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Abstract We compare observations from the Juno/Waves radio experiment with simulations of radio
«arcs» in the time-frequency plane resulting from the Io-Jupiter interaction, performed with the ExPRES
code. We identify the hemisphere of origin of the observed arcs directly from simulations and confirm this
identification through comparison with Juno, Nançay, and Wind observations. The occurrence and shape of
observed arcs are well modeled, at low latitudes with their usual shapes as seen from Earth, as well as at
high latitudes with longer, bowl-shaped, arcs observed for the first time. Predicted emission is actually
observed only when the radio beaming angle θ = (k,B) ≥ 70° ± 5°, providing new constraints on the
generation of the decameter emission by the Cyclotron Maser Instability. Further improvements of ExPRES
are outlined, which will then be applied to Juno and Earth-based observations of radio emissions induced
by other Galilean satellites or associated to the main auroral oval.

1. Introduction

The Juno spacecraft, in Jupiter orbit since 4 July 2016, performs observations of Jupiter radio emissions up to
40.5MHz with the Waves experiment. The Waves data used in this paper are recorded continuously at low
time-frequency (t-f) resolutions acquired in “survey” mode. This mode sweeps the 3.5–40.5MHz range with
a channel spacing of 1MHz, every 1 s, 10 s, or 30 s.

In the decametric (DAM) wavelength range, Jupiter’s radio emission is structured in the form of discrete arcs
in the t-f plane, labeled “A” when the radio source is located in the north-right of Jupiter, “B” in the north-left,
“C” in the south-right, and “D” in the south-left, as seen from the observer [Carr et al., 1983; Marques et al.,
2017, and references therein]. These radio emissions are produced via the Cyclotron Maser Instability (CMI)
by electrons with keV (possibly up to 10 s of keV) typical energy, gained through acceleration along magnetic
field lines above the auroral regions or along magnetic flux tubes connecting Galilean satellites to Jupiter,
mainly Io, but also Ganymede and Europa [Zarka, 1998, 2004; Louis et al., 2017]. Radio emissions are produced
at the local electron cyclotron frequency along these field lines (f~fce). At the footprints of these field lines,
bright UV auroral emissions are generated by collisions of part of these electrons with Jupiter’s upper neutral
atmosphere (main oval, satellite footprint spots) [Bagenal et al., 2014, and references therein].

The simulation code ExPRES [Hess et al., 2008a] was created to predict arc shapes in the t-f plane recorded by
any arbitrary selected observer, from the computed visibility of CMI emission from (a set of) point sources
along a magnetic field line. This visibility depends in particular of the radio beaming angle, i.e., the aperture
angle θ = (B,k) between the magnetic field vector at the source and the emitted wave vector. This angle is
computed in a self-consistent way (ignoring refraction) in the frame of the CMI theory based on the choice
of the electron distribution that drives the emission: loss cone distribution produces oblique emission with
variable θ(f), whereas ring/shell distribution produces perpendicular emission (θ ~90°) at all frequencies
[Hess et al., 2008a]. Such simulations have been employed to study radio emissions of Jupiter [Hess et al.,
2008a; Cecconi et al., 2012], Saturn [Lamy et al., 2008, 2013], and exoplanets [Hess and Zarka, 2011]. In the case
of Jupiter, the first comparisons between simulations and observations of Io-DAM arcs favor oblique emission
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[Hess et al., 2008a] in spite of the fact that perpendicular emission should have larger growth rates [Hess et al.,
2008b]. A possible explanation for the emission produced to escape from the source region was proposed by
Mottez et al. [2010]. Another possibility is that perpendicular emission is refracted in/near the source to
emerge at oblique angles, as found for the terrestrial kilometric radiation [Mutel et al., 2008], and is
suspected for Saturn’s kilometric radiation [Lamy et al., 2011]. When simulating satellite-induced emission
with ExPRES, the assumption of a single source field line is realistic: it corresponds to the magnetic flux
tube along which electrons are accelerated by the satellite interaction with the Jovian field. In the case of
Io, a «lead» angle exists between this active flux tube (hereafter AFT) and the instantaneous Io flux tube
that is due to slow Alfvén wave propagation in the Io plasma torus combined with Jupiter’s rotation. The
value of this lead angle can be approximated by a sine variation versus Io’s longitude [Hess et al., 2011].

In this paper, we compare ExPRES simulations of Io-Jupiter emissions with observations from the Juno/Waves
experiment. Earth-based observations from the Nançay Decameter Array (NDA) and from the Waves experi-
ment on board theWind spacecraft help radio arc identification. The simulation and comparisonmethods are
first presented (in section 2), followed by their application to the Juno data (section 3), and then the results
are discussed and perspectives are drawn (section 4).

2. Methods

Figure 1 (bottom) shows 11 days of Juno/Waves survey mode data in the 1–40MHz range where many radio
arcs are visible.

We have produced ExPRES simulations of Io-Jupiter emissions as seen from the Juno spacecraft, for all exist-
ing Juno data. The simulations are based on the Jovian internal magnetic field model ISaAC (In Situ and
Auroral Constraints [Hess et al., 2017]), an updated version of VIPAL [Hess et al., 2011] further constrained

Figure 1. Juno/Waves observations (bottom panel) during 11 days after insertion into orbit, from latitudes between�30° and +1°, compared to ExPRES simulations
of Io-DAM arcs from the (middle panel) southern and (top panel) northern AFT footprints as seen from Juno. The color scale of simulation panels represents the value
of the radio beaming angle θ = (k,B) at the source. The scales below the plots provide the distance (RJ), system III longitude and latitude, magnetic latitude and local
time, L-shell, and Io phase (from superior conjunction) of the Juno spacecraft. Examples of arcs corresponding to the “A,” “B,” “C,” and “D” nomenclature are indicated.
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by Europa and Ganymede UV footprints. The magnetospheric plasma density along the AFT is described

by an ionosphere and a plasma torus. The ionosphere is modeled by ρiono ¼ ρ0*e
� r�r0ð Þ=H , with a peak

density ρ0 = 350,000 cm� 3 and a topside scale height H= 1600 km [Hinson et al., 1998]. The torus is

modeled by ρtorus ¼ ρ0*e
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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, with ρ0 = 2000 cm� 3 at the center of the torus, at r0 = 5.91

Jovian radii (Rj), and a vertical scale height H= 1 Rj [Bagenal, 1994]. The active field line leads the instanta-
neous Io field line by an angle modeled as δ=A+ B * cos(λIo� 202°) with A= 2.8° and B=�3.5° in the northern
hemisphere and A= 4.3° and B=3.5° in the southern hemisphere [Hess et al., 2011] (equations in Hess et al.
[2011] indicate erroneously A+ B * cos(λIo� 20°)). The electron energy is set at 0.64 keV in the northern
hemisphere and 3 keV in the southern one [Hess et al., 2008a]. With these energies, the loss cone-driven
CMI predicts hollow emission cones with beaming angles θ between ~50° (at low frequencies) and ~90°
(at high frequencies) along the arcs (see Figure 1). The cone wall thickness is fixed at 1° [Hess et al., 2008a;
Kaiser et al., 2000]. Refraction along the raypath is neglected in this study; thus, the waves propagate in a
straight line from the source to the observer. The maximum emission frequency fce is taken at the auroral
peak altitude (650 km above the 1 bar level) that corresponds to a typical ionospheric limit of the loss cone,
where electrons are lost by collisions.

The output of these simulations are dynamic spectra (t-f plots) where nonzero values indicate the times and
frequency bins where the observer can detect CMI emission, based on the predicted geometry of the
emission and the position of the observer. Additionally, the predicted polarization of the emission can be dis-
played (right-handed from the northern magnetic hemisphere of Jupiter, left-handed from the southern one
for extraordinary mode emission), as well as the predicted radio beaming angle θ for each t-f bin. We have
chosen to display t-f plots of the θ angle of predicted emissions, separately from the northern and from
the southern footprints of the AFT.

Ground-based decameter observations are also conducted in support to Juno observations by a number of
radio observatories grouped in a Juno.Ground.Radio collaboration [Cecconi et al., 2017], including the NDA
[Lamy et al., 2017]. In this paper, along with Juno/Waves data, we use NDA data in the range of 10–40MHz
complemented by Wind/Waves data in the range of 1–14MHz [Bougeret et al., 1995].

For this study, we have used the Autoplot software for plotting data (http://autoplot.org [Faden et al., 2010]).

3. Results

Figure 1 presents ExPRES simulations of northern and southern Io-DAM, together with Juno/Waves data, for
11 days shortly after Juno’s insertion in Jupiter’s orbit in July 2016. The spacecraft latitude varied between
30°S and 1°N. We notice an almost one-to-one correspondence between the observed intense arcs and the
modeled ones from the southern hemisphere. All southern arcs simulated by ExPRES are indeed observed,
and simulated shapes match the observations quite well, within a few hours in time and a few MHz in
frequency. Most of the intense arcs observed during this 11 day continuous interval can thus be attributed
to southern Io-Jupiter emission, which is consistent with the spacecraft location in the southern hemisphere.

The predicted southern emission is actually observed only when θ ≥ 70° ± 5° (red-orange color), matching fre-
quencies generally lower than 20–25MHz. This may be because the emission is less intense for θ< 70°, in
which case it may appear after deeper processing of the Juno/Waves data. However, the emission can also
be less intense or absent for θ< 70°. Our simulations predict t-f bins where oblique emission (produced by
loss cone driven CMI) should be observed, but they do not guarantee that the emission is indeed produced
at every frequency along the AFT. This depends on the presence of unstable electron distributions, for which
in situ Juno/JADE (Jovian Auroral Distributions Experiment) [McComas et al., 2013] measurements will be cru-
cial. Another possibility is that emission displays apparent values of θ which significantly differ from those
simulated, for instance with θ =90° (by ring/shell-driven CMI) and refracted to an apparent beaming
θ ~ 70° as observed far from the source. Measurements at various distances from the source and in situ
Juno/Waves measurements will allow us to settle these questions.

The fast motion of Juno along its orbit and the high-latitude exploration result in shapes of observed arcs
never seen previously, such as the nearly closed t-f loops at the beginning of 8 and 15 July 2016, which
are identified as Io-Jupiter emissions and well represented by the simulations. For instance, on 8 July 2016
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the magnetic latitude λmag varied from �10° to �27° between 01:00 and 04:30. By contrast, the slower
geometrical variations that affect Earth-based observations result in Io-DAM arcs generally observed
as opening (so-called vertex-early) or closing (vertex-late) parentheses [e.g., Marques et al., 2017, and
references therein].

Northern arcs predicted by ExPRES are essentially not observed, although weaker parts of arcs may become
visible after further data processing. This suggests that ExPRES simulations predict correctly the emissions ori-
ginating from the hemisphere of the observer. The visibility of emission radiated from the other hemisphere
is likely to be affected (or cancelled) by two main effects: (i) in/near source refraction (neglected here) that
modifies the apparent θ for the emission coming from the observer’s hemisphere and may cause the emis-
sion from the other hemisphere to be refracted away and result in lower apparent theta (refraction far from
the source, e.g., in the Io torus, should not affect the highest frequency part of the emission); (ii) ExPRES
assumes no azimuthal variation of the radio beaming angle around the magnetic field vector in the source
yet, but the real beaming pattern is likely oblate, with a reduced value of θ toward the equator [Galopeau
and Boudjada, 2016] (i.e., toward the hemisphere opposed to the source), making it not observable.

Figure 2 shows a 1.5 day interval of Juno observations and corresponding ExPRES simulations (bottom rows),
for which simultaneous observations by the NDA (with circular polarization measurement) and Wind/Waves
were available. They are displayed on the same panel, with corresponding ExPRES simulations above
(top rows).

This close-in-view of 36 h confirms the good matching of simulations and observations of Io-DAM but shows
an ~1 h discrepancy in the time of occurrence of the arcs. Such shifts in the time occurrence of the simulated
arcs are expected due to the slow motion of Io around Jupiter: at ~0.14°/min, an error of 10° in θ translates
into a delay of 71min in time. (i.e., 8.5°/h). The fact that the simulated Io-D arc is ~1 h before the observed
one, and the simulated Io-C arc ~1 h after the observed one, with an ~20 h separation between the two

Figure 2. (bottom row) Similar to Figure 1, but for a duration of 36 h in-between 25 and 27 November 2016. In addition, (top rows) simultaneous observations from
the NDA and Wind spacecraft and corresponding simulations for an Earth-based observer are shown. The Io arc observed by the NDA on 27 November 2016 at
~04:30 has dominant left-hand circular polarization. Two arcs are observed byWind, an Io-D on 26 November 2016 at ~08:30 (very weak) and an Io-C on 27 November
2016 at ~04:30 (simultaneously with NDA).
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observed arcs, suggests that θ was overestimated by ~10% in the simulation. This overestimation could be
due to a wrong estimation of the energy of the electrons. Indeed, the variation in the time position of the arcs
for values between 0.5 and 15 keV is ~2 h. An alternate possibility is that the lead angle is not well modeled by
the sinusoidal model, because it depends on the plasma conditions of the Io torus, variable in time. As said
previously, an error of 1 h corresponds to an error of 8.5°.

Figure 2 confirms that predicted emission is actually observed only when θ ≥ 70° (red-orange color). The
observed thickness of the arcs is consistent with a cone wall thickness ~1°, as in the simulation, which is
equivalent to an infinitely thin cone thickness convolved by a 1° wide in longitude source region.

Another arc is observed before the main Io-D arc (labeled Io-D0). This feature is often observed for Io-B arcs
but rarely for Io-D ones [Queinnec and Zarka, 1998;Marques et al., 2017]. This can be interpreted by the multi-
ple reflections of Alfvén waves between the Io torus and Jupiter’s ionosphere that lead tomultiple UV spots at
AFT footprints [see, e.g., Bonfond et al., 2008]. It seems also to be the case for the Io-C arc.

Figure S1 in the supporting information (zoom in the beginning of Figure 1) presents the nearly closed loops
on 8 July 2016 (previously discussed, see Figure 1). The same correspondence between observations and
simulations as in Figure 2 is observed, with the same ~1h accuracy, and the same conclusions about θ
and/or the lead angle can be drawn. As in Figure 2, the Io-D arc seen by Juno is multiple. The time separation
of the arcs should match the longitudinal shift between multiple UV spots at AFT footprints. We should be
able to confirm this with Juno by comparing Waves and UV measurements.

Comparison with NDA and Wind/Waves Earth-based observations brings additional information: the arc
observed by the NDA on 27 November 2016 at ~04:30, observed simultaneously by Wind at low frequencies,
has a dominant left-handed circular polarization, indicating an origin in Jupiter’s southern hemisphere, which
supports the conclusions drawn from Juno-ExPRES comparison. The arcs observed by Juno on 25 November
2016 at ~19:30 ± 00:30 and on 26 November 2016 at ~15:00 are observed ~13 h later by Wind for the first one
and both the NDA and Wind for the second one. Juno being about at 5.4 h LT, and Earth about 12.5 h LT, the
expected delay for a source moving with Io at ~8.5°/h is (12.5–5.4) × 15/8.5≈12.5 h, consistent with the
observed ~13 h delay. This constitutes an independent proof of the Io-Jupiter origin of this arc, making unam-
biguous its identification by the simulation. It also shows that Io-Jupiter arcs last and have a stable shape over
many hours. Taken with Figure 1, Figure 2 supports that the Io-Jupiter emission is essentially permanent.

The simulated Io-C arc occurs ~1 h after the time of its actual observation, both by Juno and by Wind+NDA.
As explained previously, this may be due to an overestimation of the AFT delay (i.e., of the lead angle), an
error on the magnetic field topology, or a small error on θ.

Figure 3 displays Juno/Waves data (bottom row), ExPRES simulations as seen from Juno (middle rows), and
NDA data (top row) around periJove #1. Two Io-DAM arcs are unambiguously identified by comparing
Juno/ExPRES data (labeled “Io”), on 25 August 2016 at ~18:00–19:00 for the northern AFT footprint (labeled
“Io-B”), when Juno was in the northern hemisphere, and on 28 August 2016 at ~11:00–12:00 for the southern
AFT footprint (labeled “Io-C”), when Juno was in the southern hemisphere. Two additional Io-DAM arcs
with unusual shape (labeled “Io?”) are tentatively identified just before (27 August 2016 at ~10:00–12:00)
and just after (27 August 2016 at ~14:00–16:00) periJove#1 when Juno was at high latitudes. They are further
discussed below.

All other observed emissions are likely to be associated with the main auroral oval (simulations made for
other Galilean satellites showed no correspondence). One of them can be identified as an auroral emission
comparing Juno and NDA data: the arc seen on 26 August 2016 at ~08:00 by Juno is detected by the NDA
at ~10:30. This 2.5 h delay is consistent with the time needed for a source co-rotating with Jupiter (at a period
~10 h) to cover the ~6 h LT difference between Juno and NDA. Contrary to Io-Jupiter emission, the shape of
the arc seems to have changed during this time interval (it does not reach as high frequencies). The differ-
ence in the covered frequencies may also be related to the different latitudes of the observers (Earth and
Juno) and to the oblateness of the emission cone. Further ExPRES simulations based on the field lines of aur-
oral UV hot spots seen by UVs should allow us to identify most of the individual radio arcs and constrain
source field lines and radio beaming angles.

Figure S2 is a zoom of Figure 3 (bottom rows), for ~13 h around periJove #1. The high-latitude passes of Juno
above both Jovian poles provide a totally new geometry of observation, in which Io-Jupiter arcs take unusual
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bowl shapes in the t-f plane. Northern and southern Io-DAM arcs are tentatively identified in Juno
observations based on ExPRES simulations. They are likely superimposed with auroral (non-Io) emissions.
The start of the arc between 09:00 and 10:00 is certainly the high-latitude equivalent of an Io-B arc. Its end
(around 12:00) seems to be superimposed with auroral emission that tangents the local fce, suggesting a
radio source crossing by the spacecraft [Kurth et al., 2017]. The source crossed cannot be an Io-DAM
source, as the phase of Io was far from 180° at that time. Quantitative studies based on the detailed
magnetic field topology will permit further investigation. JADE observations will provide electron energies
and distribution functions in/near the sources [Louarn et al., 2017; Allegrini et al., 2017]. After periJove#1,
when Juno was at high southern latitudes, a southern Io-Jupiter arc is predicted by ExPRES and falls in
between two observed arcs. For the same reasons as above, we tend to identify it to the arc starting at
~14:15, while we interpret the emission just after periJove#1 as an auroral emission (again with in situ
source crossings). We notice that Io-Jupiter emissions are observed from high latitudes over ranges of Io
phases much broader than those determined from Earth-based near equatorial observations [Marques
et al., 2017]. This strongly suggests that the restricted ranges of Io phases, in which Io-Jupiter emissions are
detected from Earth, mainly result from visibility effects.

4. Summary and Discussion

The dynamic spectra of Jupiter’s decametric radio emissions are rich and complex, and Juno provides new
observations with a unique geometry. ExPRES is a very valuable tool for simulating and interpreting such
observations. The simulations allow us to identify the hemisphere of origin of the observed arcs, independent
of any polarization or direction-finding measurement from the spacecraft. Most of the intense arcs observed
from low latitudes are due to the Io-Jupiter interaction, and all Io-DAM arcs predicted by ExPRES from the
source located in the same hemisphere as the observer are observed and identified (as tested over a contin-
uous interval of 11 days). Emissions originating from the other hemisphere are probably less visible or not
visible at all due to radio beam oblateness and/or in/near-source refraction effects. Simulated radio arcs

Figure 3. Juno/Waves observations (bottom row) for ~3 days around periJove #1 that occurred on 27 August 2016 at ~13:00 compared to (middle rows) ExPRES
simulations of the arcs from the southern and northern AFT footprints as seen from Juno (same format as Figure 1) and to (top row) simultaneous NDA
observations. Emissions identified by comparisons Juno/ExPRES or Juno/NDA are labeled.
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match the observations, within 1–2 h in time and a few MHz in frequency. The observed thickness of the arcs
is consistent with a cone wall thickness ~1°. The unique geometry of the Juno orbit allows Juno to observe Io-
DAM arcs with a shape different from that usually observed from the Earth. The longer duration and broader
phase intervals covered by many arcs observed by Juno suggest that the absence of Io-Jupiter emission at Io
phases close to ~180° as seen from Earth is a mere visibility effect. The predicted emission is actually observed
only when the radio beaming angle θ = (k,B) ≥ 70° ± 5°, providing new remote constraints on the generation
of the decametric emission by the Cyclotron Maser Instability. These remote constraints will be compared to
those provided by in situ particle measurements [Louarn et al., 2017], which will help to simulate non-Io emis-
sions in future work. Comparison to ground-based decametric observations confirms the identification of Io
arcs via ExPRES simulations and based on the time delay between observations of the same arc by Juno and
from the Earth. It also shows that Io-Jupiter emission is essentially permanent. By contrast with the situation
near the equator, radio emissions observed from highmagnetic latitudes around periJove #1 are likely mostly
associated with the main auroral oval.

These results obtained for the Io-Jupiter emission suggest that we are reaching a good understanding of the
radio emission generation. They also provide us directions for further improvements of ExPRES: (i) using opti-
cal images of aurorae to constrain the instantaneous position of the AFT footprints (instead of an average sine
variation of the lead angle) and of hot spots along the auroral oval for identifying instantaneously active field
lines hosting radio sources, (ii) using an updated internal magnetic field model, and (iii) incorporating beam
oblateness and in/near-source refraction effects, we should achieve a better fitting of individual Io and non-Io
radio arcs, eliminate or reduce the uncertainty of its predictions (~1–2 h and a few MHz), and thus derive
accurate beaming angles and in turn assess the CMI-unstable electrons. Performing quantitative parametric
fittings at various distances from the sources and comparing the results with in situ waves, magnetic field,
and particle measurements (using Waves, MAG, and JADE experiments, respectively) will enable us to deter-
mine the intrinsic radio beaming angle at the source and its evolution (with refraction) toward the apparent
radio beaming angle far from the source. This will also allow us to distinguish between a shell-driven emission
refracted at oblique angles and a loss cone-driven emission.

The combination of Juno/Waves observations, ExPRES simulations, and Earth-based radio observations
should similarly allow us to identify radio emission induced by the other Galilean satellites. Finally, when com-
bined together, ground-based observations from the world-wide Juno.Ground.Radio collaboration will pro-
vide a quasi-continuous time coverage, enabling the identification of individual arcs and the investigation
of the time variability of Jupiter’s decametric emissions stereoscopically observed from Juno and the Earth,
high-resolution dynamic spectra from, e.g., the NDA, and a flux calibration reference for Juno/Waves data
[Zarka et al., 2004].
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