L. M. De-lau and M. M. Breteler, Epidemiology of Parkinson's disease. The Lancet, pp.525-535, 2006.

L. S. Forno, The Neuropathology Of Parkinson???S Disease, Journal of neuropathology and experimental neurology, vol.55, pp.259-272, 1996.
DOI : 10.1007/978-1-4613-0759-4_2

J. Jankovic, Parkinson's disease: clinical features and diagnosis, Journal of Neurology, Neurosurgery & Psychiatry, vol.79, issue.4, pp.368-376131045, 2007.
DOI : 10.1136/jnnp.2007.131045

N. I. Bohnen, Positron Emission Tomography of Monoaminergic Vesicular Binding in Aging and Parkinson Disease, Journal of Cerebral Blood Flow & Metabolism, vol.44, issue.9, pp.1198-1212, 2006.
DOI : 10.1159/000054941

H. Ehringer and O. Hornykiewicz, Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system, Parkinsonism & Related Disorders, vol.4, issue.2, pp.1236-1239, 1960.
DOI : 10.1016/S1353-8020(98)00012-1

S. Greffard, Motor Score of the Unified Parkinson Disease Rating Scale as a Good Predictor of Lewy Body???Associated Neuronal Loss in the Substantia Nigra, Archives of Neurology, vol.63, issue.4, pp.584-588, 2006.
DOI : 10.1001/archneur.63.4.584

R. Hilker, Dementia in Parkinson disease: Functional imaging of cholinergic and dopaminergic pathways, Neurology, vol.65, issue.11, pp.1716-1722, 2005.
DOI : 10.1212/01.wnl.0000191154.78131.f6

P. Jenner, Oxidative stress in Parkinson's disease, Annals of Neurology, vol.83, issue.S3, pp.26-36, 2003.
DOI : 10.1042/bj3350637

P. Jenner, D. T. Dexter, J. Sian, A. H. Schapira, and C. D. Marsden, Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental lewy body disease, Annals of Neurology, vol.114, issue.S1, pp.82-87, 1992.
DOI : 10.1212/WNL.38.6.943

P. Jenner and C. W. Olanow, Oxidative stress and the pathogenesis of Parkinson's disease, Neurology, vol.47, issue.Issue 6, Supplement 3, pp.161-170, 1996.
DOI : 10.1212/WNL.47.6_Suppl_3.161S

L. H. Sanders and J. Greenamyre, Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free radical biology & medicine 62, pp.111-120, 2013.

J. W. Langston and P. Ballard, Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): implications for treatment and the pathogenesis of Parkinson's disease. The Canadian journal of neurological sciences, Le journal canadien des sciences neurologiques, vol.11, pp.160-165, 1984.

J. W. Langston, P. A. Ballard, and . Jr, Parkinson's disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, p.310, 1983.

G. A. Ricaurte, Fate of nigrostriatal neurons in young mature mice given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: A neurochemical and morphological reassessment, Brain Research, vol.376, issue.1, pp.117-124, 1986.
DOI : 10.1016/0006-8993(86)90905-4

A. Barzilai, E. Melamed, and A. Shirvan, Is there a rationale for neuroprotection against dopamine toxicity in Parkinson's disease? Cellular and molecular neurobiology 21, pp.215-235, 2001.

D. K. Choi, Ablation of the Inflammatory Enzyme Myeloperoxidase Mitigates Features of Parkinson's Disease in Mice, Journal of Neuroscience, vol.25, issue.28, pp.6594-6600, 2005.
DOI : 10.1523/JNEUROSCI.0970-05.2005

G. Cohen and M. B. Spina, Deprenyl suppresses the oxidant stress associated with increased dopamine turnover, Annals of Neurology, vol.195, issue.5, pp.689-690410260518, 1989.
DOI : 10.1002/ana.410260518

I. Ziv, Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons ??? A possible novel pathogenetic mechanism in Parkinson's disease, Neuroscience Letters, vol.170, issue.1, pp.136-140, 1994.
DOI : 10.1016/0304-3940(94)90258-5

I. Ziv, A. Shirvan, D. Offen, A. Barzilai, and E. Melamed, Molecular biology of dopamine-induced apoptosis: possible implications for Parkinson's disease. Methods in molecular medicine 62, pp.73-8773, 2001.

T. S. Guillot and G. W. Miller, Protective Actions of the Vesicular Monoamine Transporter 2 (VMAT2) in Monoaminergic Neurons, Molecular Neurobiology, vol.18, issue.suppl, pp.149-170, 2009.
DOI : 10.1111/j.1600-0773.1980.tb02459.x

Y. Liu, A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter, Cell, vol.70, issue.4, pp.539-551, 1992.
DOI : 10.1016/0092-8674(92)90425-C

J. P. Henry, Biochemistry and molecular biology of the vesicular monoamine transporter from chromaffin granules, The Journal of experimental biology, vol.196, pp.251-262, 1994.

E. N. Pothos, Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.20, pp.7297-7306, 2000.

G. R. Uhl, Hypothesis: The role of dopaminergic transporters in selective vulnerability of cells in Parkinson's disease, Annals of Neurology, vol.68, issue.5, pp.555-560410430503, 1998.
DOI : 10.1212/WNL.47.3.718

E. A. Fon, Vesicular Transport Regulates Monoamine Storage and Release but Is Not Essential for Amphetamine Action, Neuron, vol.19, issue.6, pp.1271-1283, 1997.
DOI : 10.1016/S0896-6273(00)80418-3

URL : http://doi.org/10.1016/s0896-6273(00)80418-3

N. Takahashi, VMAT2 knockout mice: Heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity, Proceedings of the National Academy of Sciences, vol.6, issue.17, pp.9938-9943, 1997.
DOI : 10.1097/00001756-199511270-00011

URL : http://www.pnas.org/content/94/18/9938.full.pdf

Y. M. Wang, Knockout of the Vesicular Monoamine Transporter 2 Gene Results in Neonatal Death and Supersensitivity to Cocaine and Amphetamine, Neuron, vol.19, issue.6, pp.1285-1296, 1997.
DOI : 10.1016/S0896-6273(00)80419-5

S. Kariya, N. Takahashi, M. Hirano, and S. Ueno, Increased Vulnerability to l-DOPA Toxicity in Dopaminergic Neurons From VMAT2 Heterozygote Knockout Mice, Journal of Molecular Neuroscience, vol.27, issue.3, pp.277-27927277, 2005.
DOI : 10.1385/JMN:27:3:277

K. M. Lohr, Vesicular Monoamine Transporter 2 (VMAT2) Level Regulates MPTP Vulnerability and Clearance of Excess Dopamine in Mouse Striatal Terminals, Toxicological Sciences, vol.153, issue.1, pp.79-88, 2016.
DOI : 10.1093/toxsci/kfw106

W. M. Caudle, Reduced Vesicular Storage of Dopamine Causes Progressive Nigrostriatal Neurodegeneration, Journal of Neuroscience, vol.27, issue.30, pp.8138-81480319, 2007.
DOI : 10.1523/JNEUROSCI.0319-07.2007

URL : http://www.jneurosci.org/content/jneuro/27/30/8138.full.pdf

C. E. Glatt, A. D. Wahner, D. J. White, A. Ruiz-linares, and B. Ritz, Gain-of-function haplotypes in the vesicular monoamine transporter promoter are protective for Parkinson disease in women, Human Molecular Genetics, vol.15, issue.2, pp.299-305, 2006.
DOI : 10.1093/hmg/ddi445

C. Pifl, Is Parkinson's Disease a Vesicular Dopamine Storage Disorder? Evidence from a Study in Isolated Synaptic Vesicles of Human and Nonhuman Primate Striatum, Journal of Neuroscience, vol.34, issue.24, pp.8210-8218, 2014.
DOI : 10.1523/JNEUROSCI.5456-13.2014

E. Isingrini, Selective genetic disruption of dopaminergic, serotonergic and noradrenergic neurotransmission: insights into motor, emotional and addictive behaviour, Journal of Psychiatry & Neuroscience, vol.41, issue.2, pp.169-181, 2016.
DOI : 10.1503/jpn.150028

URL : https://hal.archives-ouvertes.fr/hal-01542305

E. Isingrini, Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons, Nature Neuroscience, vol.4, issue.4, pp.560-5634245, 2016.
DOI : 10.1016/j.biopsych.2014.03.013

URL : https://hal.archives-ouvertes.fr/hal-01542253

N. Narboux-neme, Severe Serotonin Depletion after Conditional Deletion of the Vesicular Monoamine Transporter 2 Gene in Serotonin Neurons: Neural and Behavioral Consequences, Neuropsychopharmacology, vol.143, issue.12, pp.2538-2550, 2011.
DOI : 10.1016/j.jneumeth.2004.09.020

URL : https://hal.archives-ouvertes.fr/hal-00665880

Q. Y. Zhou and R. D. Palmiter, Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic, Cell, vol.83, issue.7, pp.1197-1209, 1995.
DOI : 10.1016/0092-8674(95)90145-0

URL : http://doi.org/10.1016/0092-8674(95)90145-0

E. T. Iwamoto, H. H. Loh, and E. L. Way, Circling behavior in rats with 6-hydroxydopamine or electrolytic nigral lesions, European Journal of Pharmacology, vol.37, issue.2, pp.339-356, 1976.
DOI : 10.1016/0014-2999(76)90042-X

D. Kirik, C. Rosenblad, and A. Bjorklund, Characterization of Behavioral and Neurodegenerative Changes Following Partial Lesions of the Nigrostriatal Dopamine System Induced by Intrastriatal 6-Hydroxydopamine in the Rat, Experimental Neurology, vol.152, issue.2, pp.259-2776848, 1998.
DOI : 10.1006/exnr.1998.6848

A. V. Kravitz, Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry, Nature, vol.26, issue.7306, pp.622-626, 2010.
DOI : 10.1038/nature09159

K. Fuxe and U. Ungerstedt, Antiparkinsonian drugs and dopaminergic neostriatal mechanisms: Studies in rats with unilateral 6-hydroxydopamine (=6-OH-DA)-induced degeneration of the nigro-neostriatal da pathway and quantitative recording of rotational behaviour, Pharmacology & Therapeutics. Part B: General and Systematic Pharmacology, vol.2, issue.1, pp.41-47, 1976.
DOI : 10.1016/0306-039X(76)90017-9

U. Ungerstedt, 6-Hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway: The turning syndrome, Pharmacology & Therapeutics. Part B: General and Systematic Pharmacology, vol.2, issue.1, pp.37-40, 1976.
DOI : 10.1016/0306-039X(76)90016-7

A. Bjorklund and S. B. Dunnett, Dopamine neuron systems in the brain: an update, Trends in Neurosciences, vol.30, issue.5, pp.194-202006, 2007.
DOI : 10.1016/j.tins.2007.03.006

P. Seeman and H. H. Van-tol, Dopamine receptor pharmacology, Trends in Pharmacological Sciences, vol.15, issue.7, pp.264-270, 1994.
DOI : 10.1016/0165-6147(94)90323-9

Q. Y. Zhou, C. J. Quaife, and R. D. Palmiter, Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development, Nature, vol.374, issue.6523, pp.640-643, 1995.
DOI : 10.1038/374640a0

H. Fei, A. Grygoruk, E. S. Brooks, A. Chen, and D. E. Krantz, Trafficking of Vesicular Neurotransmitter Transporters, Traffic, vol.417, issue.10, pp.1425-1436, 2008.
DOI : 10.1091/mbc.11.5.1801

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0854.2008.00771.x/pdf

R. H. Edwards, The transport of neurotransmitters into synaptic vesicles, Current Opinion in Neurobiology, vol.2, issue.5, pp.586-594, 1992.
DOI : 10.1016/0959-4388(92)90023-E

R. H. Edwards, The Neurotransmitter Cycle and Quantal Size, Neuron, vol.55, issue.6, pp.835-858, 2007.
DOI : 10.1016/j.neuron.2007.09.001

URL : http://doi.org/10.1016/j.neuron.2007.09.001

K. A. Mooslehner, Mice with Very Low Expression of the Vesicular Monoamine Transporter 2 Gene Survive into Adulthood: Potential Mouse Model for Parkinsonism, Molecular and Cellular Biology, vol.21, issue.16, pp.5321-53315321, 2001.
DOI : 10.1128/MCB.21.16.5321-5331.2001

A. Bose and M. F. Beal, Mitochondrial dysfunction in Parkinson's disease, Journal of Neurochemistry, vol.89, issue.Suppl 1, pp.216-23113731, 2016.
DOI : 10.1016/j.ajhg.2011.06.008

S. B. Berman and T. G. Hastings, Dopamine Oxidation Alters Mitochondrial Respiration and Induces Permeability Transition in Brain Mitochondria, Journal of Neurochemistry, vol.265, issue.3, pp.1127-1137, 1999.
DOI : 10.1038/jcbfm.1987.130

M. T. Lin and M. F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, vol.175, issue.7113, pp.787-795, 2006.
DOI : 10.1212/WNL.43.12.2689

J. Blesa, I. Trigo-damas, A. Quiroga-varela, and V. R. Jackson-lewis, Oxidative stress and Parkinson's disease. Frontiers in neuroanatomy 9, 2015.

G. W. Miller, Immunochemical Analysis of Vesicular Monoamine Transporter (VMAT2) Protein in Parkinson's Disease, Experimental Neurology, vol.156, issue.1, pp.138-1487008, 1998.
DOI : 10.1006/exnr.1998.7008

F. Thibaut, Regional distribution of monoamine vesicular uptake sites in the mesencephalon of control subjects and patients with Parkinson's disease: a postmortem study using tritiated tetrabenazine, Brain Research, vol.692, issue.1-2, pp.233-243, 1995.
DOI : 10.1016/0006-8993(95)00674-F

D. S. Goldstein, Deficient vesicular storage: A common theme in catecholaminergic neurodegeneration, Parkinsonism & Related Disorders, vol.21, issue.9, pp.1013-1022, 2015.
DOI : 10.1016/j.parkreldis.2015.07.009

M. Goldstein, Regulatory Mechanisms of Dopamine Biosynthesis at the Tyrosine Hydroxylase Step, Annals of the New York Academy of Sciences, vol.16, issue.1 Presynaptic M, pp.1-5, 1984.
DOI : 10.1139/v82-386

M. Levitt, S. Spector, A. Sjoerdsma, and S. Udenfriend, Elucidation of the Rate-Limiting Step in Norepinephrine Biosynthesis in the Perfused Guinea-Pig Heart, The Journal of pharmacology and experimental therapeutics, vol.148, pp.1-8, 1965.

P. E. Phillips, P. J. Hancock, and J. A. Stamford, Time window of autoreceptor-mediated inhibition of limbic and striatal dopamine release, Synapse, vol.96, issue.1, pp.15-22, 2002.
DOI : 10.1016/S0306-4522(99)00539-4

M. E. Wolf and R. H. Roth, Autoreceptor Regulation of Dopamine Synthesis, Annals of the New York Academy of Sciences, vol.35, issue.1 Presynaptic R, pp.323-343, 1990.
DOI : 10.1021/bi00458a003

J. G. Truong, A. H. Newman, G. R. Hanson, and A. E. Fleckenstein, Dopamine D2 receptor activation increases vesicular dopamine uptake and redistributes vesicular monoamine transporter-2 protein, European Journal of Pharmacology, vol.504, issue.1-2, pp.27-32049, 2004.
DOI : 10.1016/j.ejphar.2004.09.049

G. W. Miller, Immunochemical analysis of dopamine transporter protein in Parkinson's disease, Annals of Neurology, vol.643, issue.4, pp.530-539410410417, 1997.
DOI : 10.1212/WNL.42.5.1071

C. W. Olanow and W. G. Tatton, Etiology and pathogenesis of Parkinson's disease. Annual review of neuroscience 22, pp.123-144, 1999.

C. M. De-freitas, Behavioral and neurochemical effects induced by reserpine in mice, Psychopharmacology, vol.13, issue.Suppl2, pp.457-467, 2016.
DOI : 10.2165/00002512-199813050-00002

B. Giros, M. Jaber, S. R. Jones, R. M. Wightman, and M. G. Caron, Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter, Nature, vol.379, issue.6566, pp.606-612379606, 1996.
DOI : 10.1038/379606a0

M. Jaber, Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter, European Journal of Neuroscience, vol.303, issue.10, pp.3499-3511, 1999.
DOI : 10.1016/0306-4522(81)90003-8

B. E. Assmann, Infantile parkinsonism-dystonia and elevated dopamine metabolites in CSF, Neurology, vol.62, issue.10, pp.1872-1874, 2004.
DOI : 10.1212/01.WNL.0000126440.16612.51

M. A. Kurian, Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia, Journal of Clinical Investigation, vol.119, pp.1595-1603, 2009.
DOI : 10.1172/JCI39060

M. A. Kurian, Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study, The Lancet Neurology, vol.10, issue.1, pp.54-62, 2011.
DOI : 10.1016/S1474-4422(10)70269-6

M. Cyr, Sustained elevation of extracellular dopamine causes motor dysfunction and selective degeneration of striatal GABAergic neurons, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.11035-110401831768100, 2003.
DOI : 10.1073/pnas.120166397

E. Morice, C. Denis, B. Giros, and M. Nosten-bertrand, Phenotypic expression of the targeted null-mutation in the dopamine transporter gene varies as a function of the genetic background, European Journal of Neuroscience, vol.11, issue.1, pp.120-126, 2004.
DOI : 10.1016/S0166-2236(02)02192-6

J. Blesa and S. Przedborski, Parkinson's disease: animal models and dopaminergic cell vulnerability, Frontiers in neuroanatomy, vol.8, issue.155, p.155, 2014.
DOI : 10.3389/fnana.2014.00155

URL : http://journal.frontiersin.org/article/10.3389/fnana.2014.00155/pdf