of V . These instantons can have large TrF ∧ F in the limit of large number of poles

of f but TrR ∧R will not be suppressed.

There are numerous directions for progress on the worldsheet description of these

backgrounds. The elliptic genus for type II on ALE spaces has been computed recently [35]

based on general developments in this field [36] and we expect to be able to provide a similar

solution for these Heterotic models or the type II flux backgrounds of section 2.1. It would

also be interesting to provide an exactly solvable worldsheet model of the near-horizon

region of the multi-center Gibbons-Hawking backgrounds, generalizing the gauged WZW

model of the two-centered solution.
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A Eguchi-Hanson

When k = 2 and ε = 0, the explicit co-ordinate transformation is known [37] from the

Gibbons-Hawking space to the Eguchi-Hanson space [38]. In Cartesian co-ordinates the

two center ALE Gibbons-Hawking space has

ω =

[
z − a2/8√

x2 + y2 + (z − a2/8)2
+

z + a2/8√
x2 + y2 + (z + a2/8)2

]
d
(

tan−1 y

x

)
(A.1)

V =
1√

x2 + y2 + (z − a2/8)2
+

1√
x2 + y2 + (z + a2/8)2

. (A.2)

Following [37] we have (a ≤ r):

x =
a2

8

√
r4

a4
− 1 sin θ cosψ

y =
a2

8

√
r4

a4
− 1 sin θ sinψ

z =
1

8
r2 cos θ

so that

V =
16

a2

r2

a2

r4

a4
− cos2 θ

,

ω =
2 cos θ( r

2

a2
− 1)

r2

a2
− cos θ

dψ . (A.3)

As an example, we write explicitly the solution for Heterotic five-branes on Eguchi-

Hanson with additional F1-strings.13

ds2
M2

=
dr2

f2
+
r2

4

[
σ2

1 + σ2
2 + f2σ2

3

]
(A.4)

f2 = 1− a4

r4
(A.5)

h(3) = 2f2r3(e2B)′σ1 ∧ σ2 ∧ σ3

F = d

(
a2

r2
η

)
(A.6)

e2B = 1 +
8α′q2

r2
+
Q5

8a2
log

[
r2/a2 − 1

r2/a2 + 1

]
(A.7)

13One can take M1 to be T 4 or K3 with the Ricci-flat metric.
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e−2A = 1 +
Q1

a2
log

[
r2/a2 − 1

r2/a2 + 1

]
(A.8)

e2Φ = e2(A+B) (A.9)

In addition to the Heterotic five-branes which resolve the singularity, there are Q1

mobile F1-strings and Q5 NS5-branes smeared on the blown-up S2. Due the smearing of

the strings, the near horizon limit has a log-singularity at r ∼ a in the warp factor e2A

and thus there is no enhancement to AdS3. In the blow-down limit a → 0 where the

Eguchi-Hanson space becomes C2/Z2, the gauge field vanishes and we get the Z2 orbifold

of the usual F1-NS5-solution, the near-horizon limit is AdS3 × S3/Z2 ×M1.
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