K. M. Dean and A. E. Palmer, Advances in fluorescence labeling strategies for dynamic cellular imaging, Nature Chemical Biology, vol.339, issue.7, pp.512-523, 2014.
DOI : 10.1126/science.1231540

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, Microscopy in 3D: a biologist's toolbox, Trends in Cell Biology, vol.21, issue.12, pp.682-691, 2011.
DOI : 10.1016/j.tcb.2011.09.008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478882

V. Ntziachristos, Going deeper than microscopy: the optical imaging frontier in biology, Nature Methods, vol.11, issue.8, pp.603-614, 2010.
DOI : 10.1117/1.2400702

R. Tsien, THE GREEN FLUORESCENT PROTEIN, Annual Review of Biochemistry, vol.67, issue.1, pp.509-544, 1998.
DOI : 10.1146/annurev.biochem.67.1.509

J. Wu and T. D. Pollard, Counting Cytokinesis Proteins Globally and Locally in Fission Yeast, Science, vol.310, issue.5746, pp.310-314, 2005.
DOI : 10.1126/science.1113230

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.380.5602

K. E. Miller, Y. Kim, W. Huh, and H. Park, Bimolecular Fluorescence Complementation (BiFC) Analysis: Advances and Recent Applications for Genome-Wide Interaction Studies, Journal of Molecular Biology, vol.427, issue.11, pp.2039-2055, 2015.
DOI : 10.1016/j.jmb.2015.03.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417415

A. Miyawaki and Y. Niino, Molecular Spies for Bioimaging???Fluorescent Protein-Based Probes, Molecular Cell, vol.58, issue.4, pp.632-643, 2015.
DOI : 10.1016/j.molcel.2015.03.002

URL : http://doi.org/10.1016/j.molcel.2015.03.002

N. I. Shank, K. J. Zanotti, F. Lanni, P. B. Berget, and B. A. Armitage, Enhanced Photostability of Genetically Encodable Fluoromodules Based on Fluorogenic Cyanine Dyes and a Promiscuous Protein Partner, Journal of the American Chemical Society, vol.131, issue.36, pp.12960-12969, 2009.
DOI : 10.1021/ja9016864

J. Widengren, A. Chmyrov, C. Eggeling, P. Löfdahl, and C. A. Seidel, Strategies to Improve Photostabilities in Ultrasensitive Fluorescence Spectroscopy, The Journal of Physical Chemistry A, vol.111, issue.3, pp.429-440, 2007.
DOI : 10.1021/jp0646325

J. Vogelsang, A Reducing and Oxidizing System Minimizes Photobleaching and Blinking of Fluorescent Dyes, Angewandte Chemie International Edition, vol.318, issue.29, pp.5465-5469, 2008.
DOI : 10.1002/ijch.197000029

P. Klán and J. Wirz, Photochemistry of Organic Compounds From Concepts to Practice, 2009.

S. Van-de-linde, M. Heilemann, and M. Sauer, Live-Cell Super-Resolution Imaging with Synthetic Fluorophores, Annual Review of Physical Chemistry, vol.63, issue.1, pp.519-540, 2012.
DOI : 10.1146/annurev-physchem-032811-112012

S. J. Remington, Fluorescent proteins: maturation, photochemistry and photophysics, Current Opinion in Structural Biology, vol.16, issue.6, pp.714-721, 2006.
DOI : 10.1016/j.sbi.2006.10.001

J. J. Van-thor, T. Gensch, K. J. Hellingwerf, and L. N. Johnson, Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222, Nature Structural Biology, vol.9, issue.1, pp.37-41, 2002.
DOI : 10.1038/nsb739

L. Greenbaum, C. Rothmann, R. Lavie, and Z. Malik, Green Fluorescent Protein Photobleaching: a Model for Protein Damage by Endogenous and Exogenous Singlet Oxygen, Biological Chemistry, vol.36, issue.12, pp.1251-1258, 2000.
DOI : 10.1111/j.1751-1097.1982.tb03845.x

E. De-rosny and P. Carpentier, GFP-Like Phototransformation Mechanisms in the Cytotoxic Fluorescent Protein KillerRed Unraveled by Structural and Spectroscopic Investigations, Journal of the American Chemical Society, vol.134, issue.43, pp.18015-18021, 2012.
DOI : 10.1021/ja3073337

C. Duan, Structural Evidence for a Two-Regime Photobleaching Mechanism in a Reversibly Switchable Fluorescent Protein, Journal of the American Chemical Society, vol.135, issue.42, pp.15841-15850, 2013.
DOI : 10.1021/ja406860e

URL : https://hal.archives-ouvertes.fr/hal-01322350

V. Adam, Structural Basis of X-ray-Induced Transient Photobleaching in a Photoactivatable Green Fluorescent Protein, Journal of the American Chemical Society, vol.131, issue.50, pp.18063-18065, 2009.
DOI : 10.1021/ja907296v

URL : https://hal.archives-ouvertes.fr/hal-00474158

C. Duan, Rational design of enhanced photoresistance in a photoswitchable fluorescent protein, Methods and Applications in Fluorescence, vol.3, issue.1, p.14004, 2015.
DOI : 10.1088/2050-6120/3/1/014004

URL : https://hal.archives-ouvertes.fr/hal-01161782

L. Jullien and A. Gautier, Fluorogen-based reporters for fluorescence imaging: a review, Methods and Applications in Fluorescence, vol.3, issue.4, p.42007, 2015.
DOI : 10.1088/2050-6120/3/4/042007

URL : http://iopscience.iop.org/article/10.1088/2050-6120/3/4/042007/pdf

C. Li, A. G. Tebo, and A. Gautier, Fluorogenic Labeling Strategies for Biological Imaging, International Journal of Molecular Sciences, vol.130, issue.7, p.1473, 2017.
DOI : 10.1021/cb500499x

URL : https://hal.archives-ouvertes.fr/hal-01593560

J. S. Paige, K. Y. Wu, and S. R. Jaffrey, RNA Mimics of Green Fluorescent Protein, Science, vol.73, issue.5, pp.642-646, 2011.
DOI : 10.1016/S0006-3495(97)78307-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314379

C. Szent-gyorgyi, Fluorogen-activating single-chain antibodies for imaging cell surface proteins, Nature Biotechnology, vol.95, issue.2, pp.235-240, 2008.
DOI : 10.1038/nbt1368

C. Szent-gyorgyi, B. F. Schmidt, J. A. Fitzpatrick, and M. P. Bruchez, Fluorogenic Dendrons with Multiple Donor Chromophores as Bright Genetically Targeted and Activated Probes, Journal of the American Chemical Society, vol.132, issue.32, pp.11103-11109, 2010.
DOI : 10.1021/ja9099328

URL : http://doi.org/10.1021/ja9099328

C. A. Telmer, Rapid, Specific, No-wash, Far-red Fluorogen Activation in Subcellular Compartments by Targeted Fluorogen Activating Proteins, ACS Chemical Biology, vol.10, issue.5, pp.1239-1246, 2015.
DOI : 10.1021/cb500957k

URL : http://doi.org/10.1021/cb500957k

Y. Wang, Fluorogen Activating Protein???Affibody Probes: Modular, No-Wash Measurement of Epidermal Growth Factor Receptors, Bioconjugate Chemistry, vol.26, issue.1, pp.137-144, 2015.
DOI : 10.1021/bc500525b

S. Saurabh, M. Zhang, V. R. Mann, A. M. Costello, and M. P. Bruchez, Kinetically Tunable Photostability of Fluorogen-Activating Peptide-Fluorogen Complexes, ChemPhysChem, vol.132, issue.14, pp.2974-2980, 2015.
DOI : 10.1021/ja9099328

M. Plamont, Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo, Proceedings of the National Academy of Sciences, vol.3, issue.7, pp.497-502, 2016.
DOI : 10.1523/JNEUROSCI.5711-08.2009

URL : https://hal.archives-ouvertes.fr/hal-01259909

C. Li, Dynamic multicolor protein labeling in living cells, Chem. Sci., vol.26, issue.8, pp.5598-5605, 2017.
DOI : 10.1021/acs.bioconjchem.5b00409

URL : http://pubs.rsc.org/en/content/articlepdf/2017/sc/c7sc01364g

B. Halliwell and J. Gutteridge, Free radicals in biology and medicine, 2007.

F. Wilkinson, W. P. Helman, and A. B. Ross, Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation, Journal of Physical and Chemical Reference Data, vol.24, issue.2, pp.663-677, 1995.
DOI : 10.1063/1.555965

P. Ogilby, Singlet oxygen: there is indeed something new under the sun, Chemical Society Reviews, vol.104, issue.8, pp.3181-3209, 2010.
DOI : 10.1103/PhysRevA.13.1817

Y. Fukunaga, Y. Katsuragi, and T. Iszumi, Fluorescence Characteristics of Kynurenine and N???-Formylkynurenine, Their Use as Reporters of the Environment of Tryptophan 62 in Hen Egg-White Lysozyme1, The Journal of Biochemistry, vol.92, issue.1, pp.129-141, 1982.
DOI : 10.1093/oxfordjournals.jbchem.a133909

P. Walrant and R. Santus, N-FORMYL-KYNURENINE, A TRYPTOPHAN PHOTOOXIDATION PRODUCT, AS A PHOTODYNAMIC SENSITIZER, Photochemistry and Photobiology, vol.276, issue.6, pp.411-417, 1974.
DOI : 10.1021/ac60034a033

A. Gomes, E. Fernandes, and J. L. Lima, Fluorescence probes used for detection of reactive oxygen species, Journal of Biochemical and Biophysical Methods, vol.65, issue.2-3, pp.45-80, 2005.
DOI : 10.1016/j.jbbm.2005.10.003

P. J. Bilski, B. Karriker, and C. Chignell, Quenching and generation of singlet oxygen by hydroethidine and related chromophores, Chemical Physics Letters, vol.475, issue.1-3, pp.116-119, 2009.
DOI : 10.1016/j.cplett.2009.05.032

F. M. Pimenta, R. L. Jensen, T. Breitenbach, M. Etzerodt, and P. Ogilby, Oxygen-Dependent Photochemistry and Photophysics of ???MiniSOG,??? a Protein-Encased Flavin, Photochemistry and Photobiology, vol.47, issue.5, pp.1116-1126, 2013.
DOI : 10.1039/c0cc05713d

R. Ruiz-gonzález, Singlet Oxygen Generation by the Genetically Encoded Tag miniSOG, Journal of the American Chemical Society, vol.135, issue.26, pp.9564-9567, 2013.
DOI : 10.1021/ja4020524

M. Westberg, L. Holmegaard, and F. M. Pimenta, Rational Design of an Efficient, Genetically Encodable, Protein-Encased Singlet Oxygen Photosensitizer, Journal of the American Chemical Society, vol.137, issue.4, pp.1632-1642, 2015.
DOI : 10.1021/ja511940j

T. E. Meyer, The growing family of photoactive yellow proteins and their presumed functional roles, Photochemical & Photobiological Sciences, vol.2, issue.10, pp.1495-1514, 2012.
DOI : 10.4056/sigs.741334

Y. Xu and D. M. Leitner, Communication Maps of Vibrational Energy Transport Through Photoactive Yellow Protein, The Journal of Physical Chemistry A, vol.118, issue.35, pp.7280-7287, 2014.
DOI : 10.1021/jp411281y

P. Nagy, A. J. Kettle, and C. C. Winterbourn, Superoxide-mediated Formation of Tyrosine Hydroperoxides and Methionine Sulfoxide in Peptides through Radical Addition and Intramolecular Oxygen Transfer, Journal of Biological Chemistry, vol.45, issue.22, pp.14723-14733, 2009.
DOI : 10.1074/jbc.273.11.6088

M. J. Davies, The oxidative environment and protein damage, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1703, issue.2, pp.93-109, 2005.
DOI : 10.1016/j.bbapap.2004.08.007

C. Costentin, V. Hajj, C. Louault, M. Robert, and J. Savéant, Concerted Proton???Electron Transfers. Consistency between Electrochemical Kinetics and their Homogeneous Counterparts., Journal of the American Chemical Society, vol.133, issue.47, pp.19160-19167, 2011.
DOI : 10.1021/ja206561n

C. R. Mooney, M. A. Parkes, A. Iskra, and H. H. Fielding, Controlling Radical Formation in the Photoactive Yellow Protein Chromophore, Angewandte Chemie International Edition, vol.4, issue.19, pp.5646-5649, 2015.
DOI : 10.1039/C2SC21737F

R. B. Vegh, Reactive oxygen species in photochemistry of the red fluorescent protein ???Killer Red???, Chemical Communications, vol.53, issue.17, pp.4887-4889, 2011.
DOI : 10.1080/09553008814550591

E. F. Da-silva, Intracellular singlet oxygen photosensitizers: on the road to solving the problems of sensitizer degradation, bleaching and relocalization, Integr. Biol., vol.119, issue.2, pp.177-193, 2016.
DOI : 10.1021/acs.jpcb.5b01727

R. L. Jensen, J. Arnbjerg, and P. Ogilby, Reaction of Singlet Oxygen with Tryptophan in Proteins: A Pronounced Effect of the Local Environment on the Reaction Rate, Journal of the American Chemical Society, vol.134, issue.23, pp.9820-9826, 2012.
DOI : 10.1021/ja303710m

M. J. Davies, Reactive species formed on proteins exposed to singlet oxygen, Photochemical & Photobiological Sciences, vol.3, issue.1, pp.17-25, 2004.
DOI : 10.1039/b307576c

K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics, vol.22, issue.2, pp.195-201, 2006.
DOI : 10.1093/bioinformatics/bti770