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Context

Grochala et al. Angew. Chem. Int. Ed. 2007, 46, 3620-3642

Molecular solids under Pressure : 

1. Squeezing the « van der Waals space »

2. Increasing coordination numbers

3. Shortening bonds

4. Electrons moving off their atoms

𝑇 = 0𝐾 𝐻 = 𝐸 + 𝑝𝑉Enthalpy

Finding ways of decreasing volume V
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• P required to induce H2
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expected initially
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Inter- and intramolecular H-H separations

Intermolecular Intramolecular

Van der Waals space

being squeezed out

H2 bonds

First
shortened

…

… then
elongated

...

… then
shortened

again
observed experimentally

2 competing effects influencing the H2 bond lengthLabet, Gonzalez-Morelos, Hoffmann, Ashcorft, JCP, 136, 074501 (2012)
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Bond shortening - The physical wall

H2 molecule in a 

spheroidal box

LeSar & Herschbach, J. Phys. Chem 85, 2798 (1981)

H2 molecule

between

2 He atoms

Major axis length ↘

d↘

Labet, Hoffmann, Ashcorft, JCP, 136, 074502 (2012)
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Bonding orbital 

depletion

Antibonding orbital 

population
electron transfer

from σg to σu*

via the MLn fragment

Kubas complexes

electron transfer

from σg to σu*

via other H2 mol.

coming closer and closer

Solid H under Pressure

↓
H-H bond 

elongation

↓
H-H bond 

elongation
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Intermediate summary

As P increases

H-H intramolecular bonds

First strengthen

and shorten …

« Physical wall »

… then weaken

and elongate

Orbital mixing

Shortening and elongation

observed numerically

on periodic structural models

for dense solid H

What about strengthening and weakening ?

Relevance of a cluster model ?

(easier to manipulate)

Badger’s rule

(bond strength related to bond length)

Use of topological tools
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The « 3 H2 » motif

Drummond et al., Nature Communications 6, 7794 (2015)

P21/c-24 models phase II

C2/c-24 models phase III

Pc-48 models phase IV

Distorted

graphenelike layers

3 H2 motif
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( low P)

1. H-H intramolecular covalent bonds

2. Attractive intermolecular interaction (vdW)

3. Repulsive intermolecular interaction
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NCI index – evolution with pressure

d ↘ ; P↗

*
RH2-H2 = rH-H

(blue and green superimposed)

Polymerization completed

Badger’s rule !

As d ↘ (models P ↗)

• Intermolecular interactions strengthen (both

attractive and repulsive)

• Intramolecular interactions 

• Strengthen (d > 1.25)

• Weaken (0.9 < d < 1.25)

• Strengthen again once polymerized(d < 0.9)
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Localizing these points in the 3D space

allows defining the volume of interaction.



Volume of interaction

Localizing these points in the 3D space

allows defining the volume of interaction.

The global volume of interaction 

behaves like in a chemical reaction

(maximum at the TS)



Summary

Analysis of H-H distances : 

 Coexistence of 2 phenomena having opposite effects on the H2 bond length
 Physical wall (H-H bonds shorter and stiffer)
 Orbital mixing (H-H bonds longer and weaker)

Topological tools

As H2 molecules are coming closer and closer

 Bond length adaptation + Electronic distribution adaptation

 3 successive regimes: dipolar attraction, repulsion, bond formation

 Relevance of a very simple non periodic model to capture the essence of the 
P-induced phnomenon



After squeezing hydrogen in numerical experiments …

… experiencing squeezed time


