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Patient biopsies reveal that most of solid tumors display a high diversity of cancer cell subtypes1. �is intratumor 
heterogeneity (ITH) early emerges during carcinogenesis2 and is correlated with cancer progression3. It predicts 
both cancer aggressiveness2, 4, 5 and post-therapeutic recurrence risk6, 7. Two main mechanisms have emerged to 
explain the coexistence of numerous phenotypes within the same tumor8, 9. On the one hand, cell phenotypic 
plasticity, especially the existence of cancer stem cells, allows cells with a same genotype (i.e. a clone) to display 
di�erent phenotypes, due to epigenetic di�erences or di�erences in cell signaling pathways10, 11. On the other 
hand, clonal evolution generates a range of genotypes across time, due to the accumulation of mutations in cancer 
cells’ genomes12.

Clonal diversity (CD) is the genetic component of phenotypic diversity displayed by tumors. It is yielded by 
the branching clonal evolution in progress in every tumor: i.e., the accumulation of mutations yields a range of 
clones that coexist in similar frequencies within the same micro-environment (ME)13–15. A part of these muta-
tions can impact growth rates, and eventually the evolution of frequencies across time16, 17. Among them, ben-
e�cial mutations (known as drivers) usually speed up the growth kinetics of the carrier clones18, which may 
eventually lower CD19. If drivers are not rare in tumors and should negatively impact CD, some of them can 
nevertheless promote their carriers’ growth without increasing in frequency20, 21. Indeed, if mutations can impact 
their carriers’ growth through cell-autonomous e�ects (CA e�ects), they can also impact other noncarrier clones’ 
growth, through non-cell-autonomous e�ects (NCA e�ects22, 23).

�e signi�cance of NCA e�ects for CD is increasingly addressed in cancer research23–25. NCA e�ects of muta-
tions were found to directly impact the growth of noncarrier clones by many di�erent mechanisms (Supporting 
information, Table�S1)23. �is body of NCA e�ects is already taken into account in the design of patient-derived 
models of tumors to yield similar ITH in vitro as in vivo22, but in silico models of CD evolution have very poorly 
addressed the impacts of NCA e�ects so far. Most of models studying ITH implicitly exclude NCA e�ects17, 19, 26, 27,  
while models involving NCA effects in tumor evolution do not measure the impacts on ITH28, 29. Though, 
in a data-fitted model, Marusyk et al. predicted a higher CD on the long run when a single clone could 
non-cell-autonomously promote the exponential growth of a limited number of other clones21. But how numer-
ous di�erent NCA e�ects impact CD on the long run in the tumor remains unclear.
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In the absence of NCA e�ects, only neutral and bene�cial mutations persist. �e latter accelerate the emer-
gence of new clones through divisions, which consequently supports CD on the long run. However, when clones 
carry mutations with NCA e�ects, they could also shape the growth kinetics of noncarrier clones. On the one 
hand, mutations with NCA e�ects could balance the growth kinetics of the diversity of preexisting clones in the 
tumor: bene�cial mutations with NCA e�ects could allow slow growing clones (potentially carrying detrimental 
mutations) to persist, and detrimental mutations with NCA e�ects could mitigate the outgrowth of fast growing 
clones. �is would allow the coexistence of clones at similar frequencies, and thus support CD. On the other 
hand, mutations with NCA e�ects could exaggerate the di�erences in growth kinetics already existing between 
clones: detrimental mutations with NCA e�ects could also limit the probability for emerging clones to reach high 
frequencies, and bene�cial mutations with NCA e�ects could accelerate the growth kinetics of already fast grow-
ing clones. Without necessarily limitating clonal richness, this would exacerbate the di�erences between clonal 
frequencies and limit equitability, thus reducing CD30. �e possible outcomes of CD when tumor growth is driven 
by NCA e�ects, are therefore challenging to forecast.

In order to test the impact of NCA e�ects on CD evolution, we follow the branching of clones interacting with 
each other through the NCA e�ects of their mutations. Since mathematical models of cell growth have tractabil-
ity issues at simultaneously considering large numbers of clones, we choose the framework of individual-based 
models31. In our model, cells divide and die according to division and death rates determined by CA and NCA 
e�ects. Across divisions, cells can mutate and therefore produce new clones. In order to stay apart from spatial 
issues, we assume that the di�usion of NCA e�ects is instantaneous from one cell to another and does not depend 
on the density of cells in the tumor. �is model allows quantifying CD (assumed to be represented by Simpson 
index) across time and divisions, depending on the frequency of mutations with NCA e�ects. �us, in order to 
disentangle the link between NCA-driven growth kinetics and CD, we simulated tumors growing either during a 
�xed number of generations, or until they reached a �xed size, whereas CA and NCA e�ects had various impacts 
on clonal growth kinetics.

���‡�–�Š�‘�†�•
The goal of our individual-based model is to implement the stochastic evolution of interacting, 
clonally-reproducing cells, allowing us to monitor CD for a range of conditions in mutations, tumor age and 
tumor size. �e model is described in Text S1 and Fig.�1, and the main algorithm is detailed in Text S2.

���‘�†�‡�Ž���„�‡�Š�ƒ�˜�‹�‘�”�ä We start each simulation with a self-replicating population of N0 noncancerous cells. �ese 
cells divided and died at the exact same basal rate �b d0 0, and thus their population size only experienced sto-
chastic �uctuations, corresponding to physiological conditions of self-renewing stem cells in tissues. Across divi-
sions, each cell had a probability � to mutate and to produce a new clone, which we considered to be cancerous 
(see Fig.�1A). At each timestep, probabilities of division and death events were computed for each cell, before to 
be eventually applied, so that these events could be implemented in any order without in�uencing their respective 
outcomes:
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for i being the identity of the clone. According to these equations, every new clone grew exponentially according 
to basal division and death rates, but mutations could also confer them growth advantages or losses that subse-
quently raised or lowered their population sizes. �ese mutation e�ects on division and death rates were drawn 
in a �tness landscape, and could be either CA (only a�ecting the clone carrying the mutation, rii for an impact of 
clone i on its own division and death rates) or NCA (possibly a�ecting other clones, rij for an impact of clone i on 
clone j’s division and death rates, see Fig.�1B–C). �e values of mutation e�ects could be either positive or nega-
tive, and were add up to basal division and death rates according to their sign: positive mutations were add up to 
division rates, i.e., bji �  rji if rji �  0; and negative ones to death rates, i.e., dji �  rji if rji �  0. CA and NCA e�ects were 
considered as frequency- and density-independent, i.e., any clone could non-cell-autonomously impact others, 
provided it was composed of at least one cell. �e values of mutation e�ects could be either positive or negative: 
e�ective division rates were then computed by adding all the positive mutation e�ects to the basal division rate, 
and e�ective death rates by adding all the negative mutation e�ects to the basal death rate. In order to keep an 
exponential growth of cancer cells32, division and death rates could not exceed maximal rates bmax �  dmax, and 
mutation e�ects could not produce �tness variations higher than rmax (Supporting information, Table�S2 for val-
ues). Besides, cancerous cells were as likely as noncancerous cells to mutate and to produce new clones.

Most mutations do not produce large �tness variations during cancer33, even though most cancers have their 
genomes highly instable34, 35. Mutated traits were thus drawn in normal distributions centered on the resident 
traits, with standard deviation � (see Fig.�1B). �is ensured that new mutants were phenotypically close from 
the clones that they derived from, in order to let mutations accumulate in clones. Among mutation events, we 
enforced di�erent frequencies of mutations with NCA e�ects, ranging from 0 to 50% of mutations. Besides, in 
order to distinguish the impacts of NCA e�ects on growth kinetics from those of CA e�ects, we performed sim-
ulations for two distinct �tness landscapes (see Fig.�1D). In the condition referred to as tight �tness landscape, the 
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Figure 1. Individual-based model of clonal evolution with interactions. (A) Model architecture: division and 
death rates depend both on basal rates (b0 and d0) and on the e�ects of mutations on phenotype. Mutations 
a�ect clonal growth kinetics through a matrix of interactions, where bji and dji are the e�ects of clone j on 
clone i’s growth. (B) Evolution of the matrix of interactions: the matrix of interactions encompasses both 
cell-autonomous e�ects (bii and dii) and non-cell-autonomous e�ects (b�,i and d�,i). When new clones arise by 
mutation, the matrix is appended with new interaction coe�cients r�,� which are drawn in normal distributions 
centered on interaction coe�cients of the resident clone. (C) Probabilities of division and death: interactions 
coe�cients are distinguished on whether they bene�t or harm the recipient clone. �ey are then added to 
basal division and death rates to produce e�ective division and death rates. �ese e�ective rates are then used 
as parameters for exponential distribution in which division and death events are drawn. (D) Range of �tness 
e�ects: in a tight �tness landscape, the maxima of division and death rates are set to the range of mutation 
e�ects distribution, i.e., cell-autonomous and non-cell-autonomous e�ects similarly impact the division and 
death rates. In a wide �tness landscape, the maxima of division and death rates are higher than the maxima of 
mutation e�ects distribution, i.e., non-cell-autonomous e�ects can have distinct impacts on clonal growth rates 
from cell-autonomous e�ects’.
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maxima of division and death rates were �xed to rmax. In the condition referred to as wide �tness landscape, the 
maxima of division and death rates were �xed to bmax �  dmax.

We considered that the whole cell population formed a tumor as soon as the whole cell population (as a sum 
of all clone sizes) has grown enough to consider that cancerous clones are driven to cancer outgrowth (tumor 
formation is assumed to have been reached at �� �N Nt 0). We then recorded the emergence of new clones and 
the size of every clone at each generation. In order to determine the impact of NCA e�ects on CD, simulations 
could stop when they reached a �nal condition of �xed time or �xed size: (i) either when tumor evolution had 
been recorded during a given number of generations tmax �  300 generations; (ii) or when tumor had exceeded a 
given size Nmax � 3.10 5 cells. �ese two conditions allowed to track the evolution of CD during the very �rst steps 
of cancer progression, when diversity emerges36.

�is framework is based on parameters which have rarely been addressed in empirical studies, and mostly in 
theoretical studies. We thus performed simulations on parameter values used in similar models (Supporting 
information, Table�S2). Even though these values were not all biologically motivated, they allowed us to compare 
our results with other studies addressing NCA e�ects and CD. In order to test the sensitivity of CD and growth 
kinetics to other parameters, the parameter space was explored through a method of Latin Hypercube Sampling 
(LHS37) as implemented in function randomLHS of the statistical so�ware R38. LHS was performed on uniform 
distributions (rather than normal distributions, in order to alleviate the uncertainty on parameter values) 
bounded in 20% variations of the values displayed in Table�S2 (see “80% Value” and “120% Value”). In order to 
avoid outliers among simulations, we did not record simulations for which tumor size did not reach � � Nt 0 cells 
within 10000 generations, or N0 cells within 1500 generations a�er tumor formation, nor those which dropped 
below N0 cells (from 1 to 10% of simulations, depending of the condition tested).

���ƒ�–�ƒ���ƒ�•�ƒ�Ž�›�•�‹�•�ä For each condition, we performed 500 simulations reaching the expected �nal status. At the 
end of each simulation, we quanti�ed clonal diversity with Simpson index. �is measure, which was previously 
used in other models addressing of tumor heterogeneity19, 26, accounts for both clonal richness and equitability, 
while being bounded. For pi being the frequency of clone i in the tumor, Simpson index was computed as:

�� �H p1
(3)i

i
2

We obtained similar patterns when measuring clonal diversity with Shannon index (Supporting information, 
Fig.�S1).

We also recorded the number of generations (tumor age) necessary to reach Nmax cells and the tumor size a�er 
tmax simulations for simulations during a given time. In order to have a common measure of growth kinetics for 
both types of simulations, mean tumor growth rate was then computed for each simulation as:

�Tumor growth rate
Tumor size
Tumor age (4)

�ese measures were not normally distributed (assessed by a Shapiro-Wilk test), and did not follow homosce-
dasticity (assessed by a Brown-Forsythe test). Instead of an ANOVA, we thus performed linear regressions on 
both Simpson index and tumor growth rate as functions of the frequency of mutations with NCA e�ects. We kept 
models with maximal R2.

In order to discriminate the impacts of NCA e�ects relatively to other parameters, we performed a sensitivity 
analysis for Simpson index and tumor growth rate. We screened for both linear and nonlinear relationships with 
these measures, so that rank-transformation of the data was necessary. We thus computed partial rank correlation 
coe�cients (PRCC37) depending on minimal tumor size � � Nt 0, the basal division rate b0, the variance of muta-
tion e�ects � , the range of mutation e�ects distribution r b/max 0, the mutation rate �, and the frequency of muta-
tions with NCA e�ects. PRCC were computed using a variant of function pcc (modi�ed to deliver p-values) of the 
statistical so�ware R (package sensitivity39).

To assess the e�ect of growth kinetics on CD regardless of NCA e�ects, we computed PRCC of Simpson index 
depending on minimal tumor size � � Nt 0, the basal division rate b0, the variance of mutation e�ects �, the range of 
mutation e�ects distribution r b/max 0, the mutation rate �, and tumor growth rate. PRCC residuals of Simpson index 
and tumor growth rate were extracted to investigate for potential correlations with Pearson correlation coe�cient.

Results
���•�’�ƒ�…�–�•���‘�ˆ�����������‡�¡�‡�…�–�•���‘�•���…�Ž�‘�•�ƒ�Ž���†�‹�˜�‡�”�•�‹�–�›�ä We simulated 2500 tumors during 300 cell generations, in both 
a tight and a wide �tness landscape. In a tight �tness landscape, Simpson index decreases when the frequency of muta-
tions with NCA effects increases (Fig.�2A, linear regression: � � � � � �Simpson index flog( ) 4 49 0 17 NCA

, 
t �  � 25.62, p �  2.2.10� 16, R2 �  0.208). �e sensitivity analysis supports this negative signi�cant association with the 
frequency of mutations with NCA e�ects (PRCC, r �  � 0.431, p �  2.2.10� 16), as well as with the range of mutation 
e�ects (ranging from 1.6 b0 �  1.6 d0 to 2.4 b0 �  2.4 d0, r �  � 0.059, p �  3.4.10� 3) and with minimal tumor size (ranging 
from 2.4 N0 to 3.6 N0, r �  � 0.051, p �  1.1.10� 2, Supporting information, Table�S3). For tumors simulated in a wide 
�tness landscape, we observed the same relationship: Simpson index is negatively associated with the frequency of 
mutations with NCA e�ects (Fig.�2B, linear regression: � � � � � �Simpson index f0 38 0 02 NCA

, t �  � 20.78, 
p �  2.2.10� 16, R2 �  0.147). Here again, the sensitivity analysis measured negative signi�cant associations of Simpson 
index with the frequency of mutations with NCA e�ects (PRCC, r �  � 0.372, p �  2.2.10� 16) as well as with the range of 
mutation e�ects (r �  � 0.041, p �  4.2.10� 2, Supporting information, Table�S3).

http://S2
http://S2
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We also simulated 2500 tumors until they reached 3.105 cells, in both �tness landscapes. In a tight �tness land-
scape, we also found a negative association of Simpson index with the frequency of mutations with NCA e�ects 
(Fig.�2C, linear regression: � � � � � �Simpson index flog( ) 5 33 0 22 NCA

, t �  � 23.69, p �  2.2.10� 16, R2 �  0.183). 
�e sensitivity analysis supports this relationship with the frequency of mutations with NCA e�ects (PRCC, 
r �  �0.388, p � 2.2.10�16 ), but also measured a positive signi�cant association with the range of mutation e�ects 
(r � 0.055, p � 6.0.10�3 , Supporting information, Table�S3). However, in a wide �tness landscape, Simpson index 
increases with the frequency of mutations with NCA e�ects between 0% and 12.5% of mutations with NCA 
e�ects (Fig.�2D, linear regression: � � � � �Simpson index f0 31 0 09 NCA

, t � 3.46, p � 5.7.10�4 , R2 � 0.011). Above 
12.5%, Simpson index does not signi�cantly vary with the frequency of mutations with NCA e�ects. �ough, the 
sensitivity analysis does not support this relationship, and measured a negative signi�cant association of Simpson 
index with the frequency of mutations with NCA e�ects (PRCC, r �  �0.057, p � 4.2.10�3 ). It also measured pos-
itive signi�cant associations with the range of mutation e�ects (r �  0.052, p � 8.7.10� 3), as well as the basal divi-
sion rate (ranging from 4.10� 3 to 6.10� 3, r �  0.043, p � 3.1.10� 2) and the mutation rate (ranging from 8.10� 5 to 
1.2.10�4 , r � 0.046, p � 2.1.10�2 , Supporting information, Table�S3).

���•�’�ƒ�…�–�•���‘�ˆ�����������‡�¡�‡�…�–�•���‘�•���–�—�•�‘�”���‰�”�‘�™�–�Š���•�‹�•�‡�–�‹�…�•�ä  We measured tumor growth rate as an index of 
tumor growth kinetics for the tumors simulated in a tight �tness landscape. For tumors simulated during the 

Figure 2. Impacts of NCA e�ects on tumor diversi�cation. 500 simulations were performed for each condition 
with the following parameters: N0 � 10000, � � � �� �b d [4 10 , 6 10 ]0 0

3 3 , tmax � 300, Nmax � 30 N0, 
� � �r b b[1 6 , 2 4 ]max 0 0 , bmax � d max � 5 r max, � � � � �� �[8 10 , 1 2 10 ]5 4 , � � � �[0 8, 1 2] and � � � �[2 4, 3 6]t . Simpson 

index is displayed in light blue, and linear regressions in red. (A) Simulations performed during 300 generations 
for a tight �tness landscape (linear regression, R2 � 0.208). (B) Simulations performed during 300 generations 
for a wide �tness landscape (linear regression, R2 � 0.147). (C) Simulations performed until the tumor reaches 
3.105 cells for a tight �tness landscape (linear regression, R2 � 0.183). (D) Simulations performed until the 
tumor reaches 3.105 cells for a wide �tness landscape (linear regression, R2 � 0.011).
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same amount of time in a tight �tness landscape, tumor growth rate is negatively associated with the frequency of 
mutations with NCA e�ects increases (Fig.�3A, linear regression: � � � � � �Tumor growth rate flog( ) 0 59 0 05 NCA

, 
t �  � 11.02, p �  2.2.10� 16, R2 �  0.046). �e sensitivity analysis supports this negative association with the fre-
quency of NCA e�ects (PRCC, r �  � 0.221, p �  2.2.10� 16), but tumor growth rate is also signi�cantly positively 
associated with minimal tumor size (r �  0.278, p �  2.2.10� 16), as well as with the basal division rate (r �  0.178, 
p �  2.2.10� 16) and the range of mutation distribution (r �  0.376, p � 2.2.10� 16, Supporting information, Table�S4). 
Conversely, in a wide �tness landscape, tumor growth rate is positively associated with the frequency of mutations 
with NCA effects (Fig.�3B, linear regression: � � � � �Tumor growth rate f11 88 1 60 NCA

, t �  7.41, 
p �  1.9.10� 13, R2 �  0.026). Above 37.5%, tumor growth rate does not signi�cantly vary with the frequency of 
mutations with NCA e�ects. �is positive association with the frequency of mutations with NCA e�ects is con-
�rmed by the sensitivity analysis (PRCC, r �  0.077, p �  1.1.10� 4). �e sensitivity analysis also measured signi�-
cant positive associations with minimal tumor size (r �  0.175, p �  2.2.10� 16), as well as with the basal division rate 
(r �  0.136, p � 7.4.10� 12), and the range of mutation distribution (r �  0.146, p � 2.3.10� 13, Supporting informa-
tion, Table�S4).

For tumors simulated until reaching the same size in a tight �tness landscape, tumor growth rate is nega‑ 
tively associated with the frequency of mutations with NCA effects (Fig.�3C, linear regression: 

Figure 3. Impacts of NCA e�ects on tumor progression. 500 simulations were performed for each condition 
with the following parameters: N0 � 10000, � � � �� �b d [4 10 , 6 10 ]0 0

3 3 , tmax � 300, Nmax �  30 N0, 
� � �r b b[1 6 , 2 4 ]max 0 0 , bmax �  dmax �  5 rmax, � � � � �� �[8 10 , 1 2 10 ]5 4 , � � � �[0 8, 1 2] and � � � �[2 4, 3 6]t . Tumor 

growth rate is displayed in light green, and linear regressions in red. Outliers of tumor growth rate distribution 
are not displayed. (A) Simulations performed during 300 generations for a tight �tness landscape (linear 
regression, R2 � 0.046). (B) Simulations performed during 300 generations for a wide �tness landscape (linear 
regression, R2 � 0.026). (C) Simulations performed until the tumor reaches 3.105 cells for a tight �tness 
landscape (linear regression, R2 � 0.109). (D) Simulations performed until the tumor reaches 3.105 cells for a 
wide �tness landscape (linear regression, R2 � 0.057).
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� � � � � �Tumor growth rate flog( ) 0 48 0 03 NCA
, t �  � 17.53, p �  2.2.10� 16, R2 �  0.109). �e sensitivity analysis 

supports this negative relationship with the frequency of NCA e�ects (PRCC, r �  � 0.453, p �  2.2.10� 16), and also meas-
ured signi�cantly positive associations with minimal tumor size (r �  0.134, p � 2.1.10� 11), the basal division rate 
(r �  0.184, p � 2.2.10� 16), and the range of mutation distribution (r �  0.416, p � 2.2.10� 16, Supporting information, 
Table�S4). In a wide �tness landscape, tumor growth rate increases with the frequency of mutations with NCA e�ects 
(Fig.�3D, linear regression: � � � � �Tumor growth rate f58542 47 55 NCA

, t �  12.31, p � 2.2.10� 16, R2 �  0.057). �is 
positive association with the frequency of mutations with NCA e�ects is con�rmed by the sensitivity analysis (PRCC, 
r �  0.195, p � 2.2.10� 16), which also measured signi�cant positive associations with minimal tumor size (r �  0.128, 
p �  1.5.10� 10), the basal division rate (r �  0.146, p � 2.3.10� 13), and the range of mutation distribution (r �  0.117, 
p �  4.0.10� 9, Supporting information, Table�S4).

We globally measured a signi�cant negative association between Simpson index and tumor growth rate when 
tumors were simulated in a wide �tness landscape, but no correlation for a tight �tness landscape (Supporting 
information, Table�S5 and Fig.�S2).

���‹�•�…�—�•�•�‹�‘�•
For a tight �tness landscape, i.e. when CA and NCA e�ects mix up to impact the division and death rates, frequent 
NCA e�ects are associated to lower CD (cf. Fig.�2A,C). For a wide �tness landscape, i.e. when NCA e�ects extend 
the range of potential impacts of mutations on clonal growth rates, the relationship between NCA e�ects and CD 
is the same only when tumors grow during a �xed number of generations (Fig.�2B). �is negative relationship is 
con�rmed by the sensitivity analysis, where the partial rank correlation between CD and the frequency of NCA 
e�ects is systematically negative (Supporting information, Table�S3). We could also measure the opposite rela-
tionship (i.e., when frequent NCA e�ects yield higher CD, Fig.�2D) for tumors growing until a �xed size, but only 
for low frequencies (0 to 12.5%) of mutations with NCA e�ects, and in contradiction with the sensitivity analysis 
(Table�S3). We suspected this latter positive relationship to depend on each tumor’s size: it was only observed 
when all the simulations (2500/2500) yielded tumors larger than 3.105 cells, while the negative relationship could 
be observed for smaller tumors (e.g., Fig.�2B: 407/2500 simulations yielded tumors larger than 3.105 cells). Yet, 
we still observed a negative relationship between NCA e�ects and CD when performing the same analysis on the 
sample of tumors larger than 3.105 cells (Supporting information, Fig.�S3). Moreover, tumors growing until a �xed 
size could evolve during a wider timeframe (88 to 1492 generations) than tumors growing during a �xed number 
of generations (300 generations): this con�guration could render the positive relationship between CD and NCA 
e�ects risky to interpret. �us, we will not discuss these results any further, and we suggest that NCA e�ects and 
CD should generally have a negative relationship, regardless of the �tness landscape considered. Besides, the rela-
tionship between tumor growth and NCA e�ects strongly depends on the �tness landscape: frequent NCA e�ects 
generate lower tumor growth rate in a tight �tness landscape (Fig.�3A,C, Supporting information, Table�S4), but 
higher tumor growth rate in a wide �tness landscape (Fig.�3B,D, Supporting information, Table�S4). Moreover, 
though we found no association between tumor growth rate and Simpson index for tumors simulated in a tight 
�tness landscape (Supporting information, Table�S4 and Fig.�S2A,C), high CD is associated with slow tumor 
growth kinetics in tumors simulated in a wide �tness landscape (Table�S4 and Fig.�S2B,D).

In a tight �tness landscape, CA e�ects can be the main component of clonal growth kinetics. �us, neutral 
mutations arising in the fastest growing clones give birth to a large range of similarly growing clones that can 
coexist and maintain CD at a high level (cf. Figure�4A, considering that neutral mutations give rise to phenotypic 
changes that are unrelated to growth kinetics). �is higher CD can be mitigated by the emergence of mutations 
with detrimental NCA e�ects, that can slow down clonal growth kinetics. Due to the tight bounds of the �tness 
landscape, these detrimental impacts are quite di�cult to be balanced by bene�cial NCA e�ects (cf. Fig.�4B). In 
this context, tumors are therefore likely to grow faster without NCA e�ects, and the contribution of NCA e�ects 
is therefore detrimental to CD.

In a wide �tness landscape, NCA e�ects can be the main component of clonal growth kinetics over the impacts 
of CA e�ects. In this context, many mutations are likely to shi� the sensitivity of the latest clones to NCA e�ects. 
Similarly growing clones are therefore unlikely to coexist in this context, which signi�cantly impairs cooperation 
and promotes competition between clones. �us, bene�cial NCA e�ects can not only support the growth of 
predominant clones already bene�tting from their bene�cial CA e�ects, but also allow clones undergoing their 
detrimental CA e�ects to persist in the tumor. Similarly, detrimental NCA e�ects can both slow down the growth 
of the predominant clones and speed up the extinction of the slowest growing ones (cf. Fig.�4D). In this context, 
we found a negative relationship between CD and tumor growth kinetics, which could indicate that NCA e�ects 
mainly drive the growth of predominant clones (cf. Fig.�4D), thus lowering CD.

Our model predicts not only that NCA e�ects do not drive tumors to high CD, but also that they impair 
the increase of CD, by shaping the growth rates of preexisting and emerging clones. �is pattern is clearly not 
expected, considering that all previous observations and discussions on the impacts of NCA e�ects on CD have 
supported the hypothesis that NCA e�ects should promote CD20–23, 25, 40–44. However, these results have been 
observed either in vitro44 or in tumor gra�s or xenogra�s20–22, 40–43, and thus have not embraced the whole com-
plexity of possible interactions within a tumor25, 45. �ese studies have simultaneously considered two clones 
carrying mutations with NCA e�ects or less, most of the time in established tumors. Conversely, our model 
theoretically allows considering up to 50% of clones carrying mutations with NCA e�ects among large mixtures 
of clones, in tumors that expand unrestrictedly. �erefore, though NCA e�ects may support coexistence for a few 
clones in established tumors, our results tend to show that this would not be the case when larger assemblages 
emerge over a short time interval, as is common during carcinogenesis36, 46, 47. It is yet to note that our results only 
regard early (because small-sized), expanding tumors (or expanding tumor niches), and that our model may yield 
di�erent results for larger cancer cell populations and/or higher numbers of generations.

http://S2


www.nature.com/scientificreports/

8SCIENTIFIC REPOrTS�������}�ã 11157 �������������ã�w�v�ä�w�v�y�~���•�z�w�{�•�~�æ�v�w�}�æ�w�w�{�|�x�æ�™

�ese di�erences between our results and previous observations could be explained by an increase of compe-
tition when NCA e�ects are very frequent. Indeed, by shaping the growth kinetics of various clones, CA and NCA 
e�ects contribute to establish a network of biological interactions between clones21, 44. Biological interactions have 
been widely studied in ecology and evolution to explain the respective impacts of di�erent species on each other’s 
growth48, ranging from competition (mutually detrimental) to mutualism (mutually bene�cial), and their impacts 
on cancer progression have been increasingly pointed out due to the many similarities between tumors and wild 
ecosystems23, 25, 45, 49. Here, detrimental NCA e�ects may be considered as interference competition, since cancer 
cells can remotely suppress each other’s growth50. Competition events were shown to yield a drop of CD19. On 
the contrary, mutualistic and commensalistic interactions, which can be involved through bene�cial NCA e�ects, 
can promote the coexistence of several clones20, 41, 42, 44, 49, 51. �ough, when bene�cial NCA e�ects depend on the 
relative abundances of clones (which is not the case here), they behave like limited resources and can result in 
other forms of exploitation competition21, 44, 51, 52.

�e relationship that we found between NCA e�ects, clonal growth kinetics and CD can be put in perspective 
of clinical data. Indeed, our results forecast that, when NCA e�ects have distinct impacts on clonal growth rates 
from CA e�ects’, the slowest growing tumors should be the most clonally diverse a�er a given amount of time. 
Indeed, when clinically detected, tumors mostly composed of slowly-dividing cancer cells are generally described 
as heterogeneous9 and aggressive53, while fast-growing tumors usually well respond to treatments54. However, the 
link between tumor growth kinetics and ITH was mostly established for tumors of clinical size, o�en a�er several 
years under various regimens of selection55, and our results predict these heterogeneous, slow growing tumors 

Figure 4. Emergence of new clones across time. Each panel displays the monitoring of a simulation during 
3000 generations. (A) Simulation of branching evolution in a tumor with no NCA e�ect and a tight �tness 
landscape. (B) Simulation of branching evolution in a tumor with 100% of mutations with NCA e�ects and a 
tight �tness landscape. (C) Simulation of branching evolution in a tumor with no NCA e�ect and a wide �tness 
landscape. (D) Simulation of branching evolution in a tumor with 100% of mutations with NCA e�ects and a 
wide �tness landscape.
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to occur when mutations with NCA e�ects are rare. �is could be the reason why so few mutations with NCA 
e�ects have been described so far. Moreover, if NCA e�ects may have a limited contribution to growth kinetics of 
clinical-stage tumors, there are evidence that NCA e�ects can signi�cantly contribute to early carcinogenesis29, 56, 

57. Further studies should therefore investigate tumor growth kinetics at early stages, in order to clearly identify 
the contribution of NCA e�ects to ITH.

�e design of this model mainly aimed at providing a framework to investigate the underappreciated impact 
of NCA e�ects on ITH58. �ough, for the sake of simplicity, we made several assumptions that deserve to be dis-
cussed and further investigated. In this model, we assumed that divisions always occurred before death events. 
However, the order of birth and death events may have large impacts on the outcome of discrete eco-evolutionary 
processes (especially in the evolution of interactions)59, and results might thus di�er for further studies con-
sidering other division and death orders. Morever, the contribution of NCA e�ects to a clone’s growth kinetics 
do not depend on any clone’s size: i.e., NCA e�ects are not limiting factors. Some NCA e�ects rely on widely 
secreted metabolites50, 60–62 or on the extensive recruitment of stromal cells21, 63, and should be well described by 
this model. Others might be under frequency-dependent selection20, 44, but their incidence in tumors has not 
been established. Furthermore, we assumed that factors involving NCA e�ects (e.g., growth factors, miRNAs) 
di�use instantly from one cell to another, which is rarely encountered in vitro and in vivo28, 44, 61. Di�usion con-
straints should play a signi�cant role in shaping CD, either directly by selecting a range of interacting partners44, 
or indirectly by shaping the growth kinetics28, or even by allowing the construction of spatially distinct niches 
simultaneously dominated by di�erent clones23. �ough, this model only encompasses up to 107 cells (see section 
2.2) at the same time, which should correspond to 0.01–0.1 mm3 in vivo:64 we can therefore easily assume that 
the di�usion time is negligible before the average cell cycle duration. Stromal cells involved in some NCA e�ects 
should also spread quickly at such scales21, 63. Besides, tumors are very spatially heterogeneous65 and the ME usu-
ally consists of several niches that may sparsely interfere with each other, so that we can easily assume this model 
to describe the cell dynamics at stake in the local ME. Tumors of clinic size actually gather several billions of cells 
in average64, 66, and this model could thus be nested in wider-scale models of tumor dynamics. Finally, it is to note 
the impacts of NCA e�ects on tumor growth kinetics have been very sparsely quanti�ed. �us, we do not know 
whether up to 50% of mutations arising during cancer progression might have NCA e�ects, which is something 
crucial to quantify.

Since ITH is usually a good proxy for cancer aggressiveness and post-therapeutic recurrence at clinical stages2, 4–7,  
a major challenge in cancer research is to better predict the evolution of phenotypic diversity in a patient’s tumor. 
In this study, we have pointed out the possibility to identify a range of selection regimens during tumor growth, 
in which various mutational landscapes contribute to shape CD in the tumor. Notably, we found that when NCA 
e�ects made little contribution to growth kinetics, CD was the highest for the fastest growing tumors. Conversely, 
when NCA e�ects made signi�cant contribution to growth kinetics, CD was the highest for the slowest grow-
ing tumors. Such theoretical predictions could allow new perspectives in the prediction of each patient’s ITH. 
Indeed, ITH is well-documented for some cancers for which aggressiveness strongly depends on phenotypic 
diversity (e.g. glioblastoma multiforme14, 67), and growth kinetics of such cancers are monitored for clinical stages. 
Nevertheless, though their contributions to shaping the ME are widely studied, the emergence of mutations with 
NCA e�ects is still poorly understood and should call for a systematic identi�cation of these mutations in order 
to predict the tumor’s outcome.

���ƒ�–�ƒ���ƒ�˜�ƒ�‹�Ž�ƒ�„�‹�Ž�‹�–�›���•�–�ƒ�–�‡�•�‡�•�–�ä No datasets were generated or analysed during the current study.
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