T. Hassold and P. Hunt, To err (meiotically) is human: the genesis of human aneuploidy, Nature Reviews Genetics, vol.2, issue.4, pp.280-291, 2001.
DOI : 10.1038/35066065

A. Webster and M. Schuh, Mechanisms of Aneuploidy in Human Eggs, Trends in Cell Biology, vol.27, issue.1, pp.55-68, 2017.
DOI : 10.1016/j.tcb.2016.09.002

M. Petronczki, M. F. Siomos, and K. Nasmyth, Un M??nage ?? Quatre, Cell, vol.112, issue.4, pp.423-440, 2003.
DOI : 10.1016/S0092-8674(03)00083-7

C. Gutierrez-caballero, L. R. Cebollero, and A. M. Pendas, Shugoshins: from protectors of cohesion to versatile adaptors at the centromere, Trends in Genetics, vol.28, issue.7, pp.351-360, 2012.
DOI : 10.1016/j.tig.2012.03.003

Y. Watanabe, Geometry and force behind kinetochore orientation: lessons from meiosis, Nature Reviews Molecular Cell Biology, vol.12, issue.6, pp.370-382, 2012.
DOI : 10.1038/nrm3133

K. Wassmann, Sister chromatid segregation in meiosis II: Deprotection through phosphorylation, Cell Cycle, vol.119, issue.9, pp.1352-1359, 2013.
DOI : 10.1242/jcs.02919

URL : https://hal.archives-ouvertes.fr/hal-01539807

E. Llano, Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice, Genes & Development, vol.22, issue.17, pp.2400-2413, 2008.
DOI : 10.1101/gad.475308

J. Lee, Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells, Nature Cell Biology, vol.12, issue.1, pp.42-52, 2008.
DOI : 10.4161/cc.5.10.2747

V. L. Katis, Rec8 Phosphorylation by Casein Kinase 1 and Cdc7-Dbf4 Kinase Regulates Cohesin Cleavage by Separase during Meiosis, Developmental Cell, vol.18, issue.3, pp.397-409, 2010.
DOI : 10.1016/j.devcel.2010.01.014

C. Rumpf, Casein kinase 1 is required for efficient removal of Rec8 during meiosis I, Cell Cycle, vol.19, issue.13, pp.2657-2662, 2010.
DOI : 10.1016/S1534-5807(03)00086-8

T. Ishiguro, K. Tanaka, T. Sakuno, and Y. Watanabe, Shugoshin???PP2A counteracts casein-kinase-1-dependent cleavage of Rec8 by separase, Nature Cell Biology, vol.9, issue.5, pp.500-506, 2010.
DOI : 10.1091/mbc.E07-05-0504

J. P. Chambon, The PP2A Inhibitor I2PP2A Is Essential for Sister Chromatid Segregation in Oocyte Meiosis II, Current Biology, vol.23, issue.6, pp.485-490, 2013.
DOI : 10.1016/j.cub.2013.02.004

URL : https://hal.archives-ouvertes.fr/hal-01539613

R. Gomez, Mammalian SGO2 appears at the inner centromere domain and redistributes depending on tension across centromeres during meiosis II and mitosis, EMBO reports, vol.23, issue.2, pp.173-180, 2007.
DOI : 10.1038/sj.embor.7400877

S. T. Qi, Overexpression of SET??, a protein localizing to centromeres, causes precocious separation of chromatids during the first meiosis of mouse oocytes, Journal of Cell Science, vol.126, issue.7, pp.1595-1603, 2013.
DOI : 10.1242/jcs.116541

B. E. Mcguinness, T. Hirota, N. R. Kudo, J. M. Peters, and K. Nasmyth, Shugoshin Prevents Dissociation of Cohesin from Centromeres During Mitosis in Vertebrate Cells, PLoS Biology, vol.5, issue.3, p.86, 2005.
DOI : 10.1371/journal.pbio.0030086.sg005

H. Liu, S. Rankin, and H. Yu, Phosphorylation-enabled binding of SGO1???PP2A to cohesin protects sororin and centromeric cohesion during mitosis, Nature Cell Biology, vol.15, issue.1, pp.40-49, 2013.
DOI : 10.1101/gad.193615.112

S. A. Kawashima, Y. Yamagishi, T. Honda, K. Ishiguro, and Y. Watanabe, Phosphorylation of H2A by Bub1 Prevents Chromosomal Instability Through Localizing Shugoshin, Science, vol.170, issue.13, pp.172-177, 2010.
DOI : 10.1016/j.yexcr.2007.04.038

Z. Tang, Y. Sun, S. E. Harley, H. Zou, and H. Yu, Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis, Proc. Natl Acad. Sci. USA 101, pp.18012-18017, 2004.
DOI : 10.1083/jcb.153.1.137

URL : http://www.pnas.org/content/101/52/18012.full.pdf

T. S. Kitajima, S. Hauf, M. Ohsugi, T. Yamamoto, and Y. Watanabe, Human Bub1 Defines the Persistent Cohesion Site along the Mitotic Chromosome by Affecting Shugoshin Localization, Current Biology, vol.15, issue.4, pp.353-359, 2005.
DOI : 10.1016/j.cub.2004.12.044

A. Asghar, Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation, Nature Communications, vol.114, p.8364, 2015.
DOI : 10.1242/jcs.056507

|. Doi, 10.1038/s41467-017-00774-3 ARTICLE, NATURE COMMUNICATIONS NATURE COMMUNICATIONS |, vol.8
URL : https://hal.archives-ouvertes.fr/in2p3-00652853

S. A. Touati and K. Wassmann, How oocytes try to get it right: spindle checkpoint control in meiosis, Chromosoma, vol.72, issue.2, pp.321-335, 2016.
DOI : 10.1095/biolreprod.104.032987

URL : https://hal.archives-ouvertes.fr/hal-01539806

J. Nilsson and . Bub1, Bub1/BubR1: swiss army knives at kinetochores, Cell Cycle, vol.14, issue.19, pp.2999-3000, 2015.
DOI : 10.1038/nature13911

T. Akera and Y. Watanabe, The spindle assembly checkpoint promotes chromosome bi-orientation: A novel Mad1 role in chromosome alignment, Cell Cycle, vol.11, issue.4, pp.493-497, 2016.
DOI : 10.1098/rsob.130023

R. E. Karess, K. Wassmann, and Z. Rahmani, New Insights into the Role of BubR1 in Mitosis and Beyond, Int. Rev. Cell Mol. Biol, vol.306, pp.223-273, 2013.
DOI : 10.1016/B978-0-12-407694-5.00006-7

URL : https://hal.archives-ouvertes.fr/hal-00878940

C. Sacristan and G. J. Kops, Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling, Trends in Cell Biology, vol.25, issue.1, pp.21-28, 2015.
DOI : 10.1016/j.tcb.2014.08.006

B. E. Mcguinness, Regulation of APC/C Activity in Oocytes by a Bub1-Dependent Spindle Assembly Checkpoint, Current Biology, vol.19, issue.5, pp.369-380, 2009.
DOI : 10.1016/j.cub.2009.01.064

R. M. Ricke, K. B. Jeganathan, L. Malureanu, A. M. Harrison, and J. M. Van-deursen, Bub1 kinase activity drives error correction and mitotic checkpoint control but not tumor suppression, The Journal of Cell Biology, vol.114, issue.6, pp.931-949, 2012.
DOI : 10.1074/jbc.M311128200

M. S. Van-der-waal, Mps1 promotes rapid centromere accumulation of Aurora B. EMBO Rep, pp.847-854, 2012.

S. J. Williams, A. Abrieu, and A. Losada, Bub1 targeting to centromeres is sufficient for Sgo1 recruitment in the absence of kinetochores, Chromosoma, vol.14, issue.2, pp.279-286, 2016.
DOI : 10.1038/ncb2515

S. Santaguida, A. Tighe, A. M. D-'alise, S. S. Taylor, and A. Musacchio, Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine, The Journal of Cell Biology, vol.1786, issue.1, pp.73-87, 2010.
DOI : 10.1016/j.cub.2006.07.058

K. Hached, Mps1 at kinetochores is essential for female mouse meiosis I, Development, vol.138, issue.11, pp.2261-2271, 2011.
DOI : 10.1242/dev.061317

S. A. Touati, Mouse oocytes depend on BubR1 for proper chromosome segregation but not for prophase I arrest, Nature Communications, vol.22, p.6946, 2015.
DOI : 10.1093/emboj/cdg071

URL : https://hal.archives-ouvertes.fr/hal-01292001

Y. Yun, S. I. Lane, and K. T. Jones, Premature dyad separation in meiosis II is the major segregation error with maternal age in mouse oocytes, Development, vol.141, issue.1, pp.199-208, 2014.
DOI : 10.1242/dev.100206

L. M. Lister, Age-Related Meiotic Segregation Errors in Mammalian Oocytes Are Preceded by Depletion of Cohesin and Sgo2, Current Biology, vol.20, issue.17, pp.1511-1521, 2010.
DOI : 10.1016/j.cub.2010.08.023

T. S. Kitajima, M. Ohsugi, and J. Ellenberg, Complete Kinetochore Tracking Reveals Error-Prone Homologous Chromosome Biorientation in Mammalian Oocytes, Cell, vol.146, issue.4, pp.568-581, 2011.
DOI : 10.1016/j.cell.2011.07.031

M. Vleugel, Dissecting the roles of human BUB1 in the spindle assembly checkpoint, Journal of Cell Science, vol.128, issue.16, pp.2975-2982, 2015.
DOI : 10.1242/jcs.169821

Y. Yao and W. Dai, Shugoshins function as a guardian for chromosomal stability in nuclear division, Cell Cycle, vol.11, issue.14, pp.2631-2642, 2012.
DOI : 10.4161/cc.20633

S. Yin, Bub1 Prevents Chromosome Misalignment and Precocious Anaphase during Mouse Oocyte Meiosis, Cell Cycle, vol.5, issue.18, pp.2130-2137, 2006.
DOI : 10.4161/cc.5.18.3170

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.5.18.3170?needAccess=true

A. Z. Balboula and K. Schindler, Selective Disruption of Aurora C Kinase Reveals Distinct Functions from Aurora B Kinase during Meiosis in Mouse Oocytes, PLoS Genetics, vol.81, issue.2, p.1004194, 2014.
DOI : 10.1371/journal.pgen.1004194.s009

K. Shuda, K. Schindler, J. Ma, R. M. Schultz, and P. J. Donovan, Aurora kinase B modulates chromosome alignment in mouse oocytes, Molecular Reproduction and Development, vol.50, issue.11, pp.1094-1105, 2009.
DOI : 10.4161/cc.5.17.3183

J. E. Swain, J. Ding, J. Wu, and . Smith, Regulation of spindle and chromatin dynamics during early and late stages of oocyte maturation by aurora kinases, Molecular Human Reproduction, vol.14, issue.5, pp.291-299, 2008.
DOI : 10.1093/molehr/gan015

Y. Miyanari, C. Ziegler-birling, and M. E. Torres-padilla, Live visualization of chromatin dynamics with fluorescent TALEs, Nature Structural & Molecular Biology, vol.125, issue.11, pp.1321-1324, 2013.
DOI : 10.1093/nar/27.2.573

F. Mcnicoll, M. Stevense, and R. Jessberger, Cohesin in Gametogenesis, Curr. Top. Dev. Biol, vol.102, pp.1-34, 2013.
DOI : 10.1016/B978-0-12-416024-8.00001-5

Y. Yamagishi, T. Sakuno, Y. Goto, and Y. Watanabe, Kinetochore composition and its function: lessons from yeasts, FEMS Microbiology Reviews, vol.38, issue.2, pp.185-200, 2014.
DOI : 10.1111/1574-6976.12049

O. Arguello-miranda, Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II, Developmental Cell, vol.40, issue.1, pp.37-52, 2017.
DOI : 10.1016/j.devcel.2016.11.021

A. Kouznetsova, L. Lister, M. Nordenskjold, M. Herbert, and C. Hoog, Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice, Nature Genetics, vol.10, issue.8, pp.966-968, 2007.
DOI : 10.1038/ng2065

S. I. Nagaoka, C. A. Hodges, D. F. Albertini, and P. A. Hunt, Oocyte-Specific Differences in Cell-Cycle Control Create an Innate Susceptibility to Meiotic Errors, Current Biology, vol.21, issue.8, pp.651-657, 2011.
DOI : 10.1016/j.cub.2011.03.003

S. I. Lane and K. Jones, Non-canonical function of spindle assembly checkpoint proteins after APC activation reduces aneuploidy in mouse oocytes, Nature Communications, vol.86, p.3444, 2014.
DOI : 10.1095/biolreprod.111.095711

L. Wei, BubR1 is a spindle assembly checkpoint protein regulating meiotic cell cycle progression of mouse oocyte, Cell Cycle, vol.9, issue.6, pp.1112-1121, 2010.
DOI : 10.4161/cc.9.6.10957

J. Y. Wang, RNA Interference as a tool to study the function of MAD2 in mouse oocyte meiotic maturation, Molecular Reproduction and Development, vol.71, issue.1, pp.116-124, 2007.
DOI : 10.4161/cc.3.8.1058

F. Lam, D. Cladiere, C. Guillaume, K. Wassmann, and S. Bolte, Super-resolution for everybody: An image processing workflow to obtain high-resolution images with a standard confocal microscope, Methods, vol.115, pp.17-27, 2017.
DOI : 10.1016/j.ymeth.2016.11.003

URL : https://hal.archives-ouvertes.fr/hal-01396638

L. We, S. Barbero-for-sgo2-antibody, D. J. Taylor, H. Baker, M. Yu et al., Sorger provided the Mps1?N strain We Ioanna Leontiou and Khaled Hached for preliminary experiments, and Vincent Galy for advice on spinning disc confocal microscopy We furthermore acknowledge help from our colleagues from the animal facility and administration (UMR7622), and Susanne Bolte and Jean-François Gilles from the IBPS imaging core facility for help with Confocal microscopy and 3D rendering. W.E.Y. is the recipient of a postdoctoral fellowship by ARC (Association de la Recherche Contre le Cancer), and I.B. of a 5 months visiting Predoctoral Mobility fellowship from the Ministerio de Economia y Competitividad , Spain (EEBB-I-14-08883). The lab of K.W. obtained financial support through grants by the Agence Nationale de la Recherche, Equipe FRM' by the Fondation de la Recherche Médicale (Equipe DEQ20160334921 to K.W.), the UPMC and CNRS. The group of J.A.S. obtained support through the research project BFU2014-53681-P from the Ministerio de Economia y Competitividad