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Abstract19

Recordings of the Earth’s oscillations made by seismometers, following earth-20

quakes or other geophysical phenomena, can be made audible by simply21

accelerating and playing them through an audio reproduction system. We22

evaluate quantitatively the possibility of using such acoustic display of seis-23

mic data for practical applications. We first present to listeners examples24

of two categories of data, based on geophysical parameters (the geometry of25

the seismic fault; the terrain–oceanic or continental–sampled by the propa-26

gating seismic wave) that are not revealed to them. The listeners are then27

asked to associate each of a set of audified seismograms, that are presented28

to them binaurally, to either one of the two categories. After this exercise,29

they are asked to define the features of audified signals that helped them in30

completing this task. A subset of the listeners undergo a training session,31

before taking one of the tests for a second time. While the number of listen-32

ers is too small for a definitive statistical analysis, our results suggest that33

listeners are able, at least in some cases, to categorize signals according to all34

the geophysical parameters we had chosen. Importantly, we clearly observe35

that listeners’ performance can be improved by training. Our work opens36

the way to a number of potentially fruitful applications of auditory display37

to seismology.38
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Introduction39

Auditory display, or “sonification” of scientific data has been applied suc-40

cessfully to research topics in several disciplines [e.g. Cowen, 2015]. Seismic41

data analysis naturally lends itself to audification: a particularly simple form42

of sonification which consists of accelerating seismic signals (whose frequency43

is lower than that of audible sound) before playing them through an audio44

reproduction system. Auditory display of seismic data was first explored dur-45

ing the Cold War, when the ability to distinguish underground nuclear tests46

from natural earthquakes acquired a political relevance [Speeth, 1961; Frantti47

and Leverault , 1965; Volmar , 2013]. Audification was eventually discarded,48

in this context, in favour of seismic-array methods [Volmar , 2013]; in recent49

years, however, it has been revived by seismologists, mostly for purposes of50

teaching and dissemination [e.g. Dombois and Eckel , 2011; Kilb et al., 2012;51

Peng et al., 2012; Holtzman et al., 2014; Tang , 2014]. Our own experiments52

[Paté et al., 2016, 2017] have convinced us that it is a valuable and inspi-53

rational tool for the analysis of seismic data in many contexts. We suggest54

that it might also soon find more specific, e↵ective research applications.55

This study attempts to contribute to the quantitative analysis of the56

human auditory system’s response to audified seismic data. As researchers57

peruse data via auditory display, the implicit assumption is made that they58

are capable of recognizing patterns and completing some related tasks by59

hearing. We question this assumption for the case of audified seismic data,60

and thus begin to evaluate what can be achieved by audification that is61

not already implemented through “traditional” techniques in seismic data62
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analysis. Both the early work of Speeth [1961] and the recent e↵orts by our63

group [Paté et al., 2016] indicate that listeners can detect meaningful clues64

in audified seismic signals, and thus categorize the signals according to such65

clues. Paté et al. [2016] showed that the categories formed by the listeners66

can be associated with several geophysical parameters, but could not entirely67

distinguish the e↵ects of individual parameters (e.g., source-receiver distance,68

geological properties of the terrain at the receiver and between source and69

receiver, etc.) from one another. We present here a di↵erent approach to70

the analysis of audified data: listeners are asked to complete a constrained-,71

rather than free-categorization task, on two sets of data, each controlled by a72

single geophysical parameter (Earth structure in the area where the recorded73

seismic waves propagate; focal mechanism of the source). The listeners’74

performance in auditory analysis is compared with their performance in a75

similar task, completed via visual analysis of analogous data. We consider76

the visual analysis of a plot to be a “traditional” task that most individuals77

with some scientific background are, to some extent, familiar with. Visual78

analysis serves here as a reference against which results of auditory tests79

can be compared, and, accordingly, its results are not analyzed in as much80

detail. Listeners are then briefly trained, and the auditory test repeated81

after training, with a general improvement of test scores. Finally, listeners82

are asked to explain the criteria they followed to categorize the data, and83

their description is compared with quantitative parameters computed from84

the data.85
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Database86

The work of Paté et al. [2016] evidenced the di�culty of disentangling the87

influences of di↵erent physical parameters on the seismic signal (e.g., source-88

receiver distance, properties of the source, geology at the receiver location,89

geology between source and receiver). We compiled two new audified seismic90

data sets, each designed to emphasize the role of one specific parameter.91

Both data sets only included events of magnitude between 6 and 8, with92

focal depths estimated by IRIS between 20 and 40 km, and recorded at93

epicentral distances between 4000 and 6000 km. The scale lengths under94

consideration are therefore di↵erent from those of Paté et al. [2016], who95

used recordings of a magnitude-5.5 event made no more than a few hundred96

km from the epicenter. All events contributing to either data set occurred97

between August 9, 2000, and April 18, 2014.98

The first data set (DS1) is limited to source mechanisms of the strike-slip99

type, with magnitude between 6 and 7, and the propagation path (approx-100

imated by an arc of great circle) is required to lie entirely within either a101

continental or oceanic region. Fig. 1 shows that events in DS1 are located102

along the Pacific coast of Mexico and in California, while stations can be in103

North America (continental paths), on ocean islands throughout the Pacific104

ocean, in Chile or on the Alaskan coast (oceanic paths). It is well known105

that a seismic waveform is a↵ected in many ways by the properties of the106

medium through which the wave propagates before being recorded. Based,107

e.g., on recent work by Kennett and Furumura [2013] and Kennett et al.108

[2014] on waveform di↵erences across the Pacific Ocean, we anticipated that109
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the bulk properties of oceanic vs. continental crust and lithosphere would110

result in profoundly di↵erent seismograms and audified signals. We expected111

this ocean/continent dichotomy to be far more important than other parame-112

ters in characterising traces in DS1, and we assumed that it would also guide113

the subjects’ response to the corresponding audified signals.114

The second data set (DS2) is limited to continental propagation paths,115

but includes both strike-slip and thrust events of magnitude between 6 and116

8 (Fig. 2). We expected di↵erences between signals generated by strike-slip117

and thrust events to be more subtle, and harder to detect, whether visually or118

aurally. Again, all sources contributing to DS2 are in South-Western North119

America; stations are distributed throughout Canada and the United States,120

and, in one case, in the Caribbean. Earthquake mechanisms were obtained121

from the Global Centroid Moment Tensor Project (see “Data and resources”122

section).123

Approximately 500 seismograms meeting the requirements of DS1 and124

DS2 were downloaded from the IRIS database (see “Data and resources”125

section) but only traces showing, at a visual analysis, a relatively high signal-126

to-noise ratio were kept. As a result, DS1 includes 23 “continental” and 23127

“oceanic” signals, while DS2 includes 52 strike-slip and 52 thrust signals. No128

filtering or instrument-response correction was applied to the data.129

The sampling rate of all downloaded seismic traces is 50 Hz. The duration130

of traces to be audified is 8000 s, starting 1800 s before the P -wave arrival as131

found in the IRIS catalog, and including the most significant seismic phases132

and most or all of the coda. Time is sped up by a factor of 1200, selected133

so that all frequencies present in the seismic traces are mapped into the134

7



audible range [Holtzman et al., 2014]. Each sonified signal was normalized135

with respect to its maximal value. The resulting, “audified,” 6-s-long signals136

are turned into Waveform Audio File Format (WAV) files via the Matlab137

function audiowrite. Their spectra show most energy between 20 and 600138

Hz.139

Experiments140

All experiments (table 1) were conducted in an acoustically dry room (i.e.,141

not entirely anechoic, but with very little reverberation of sound). The sub-142

jects played audified seismic signals on a laptop computer via a Matlab-based143

software interface, and listened to them through an audio card and closed144

headphones with adjustable volume. Some tests involved the visual, rather145

than acoustic display of the signals, which was also implemented with the146

same interface: seismograms were plotted in the time domain as in Fig. 3 (al-147

beit with a longer time window, extending from ⇠0 to ⇠20000 s) and subjects148

had no way to modify the plots’ size or format. We provided each subject149

with all necessary instructions at the beginning of the test, so that the sub-150

ject would be able to take the test autonomously. The subjects knew that the151

signals were originated from seismograms; at the beginning of the test, they152

were told that all signals would belong to one and only one out of two possible153

“families,” named A and B. By assigning “neutral” names to data families,154

and providing no information as to their nature, we minimize the bias that155

might be caused by a specialized (geophysical) knowledge/understanding of156

the data. After each test, subjects were asked to briefly explain the crite-157
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ria they had followed in responding to it. They typed their answers on the158

computer used for the test.159

All subjects were researchers, faculty, and graduate and undergraduate160

students with backgrounds in Earth sciences (referred to in the following161

as “geoscientists”), room or musical acoustics (“acousticians”) or applied162

physics/engineering (“physicists”).163

Constrained categorization without training164

In a first suite of experiments, families A and B were each defined by three165

examples, that subjects listened to or looked at before starting the test. Each166

of the three example audified signals could be listened to three times at most.167

Visual examples were plotted on the screen, and could be looked at for no168

more than three minutes before starting the test. All subjects were given169

the same examples. The subjects were then exposed to 40 unknown signals;170

after listening to/looking at each signal, they selected whether it belonged to171

family A or B; no other answer was possible. Each auditory signals could be172

listened to three times at most; plots were visible on the screen for 5 seconds.173

The subjects’ selections were recorded by the software interface.174

Importantly, this approach is profoundly di↵erent from that of Paté et al.175

[2016], who asked subjects to form as many categories as they wanted ac-176

cording to their own criteria [Gaillard , 2009]. It is also di↵erent from “paired177

comparison,” where a subject is presented with two stimuli, and must choose178

which one belongs to which of two categories. We have explored the latter179

approach in preliminary tests with few subjects, who all obtained extremely180
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high scores: this strengthened our hypothesis that the geophysical parame-181

ters we had selected (propagation path and orientation of the fault) do map182

into audible acoustic properties of the corresponding audified signals. We183

considered, however, that a paired-comparison test does not resemble any184

real task in seismic data analysis, and discared this approach in our subse-185

quent experiments.186

Auditory and visual display of DS1 (oceanic vs. continental paths)187

In a first experimental session, 35 subjects (13 women, 22 men), aged between188

18 and 61, took two tests involving data from DS1. The group included 18189

acousticians, 9 geoscientists and 8 physicists. 40 signals were evaluated visu-190

ally in one test, and their audified counterparts were listened to in another.191

As explained in the “Database” section above, we made the hypothesis192

that data belonging to DS1 would tend to be categorized according to the193

terrain sampled by the propagation paths. Signals corresponding to oceanic194

propagation paths were presented as examples of family A, and “continental”195

signals as examples of B. In the following, we loosely speak of “correct”196

answer whenever a subject associates to family A an “oceanic” signal, or to197

family B a “continental” one. Exactly half of the signals in this experiment198

correspond to oceanic propagation paths, the other half to continental ones.199

The signals were the same for all subjects, but their order was random,200

changing at each realization of the experiment.201

The average percentage of correct answers (average “score”) in this first202

experiment amounts to 78% for the visual test, and 63% for the auditory203

one. All scores are summarized in the histograms of Fig. 4a and b. We204
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suspect the very low scores of two outliers (one per test) to have been caused205

by a misunderstanding of the intstructions which resulted in the subjects206

swapping families A and B.207

For the sake of comparison, we consider the case of entirely random an-208

swers, i.e., the human subject is replaced by an algorithm that generates209

random yes/no answers, or answers are given by tossing a coin. In this “null210

hypothesis,” test scores are controlled by the cumulative binomial distribu-211

tion [Press et al., 1992, e.g.]: each signal listened to can be treated as an212

independent “trial”, with a success probability of 50%. Fig. 4a shows that in213

the first auditory test about one out of three subjects scored above the 99%214

confidence level as defined through the cumulative binomial distribution: in215

other words, the probability that a subject would obtain (at least) such score216

by giving random answers is less than 1%. It is thus probable that some of217

the best-scoring subjects have identified a real di↵erence between signals that218

they classified as belonging to families A and B. Given how we constructed219

the two families (see “Database” section), it is also reasonable to infer that220

the auditory clues identified by the subjects are directly related to the e↵ects,221

on seismic waveforms, of wave propagation through oceanic vs. continental222

crust.223

Our data are not numerous enough for the histograms in Fig. 4a,b to224

clearly suggest specific statistical distributions. By visual inspection of Fig. 4a225

one might speculate that the distribution of auditory test scores is bimodal,226

with one peak around 50% corresponding to the null hypothesis, and an-227

other peak around 70% reflecting the performance of subjects who did find228

meaningful clues in the signals.229
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Scores in the visual test (Fig. 4b) were generally quite high, and higher230

than for the auditory test. This indicates that, at this point, visual analysis231

of the data might be a more e↵ective way to complete the task of categorizing232

DS1 data.233

Auditory and visual display of DS2 (thrust vs. strike-slip faults)234

Of the subjects who took part in the experiment described in the previous235

section, 27 (15 acousticians, 7 physicists, 5 geoscientists; 7 women, 20 men)236

also participated in a second session, involving 40 signals from DS2. Half of237

the signals were originated from the strike-slip faults, the other half from the238

thrust faults shown in Fig. 2b. Again, each subject took an auditory and a239

visual test, with average scores of 52% and 62%, respectively. The results of240

both auditory and visual tests are illustrated in Fig. 4c,d.241

Comparison with the null hypothesis shows that the probability of achiev-242

ing (at least) the average score associated with the visual test by selecting243

the answers randomly was relatively low (<10%); we infer that at least some244

subjects are likely to have found visual clues in plotted seismograms. Con-245

versely, the probability of achieving (at least) the average score obtained in246

the auditory test by giving random answers was about 40%. Too high for247

the average observed score to be considered significant. It might be guessed248

that the one subject who achieved a score of 75% might have found auditory249

clues in the signals, but overall the test cannot be considered a success.250
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Constrained categorization with training251

17 subjects (10 acousticians, 4 physicists, 3 geoscientists; 4 women, 13 men),252

who had already participated in both the constrained-categorization experi-253

ments, accepted to undergo a training session, followed by an auditory test254

analogous to those described above. The new exercise was conducted on255

data from DS2, only half of which were employed in our previous experi-256

ments. Data included in the final test had not been listened to in the course257

of the training session. The goal of this experiment is to determine whether258

performance in auditory analysis of seismic data can in principle be improved259

by training: this is determined below by comparison with performance in a260

similar task before training. It is therefore not strictly necessary to compare261

the results against those of visual analysis of the same data, and accordingly262

the visual test was not repeated.263

Training264

Subjects were trained [e.g. Thorndike, 1931; Speeth, 1961] by means of a265

software interface similar to that used in the actual tests. They first listened266

to three examples of each family, as before the previous test. They were then267

presented with up to 24 audified signals in the same way as previously. Half268

of these signals originated from thrust, the other half from strike-slip faults.269

Half had been listened to during the previous experiment, half were entirely270

new. The order in which the signals were presented was random. Upon271

hearing each signal, subjects were asked by our software interface to evaluate272

whether it belonged to family A or B. After giving an answer, they were273
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immediately notified whether or not it was “correct” (i.e., consistent with274

our hypothesis), by the on-screen messages “you have identified the right275

seismological family” (“vous avez identifié la bonne famille sismologique”)276

and “that is not the right seismological family” (“ce n’est pas la bonne famille277

sismologique”), respectively. If a subject had a perfect score after listening278

to the first 16 sample signals, the training session would end.279

Auditory display of DS2 after training280

After a brief pause, all subjects who undertook the training session stayed281

for a final test. 36 signals were randomly picked from DS2. Half of the picked282

signals had to be from thrust, half from strike-slip faults. Half had to belong283

to the pool of signals listened to in the test of section “Auditory and visual284

display of DS2”.285

The histogram in Fig. 5 shows that scores are generally higher now than286

when categorizing signals from DS2 before training (Fig. 4c). Only 4 out of287

17 subjects did not improve their score at all. In the null hypothesis, with288

36 trials, the probability of achieving a score of at least 69.4% (24 correct289

answers out of 36) is about 1%: 6 out of 17 subjects scored 70% or more, and290

we infer that at least some of those 6 learned to recognize relevant auditory291

clues in the data. Albeit small, these figures appear more significant if one292

considers that only one brief training session was undertaken.293
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Identifying audio features relevant to catego-294

rization295

At the end of a test, the subject was asked to briefly explain the criteria296

followed to categorize the signals, via the on-screen message: “according to297

what criteria have you associated family A and B to the signals?” (“sur298

quel(s) critère(s) avez vous attribué la famille A ou B aux signaux ?”). The299

subject could answer by typing some comments through our software inter-300

face.301

Given the di�culty of an exhaustive semantic study of the resulting data302

[Paté et al., 2017], we only give here a preliminary, simplistic analysis of a303

subset of the recorded comments. Our goal in this endeavour is to identify304

some of the auditory clues that lead subjects to make their choices. We focus305

on the subjects whose scores were highest, as the criteria that guided them306

are probably related to the geophysical parameters that defined our families307

of signals.308

Comments on DS1309

We first analyze the comments made by 5 subjects (2 acousticians, 2 geosci-310

entists, and one physicist) who all achieved scores �80% in discriminating311

audified seismograms corresponding to oceanic vs. continental paths (DS1).312

Table 2 shows a number of reoccurring suggested clues, namely: the pres-313

ence of what the subjects identify as “background noise,” and its timbre;314

the duration of what is considered by the subjects to be meaningful signal;315
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the identification of “echos” in the signal. These features can in principle be316

associated to quantities calculated by seismic data analysis.317

First of all, it is relatively easy to identify the onset of an earthquake318

recording on a seismogram (i.e., the P -wave arrival), and it is then reasonable319

to define as background noise the signal recorded before such arrival. In all320

our recordings, the first 500 samples clearly precede the arrival of the main321

signal and we accordingly identify them as noise. We define the beginning322

of the seismic signal as the first recorded sample whose amplitude is at least323

three times larger than the largest amplitude found within the 500 noise324

samples. Let nS denote its index. The signal-to-noise ratio (SNR) in decibels325

can then be estimated, based on the mean amplitudes of signal and noise, by326

the formula327

SNR = 10 log10

"PN
i=nS

s

2[i]
P500

i=1 s
2[i]

#
, (1)

where s[i] is the amplitude of the i-th sample, in a recording that consists ofN328

samples total. We compute the SNR of all signals in DS1, and find (Fig. 6a)329

that continental paths tend to be associated with higher SNR values than330

oceanic paths. This statistical result is in qualitative agreement with the331

subjects comments.332

We evaluate the “timbre” of background noise by taking the Fourier trans-333

form of the first 500 samples only. Fig. 6b shows the distribution of frequency334

values corresponding to the highest spectral peak in the resulting Fourier335

spectrum: whether the terrain traversed by the propagating seismic wave is336

oceanic or continental does not appear to a↵ect significantly the frequency337

content of noise.338
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We next attempt to quantify the duration of meaningful seismic signal339

which the subjects believe to have recognized in their listening experiences:340

after the main, high-amplitude interval that includes body- and surface-wave341

arrivals, the peak amplitude of all our signals decreases until it becomes as342

low as the peak amplitude of background noise. For each seismogram, we find343

the latest sample whose peak amplitude is as large as 10% of its maximum344

recorded value for that seismogram; we then measure the length of the time345

interval that separates it from the maximum-amplitude sample, and define346

it as the duration of seismologically meaningful signal. Fig. 6c shows how347

such values are distributed for signals associated with oceanic vs. continental348

propagation paths, and indicates that oceanic signals are, according to our349

definition, longer than continental ones.350

Finally, echos can be identified by visual analysis of a seismogram’s en-351

evelope. We calculate the envelopes of all our audified seismograms, and take352

the averages of all oceanic-path and all continental-path envelopes. In anal-353

ogy with Paté et al. [2017], the envelope is defined as suggested by D’Orazio354

et al. [2011]: starting with i coinciding with the index of the last sample in355

a signal, if sample i � 1 exceeds sample i, then the value of sample i � 1356

is saved as the i-th entry of the envelope; the procedure is iterated for the357

preceding sample, until the entire trace is processed [D’Orazio et al., 2011,358

figure 5]. The results of this exercise, illustrated in Fig. 7, show that (i) the359

amplitude of oceanic-path signal is generally larger than that of continental-360

path signal; (ii) the oceanic-path signal is characterized by a number of361

high-amplitude peaks that are not visible in the continental-path one; (iii)362

the large-amplitude portion of the signal lasts longer in oceanic-path than363
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continental-path signal. While the standard deviations of both envelopes364

are not shown in Fig. 7 in the interest of readability, these inferences are365

confirmed even if the standard deviation is taken into account. We note366

that the standard deviation of the oceanic-path envelope is larger than the367

continental-path one. Observation (ii) reflects several comments made by the368

subjects (Table 2).369

Comments on DS2370

The four subjects who achieved the highest scores (> 55%) without training371

are combined with the four who achieved the highest scores (> 72%) after372

training, resulting in a group of eight subjects whose verbal comments are373

summarized in table 3. The group includes three geoscientists, three acous-374

ticians, and two physicists. Two of the subjects in this group were also in375

the group discussed in the previous section.376

Table 3 shows that, despite some contradictory comments, most subjects377

find strike-slip-fault signals to be characterized by a relatively weak “first378

arrival” followed by a high-energy coda, while on the contrary they associate379

thrust events with a strong first arrival followed by a weaker coda. This seems380

to be consistent with the average envelopes of Fig. 8, where (i) the initial381

peak is clearly identifiable for both families and is roughly twice as high382

in the inverse-fault case, with respect to the strike-slip-fault one, while (ii)383

the later inverse-fault signal is of higher amplitude than its strike-slip-fault384

counterpart, with a ⇠20% di↵erence in their main peaks. If the envelopes’385

standard deviations (not shown in Fig. 8 for clarity) are taken into account,386

18



however, this observation cannot be confirmed; more tests, with a broader387

data set, need to be conducted to come to a definitive conclusion.388

Influence of subjects’ background on the re-389

sults390

Fig. 9 shows that test scores are not strongly a↵ected by the background of391

subjects. The average score achieved by geoscientists is always (except for392

the auditory categorization of DS2) slightly higher than that of the other two393

groups, but the subjects are not numerous enough for this small di↵erence394

to be considered significant.395

On the other hand, our analysis of the subjects’ recorded descriptions396

of their categorization strategy shows that acousticians have used about 20397

more words than both other groups to qualify sounds. We interpret this result398

as a natural consequence of the acousticians’ specific expertise in describing399

sounds, while geoscientists and physicists usually represent their data only400

visually. This speculation is confirmed by the study of Paté et al. [2017],401

who conducted a thorough, quantitative analysis of verbal data collected in402

a similar experiment (also involving audified seismic data, and subjects with403

similar backgrounds).404
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Discussion405

Conclusions406

In our experiments, listeners were exposed to two audified seismic data sets,407

each characterized by a single, binary control factor: the orientation of the408

fault (strike-slip or thrust) in one case, the nature of the tectonic plate409

through which the recorded signal had traveled prior to recording (oceanic410

or continental) in the other. They were then asked to split each data set into411

two categories, based on examples of signals associated with di↵erent values412

of the control factor. Purely auditory tests were compared with similar tests,413

where data were displayed visually rather than acoustically. Overall, listen-414

ers were able to categorize data based on audition alone. Their performance415

in visual tests was better, but performance in auditory categorization was416

significantly improved by a brief training session.417

Asked to comment on the criteria they had chosen to categorize, listeners418

most often pointed to perception-based physical features that can be summa-419

rized as: signal-to-noise ratio (SNR); the duration of what they interpreted420

to be meaningful signal as opposed to background noise; the frequency con-421

tent of background noise; the relative amplitude of first seismic “arrivals”422

with respect to coda. At least two of these features (SNR and meaningful423

signal duration) do correspond to quantitative parameters that we have been424

able to define and calculate by simple data processing; we show in Fig. 6a,c425

that those parameters are di↵erently distributed depending on the value of426

the relevant control parameter.427

In summary, human listeners are able to identify geophysically relevant428
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features of audified seismic data, and can be trained to improve their per-429

formance at such tasks. We cannot yet predict the extent to which training430

can refine our skills at interpreting the data by listening, but we surmise431

that auditory display can be useful to a variety of endeavors in seismic data432

analysis.433

Outlook434

While the resolution and pattern recognition capabilities of the human au-435

ditory system are generally well known [e.g., Hartmann, 1999; Wang and436

Brown, 2006a], the seismology community does not entirely appreciate the437

potential of auditory display as a tool for seismic data analysis. A case in438

point is the interesting work of Moni et al. [2012] and Moni et al. [2013],439

where an algorithm designed to mimic the human auditory system (in the440

words of the authors, “to solve the ‘cocktail party problem,’ i.e., separating441

individual speakers in a room with multiple speakers”) was successfully ap-442

plied to the problem of identifying di↵erent simultaneous microseisms, and443

yet no attempt was made to use the human auditory system itself, simply444

listening to the audified data.445

Besides the benefits derived from exploiting the natural skills of our audi-446

tory system, audification typically involves the acceleration of a seismic signal447

by a factor between ⇠ 102 and ⇠ 103, depending on the frequency content448

of the original data, which means that an entire day of seismic recording can449

be listened to in a few minutes with little or no loss of information. Being450

able to rapidly analyze large sets of data is important, as seismologists are451
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faced today with large and rapidly growing databases. For instance, precisely452

locating the epicenters of seismic aftershocks requires solving an enormous453

number of inverse problems [e.g., Valoroso et al., 2013]. This cannot be en-454

tirely automated if reliable results are to be otbained. All signals recorded by455

a seismic network can however be listened to simultaneously, by the princi-456

ples of sound spatialization [e.g. Peters et al., 2011], in an anechoic chamber457

equipped with a dense speaker network or, more simply, binaurally. The458

human auditory system is naturally equipped to locate the source of a sound459

[e.g. Hartmann, 1999; Wang and Brown, 2006b], and, through this setup, it460

is reasonable to hypothesize that one might be able to learn to roughly but461

quickly locate earthquake epicenters (global, regional or local) by listening462

to sets of audified seismograms. This approach would involve some impor-463

tant approximations (neglect of dispersion and of Earth lateral heterogeneity464

e↵ects, etc.), but could be very practical because of its speed and simplicity.465

The auditory properties of audified seismograms have also been shown to466

be indicative of several specific seismic processes, including mainshock/aftershock467

sequences, earthquake swarms that accompany volcanic eruptions, or deep468

non-volcanic tremors [Kilb et al., 2012; Peng et al., 2012]. Audification is469

likely to find other potentially important applications in seismology, wher-470

ever large datasets are to be investigated, and unknown/unexpected patterns471

recognized. Examples include the analysis of the Earth’s seismic background472

signal [e.g. Boschi and Weemstra, 2015] with implications for monitoring of473

natural hazards [e.g. Wegler and Sens-Schonfelder , 2007; Brenguier et al.,474

2008], and the problem of determining the evolution of a seismic rupture475

in space and time from the analysis of seismic data [e.g., Ide, 2007; Mai476
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et al., 2016]. The study of large sets of audified data can further benefit477

from the possibilities o↵ered by crowd-sourcing platforms: if the sounds are478

short and meaningful enough, if the listeners’ task is simple enough, and if479

the data set is correctly distributed among listeners (each sound is given to480

at least one listener, some are given to several listeners for verification and481

variability assessment), then a large data set can be e↵ectively explored by482

the “collaborative” work of a number of listeners.483

Data and resources484

The image and audio files that were presented to subjects in all the experi-485

ments described here are available online at http://hestia.lgs.jussieu.fr/ boschil/downloads.html.486

The Global Centroid Moment Tensor Project database was searched using487

www.globalcmt.org/CMTsearch.html (last accessed September 2016).488

The IRIS database was searched via theWilber interface at http://ds.iris.edu/wilber3/find event489

(last accessed September 2016).490

Figs. 1 and 2 were made using the Generic Mapping Tools version 5.2.1491

[Wessel and Smith, 1991, www.soest.hawaii.edu/gmt].492
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Table 1: Summary of listening experiments.

data set number of waveforms subjects audio visual training
A G P

DS1 40 18 9 8 yes yes no
DS2 40 15 5 7 yes yes no
DS2 36 10 3 4 yes no yes

The first two columns to the left indicate how many signals from which data
set were presented to the subjects. The letters A, G and P stand for “acous-
ticians,” “geoscientists” and “physicists,” respectively; “audio” and “visual”
indicate which type(s) of data were provided to the subjects; “training” refers
to whether subjects were trained before taking the test.

Table 2: Listeners’ comments on DS1.

Family A (oceanic paths) Family B (continental paths)

second shock very close to the first echo of the first impact’s sound

with an echo / rebound small rebounds

a lot of background noise little background noise

high-pitched background noise low-pitched background noise

background noise shorter and duller sound

longer signal sharper and shorter

rising perceived frequency

faster arrival

buzz or intense reverberation after the explosion

Summary of written, verbal explanations given by 5 subjects (scoring �80%)
concerning their auditory cateogorization of DS1. All text was originally in
French and has been translated into English as literally as possible.
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Table 3: Listeners’ comments on DS2.

Family A (strike-slip events) Family B (thrust events)

first shock weaker than second one louder low frequencies

wave of rising frequency louder than the first heard shock first shock louder than the second one

after the detonation, sound decays more slowly first shock louder than the wave

faster attack and decay more powerful and present sound

significant intensity even after a long time sound decays quickly after the detonation

lower-frequency shock slower decay

duller signal

higher frequencies

Summary of written, verbal explanations given by 8 subjects (scoring �80%)
for the auditory cateogorization of DS2 before (4 subjects scoring > 55%)
and after training (4 subjects scoring > 72%). Again, the original French
text was translated into English.

Figure 1: Surface projections of ray paths associated with audified data set
DS1. DS1 consists of recordings of events occurring along the west coast
of Mexico, made at stations at epicentral distances of ⇠4000 to 6000 km;
recordings made at north American stations correspond to ray paths only
traversing continental terrain (black lines), while stations along the Pacific
coast or on ocean islands result in purely oceanic paths (grey lines).
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(a)

(b)

Figure 2: (a) Same as Fig. 1, but for data set DS2, which only includes
recordings made at stations within the north American continent, of either
strike-slip (grey ray path curves) or thrust (black) events. Their epicenters
and focal mechanisms [Ekström et al., 2012] are shown in (b) using the same
color code.

30



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Examples of seismograms used in our study. (a) and (b): DS1,
continental paths. (c) and (d) DS1: oceanic paths. (e) and (f): DS2, thrust
faults. (g) and (h) DS2, strike-slip faults. The vertical axis is not labeled
as we systematically normalize all seismograms (both visual and audio). In
our visualization experiments, the horizontal axis was less exaggerated and
the time span much longer, so that in principle the exact same information
was provided to subjects in visualization and listening tests. The images files
used in experiments are available online (see “Data and resources” section).
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(a) DS1, auditory
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(b) DS1, visual
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(c) DS2, auditory
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(d) DS2, visual

Figure 4: These histograms summarize the results of the constrained catego-
rization experiments conducted before training on audified seismograms from
data sets DS1 (panels (a) and (b)) and DS2 ((c) and (d)). Scores achieved
in auditory tests are shown in panels (a) and (c); scores achieved in visual
tests are shown in (b) and (d). The vertical dashed line marks the “99%
confidence level,” i.e. the probability of achieving at least that score by cat-
egorizing the signal at random is less than 1%. Colors correspond to the
di↵erent background of subjects, as explained in the inset.
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Figure 5: Histogram summarizing the results of the constrained categoriza-
tion experiment conducted (on DS2) after training. The vertical dotted line,
corresponding to a score of 69.4%, marks the 99% confidence level; all scores
in the 67.5%-to-72.5% bin actually fall to its right.
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Figure 6: Distributions, shown as box-plots, of three physical parameters,
corresponding to properties of the signal that subjects tend to describe as
important: (a) SNR; (b) dominant frequency of background noise; (c) dura-
tion of meaningful signal. For each parameter, the distributions of parameter
values for oceanic-path (“Family A) and continental-path (“Family B) signal
are shown separately. Distributions are summarized by their median (thick
grey segments), first and third quartiles (upper and lower sides of boxes),
and minimum and maximum values (endpoints of dashed lines). Values that
we neglect as outliers (their absolute value is more than 1.5 times the in-
terquartile distance) are denoted by grey crosses.
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Figure 7: Signal envelope averaged over all DS1 audified seismograms corre-
sponding to continental (black line) vs. oceanic (grey) paths.
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Figure 8: Same as Fig. 7, but envelopes are averaged over all DS2 signals
originated from thrust (black line) vs. strike-slip (grey) events.
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Figure 9: Average scores by test (left to right, as indicated under each bar)
and by subjects’ background group. Black, grey and white bars are associated
with acousticians, geoscientists and physicists, respectively. The number
of subjects participating to a test is shown above the corresponding bar.
The label “post-training” refers to the auditory test of DS2 conducted after
the training session; “training” refers to answers that were given during the
aforementioned training session.
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