

Outline

1. Intro-Molecular solids under pressure: generalities

2. Solid Hydrogen under pressure : focus on the $\mathrm{H}---\mathrm{H}$ distances (intra + intermolecular) - Cornell
3. Study of a non periodic model for solid H under pressure : topological tools (NCI + ELF)

Outline

1. Intro-Molecular solids under pressure: generalities
2. Solid Hydrogen under pressure : focus on the H---H distances (intra + intermolecular) - Cornell

3. Study of a non periodic model for solid H under pressure : topological tools (NCI + ELF)

Outline

1. Intro-Molecular solids under pressure: generalities
2. Solid Hydrogen under pressure : focus on the H---H distances (intra + intermolecular) - Cornell
3. Study of a non periodic model for solid H under pressure : topological tools (NCI + ELF)

Context

The Chemical Imagination at Work in Very Tight Places
Wojciech Grochala,* Roald Hoffmann,* Ji Feng,* and Neil W. Ashcroft*

Molecular solids under Pressure :

$$
T=0 K \quad \text { Enthalpy } \quad H=E+p V
$$

Finding ways of decreasing volume \vee

1. Squeezing the «van der Waals space»
2. Increasing coordination numbers
3. Shortening bonds
4. Electrons moving off their atoms

Context

For noles and updales to this toble, see muw.iupoc.org. This version is daled 28 November 2016 Copyight © 2016 UUPAC, the International Union of Pure and Applied Chemistry

Molecular solids under Pressure :

1. Squeezing the «van der Waals space»
2. Increasing coordination numbers
3. Shortening bonds
4. Electrons moving off their atoms

Context

$\underset{\text { Bentrawum }}{\text { La }}$	$\underset{\substack { \text { conum } \\ \begin{subarray}{c}{58 \\ \text { neand }{ \text { conum } \\ \begin{subarray} { c } { 5 8 \\ \text { neand } } }\end{subarray}}{ }$	$\begin{aligned} & 59 \\ & \mathbf{P r} \end{aligned}$ 140.91	Nd nody mum	$\begin{gathered} \mathbf{P}_{6}^{61} \end{gathered}$	$\underset{\substack{\text { sempanum } \\ \hline \text { Smoveran }}}{62}$				$\begin{gathered} \text { Dy } \\ \text { Dyservesum } \\ \hline \end{gathered}$	$\underset{\substack { \text { H7 } \\ \begin{subarray}{c}{\text { no } \\ \text { nomum }{ \text { H7 } \\ \begin{subarray} { c } { \text { no } \\ \text { nomum } } } \\{\text { den }}\end{subarray}}{ }$			$\underset{\substack{\text { yhbotioum }}}{700}$	$\underset{\text { Lutueum }}{\substack{\text { Lu }}}$
${ }_{\text {A }}^{\text {Ac }}$	${ }_{\text {Th }}$	$\stackrel{91}{\mathrm{~Pa}}$	U^{92}	$\stackrel{93}{\mathrm{~Np}}$	$\stackrel{9}{\mathrm{Pu}}$	$\begin{aligned} & 95 \\ & \mathrm{Am} \end{aligned}$	$\begin{gathered} 96 \\ \mathrm{Cm} \end{gathered}$	$\begin{aligned} & \text { Bk } \end{aligned}$	${ }_{\text {Cf }}{ }^{98}$	${ }_{\text {Es }}$	${ }_{\text {Fm }}^{100}$	${ }^{101}$	${ }^{102}$	+103

For noles and updatas to this toble, see wnw. Iupoc.arg. This version is dated 28 November 2016 Copyight © 2016 UUPAC, the Infernational Union of Pure and Applied Chemisly

Molecular solids under Pressure :

1. Squeezing the «van der Waals space»
2. Increasing coordination numbers
3. Shortening bonds
4. Electrons moving off their atoms

Context

Molecular solids under Pressure :

1. Squeezing the «van der Waals space»
2. Increasing coordination numbers
3. Shortening bonds
4. Electrons moving off their atoms

Context

What about Hydrogen?

Molecular solids under Pressure :

1. Squeezing the «van der Waals space»
2. Increasing coordination numbers
3. Shortening bonds
4. Electrons moving off their atoms

Context

What about Hydrogen?

$\stackrel{\square}{\text { La }}$	${ }_{\text {cosem }}^{\text {cem }}$	${ }_{\substack{\text { Pr } \\ \hline 8 \\ \hline}}$	$\stackrel{\text { Nod }}{\substack{\text { No } \\ \text { den }}}$	$\stackrel{\text { Pm }}{\text { Pm }}$	${ }_{\text {sm }}^{\text {sem }}$	${ }_{\text {Eu }}^{\text {Eu }}$	${ }_{\text {cid }}^{\text {esem }}$		${ }_{\text {Dy }}^{\text {D, }}$	$\stackrel{\text { Ho }}{ }$		$\stackrel{\text { Im }}{\substack{\text { m m }}}$		$\stackrel{\pi}{4}$
${ }_{\text {Ac }}{ }^{\circ}$	$\stackrel{\text { \% }}{\text { Lh }}$	$\stackrel{\text { Pa }}{\text { Pa }}$	$\stackrel{\text { ® }}{\sim}$	N0	$\xrightarrow{\text { Pu }}$	${ }_{\text {Am }}^{\text {Am }}$	${ }_{\text {cm }}^{\text {cm }}$	B\%	$\stackrel{\text { cff }}{\substack{\text { cf } \\ \\ \hline}}$	${ }_{\text {cis }}^{\text {Es }}$	$\stackrel{10}{10}$	Md	No	

For notes and updates to this toble, see muw.iupoc.org. This version is dated 28 November 2016 Copyight © 2016 IUPAC, the International Union of Pure and Applied Chemistry

Same behavior expected (P-induced polymerization)

Context

What about Hydrogen?

$\stackrel{\square}{\text { La }}$	${ }_{\text {ce }}^{\text {ce }}$	$\stackrel{8}{\text { Pr }}$	Nı	$\stackrel{\text { Prm }}{\text { P\% }}$	${ }_{\text {smm }}^{\text {sion }}$	${ }_{\text {Eu }}^{\text {Eu }}$	${ }_{\text {cid }}^{\text {ead }}$	$\stackrel{\text { esb }}{\text { Ib }}$	${ }_{\text {Dy }}^{\text {¢ }}$	H\%	${ }_{\text {Er }}^{6}$	${ }_{\text {Tm }}^{\text {¢ }}$	${ }_{\text {rb }}^{\text {rb }}$	$\stackrel{H}{4}$
${ }_{\text {Ac }}$	¢	Pa	ű	Np	Pu	Am	$\mathrm{Cm}_{\text {cm }}^{\text {m }}$	B'k	${ }_{\text {cf }}^{\text {cf }}$	Es	${ }_{\text {Fm }}$	Md	No	$\stackrel{\text { Lr }}{ }$

For noles and updales to this toble, see wwww.lupoc.org. This version is daled 28 November 2016. Copyight © 2016 IUPAC, the Iniernational Union of Pure and Applied Chemisty

Same behavior expected (P-induced polymerization)

- Structural modifications induced by P not so easy to characterize experimentally (weak X-ray scattering)

Context

What about Hydrogen?

											$\underset{\substack{\text { H7 } \\ \text { nomm } \\ \text { nuse }}}{\substack{\text { a }}}$				
INTERNATIONAL UNION OF PURE AND APPLED CHEMISTRY	$\stackrel{8}{\text { Ac }}$					$\stackrel{\stackrel{4}{\text { Pu }}}{ }$	Am	$\mathrm{Cm}_{\mathrm{cm}}^{96}$	${ }_{\text {Bk }}$	${ }_{\text {Cf }}^{\text {Cf }}$	Es	$\stackrel{\text { Fmom }}{\text { F\% }}$	Md	No	$\stackrel{103}{108}$

For noles and updates to this table, see mum. Lupoc.org. This version is dated 28 November 2016 Copyright $@ 2016$ IUPAC, the International Union of Pure and Applied Chemisisty

Same behavior expected (P-induced polymerization)

- Structural modifications induced by P not so easy to characterize experimentally (weak X-ray scattering)
- P required to induce H_{2} dissociation much higher than expected initially

Context

What about Hydrogen?
Double motivation

$\stackrel{\text { La }}{\text { L }}$	$\stackrel{\text { cei }}{\substack{\text { cei }}}$	${ }_{\text {Pr }}^{\text {Pr }}$	$\stackrel{\text { Nod }}{\text { Nod }}$	${ }_{\text {pmm }}^{\text {sin }}$		${ }_{\text {Eu }}^{\text {Ex }}$	${ }_{\text {cid }}^{\text {cid }}$	${ }_{\text {Lib }}^{\text {Lib }}$	${ }_{\text {ct }}^{\text {cix }}$	H\%	${ }_{\text {Er }}^{\text {Ex }}$	$\stackrel{\text { com }}{\substack{\text { mim }}}$		$\stackrel{\text { Lin }}{4}$
${ }_{\text {Ac }}^{\infty}$	\%	$\stackrel{\mathrm{Pa}}{\mathrm{Pa}}$	U	$\stackrel{\text { N }}{\text { N }}$	$\xrightarrow{\text { Pu }}$	${ }_{\text {Am }}^{\text {Am }}$	$\mathrm{c}_{\text {cm }}^{\text {cm }}$	${ }_{\text {Bik }}$	$\stackrel{\text { cf }}{\text { cf }}$	${ }_{\text {es }}^{\text {Es }}$	$\stackrel{\text { Fmm }}{\text { Fem }}$	${ }_{\text {mid }}^{\text {mid }}$	No	$\stackrel{108}{\text { Lis }}$

For noles and updates to this toble, see wmw.iupoc.org. This version is daled 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry

- $\mathrm{H}: 1^{\text {st }}$ element
- H-H bond : prototypical 2e-2c covalent bond

Context

What about Hydrogen?
Double motivation

$\stackrel{\text { La }}{\text { L }}$	${ }_{\text {ce }}^{\text {ce }}$	${ }_{\text {Pr }}^{\text {Pr }}$	Nd	${ }_{\text {Pmm }}^{\text {sin }}$	${ }_{\text {sm }}^{\text {sion }}$	${ }_{\text {Eu }}^{\text {Ex }}$	¢̊d	$\xrightarrow{\text { Lib }}$	${ }_{\text {Di }}^{\text {dy }}$	H\%	${ }_{\text {Er }}^{\text {E }}$			$\stackrel{\text { L }}{4}$
${ }_{\text {Ac }}{ }_{\text {A }}$	(ex	$\stackrel{\mathrm{Pa}}{\text { Pa }}$	ü	$\stackrel{\text { Np }}{ }$	Pu	$\mathrm{Am}_{\text {Am }}$		Bk	${ }_{c}^{\text {cfi }}$	Es	${ }_{\text {Fmm }}$	Mid	come	$\stackrel{\text { Lras }}{\text { Lior }}$

For notes and updales tot this toble, see muww.lupoc.org. This version is daled 28 November 2016. Copyight © 2016 UUPAC, the Infernational Union of Pure and Applied Chemisly

- $\mathrm{H}: 1^{\text {st }}$ element
- H-H bond : prototypical 2e-2c covalent bond

A key to understand the
behavior of bonds under pressure

Context

What about Hydrogen?
Double motivation

- $\mathrm{H}: 1^{\text {st }}$ element
- H-H bond : prototypical 2e-2c covalent bond

> A key to understand the
> behavior of bonds under pressure

- «Polymerized H » should be a metal with appealing properties
- High T superconductor
- Metallic superfluid

Context

What about Hydrogen?
Double motivation

- $\mathrm{H}: 1^{\text {st }}$ element
- H-H bond : prototypical 2e-2c covalent bond

> A key to understand the
> behavior of bonds under pressure

- «Polymerized H » should be a metal with appealing properties
- High T superconductor
- Metallic superfluid
Holly Grail of physics

Dense solid hydrogen - Summary

Source : I.F. Silvera/Harvard Univ. - Adapted by E. Cononver and J. Hirshfeld (https://www.sciencenews.org/article/pressure-make-metallic-hydrogen)

Dense solid hydrogen - Summary

Source : I.F. Silvera/Harvard Univ. - Adapted by E. Cononver and J. Hirshfeld (https://www.sciencenews.org/article/pressure-make-metallic-hydrogen)

- 4 molecular phases known at low T, as P \nearrow
- I : H_{2} freely rotating
- II : orientational ordering
- III : softening of the intramolecular vib

Dense solid hydrogen - Summary

Source : I.F. Silvera/Harvard Univ. - Adapted by E. Cononver and J. Hirshfeld (https://www.sciencenews.org/article/pressure-make-metallic-hydrogen)

- 4 molecular phases known at low T, as P \nearrow
- I: H_{2} freely rotating
- II : orientational ordering
- III : softening of the intramolecular vib
- Use of numerical simulation coupled to evolurionary algorithms to propose structural models

Dense solid hydrogen - Summary

- 4 molecular phases known at low T, as P \nearrow
- I: H_{2} freely rotating
- II : orientational ordering
- III : softening of the intramolecular vib
- Use of numerical simulation coupled to evolurionary algorithms to propose structural models
- Many structures very close in enthalpy
- Interactions responsible for the coesion are essentially the same
- Essentially the same response to P フ

Dense solid hydrogen - Summary

- 4 molecular phases known at low T, as P \nearrow
- I: H_{2} freely rotating
- II : orientational ordering
- III : softening of the intramolecular vib
- Use of numerical simulation coupled to evolurionary algorithms to propose structural models
- Many structures very close in enthalpy
- Interactions responsible for the coesion are essentially the same
- Essentially the same response to P フ

Dense solid hydrogen - Summary

- 4 molecular phases known at low T, as P \nearrow
- I: H_{2} freely rotating
- II : orientational ordering
- III : softening of the intramolecular vib
- Use of numerical simulation coupled to evolurionary algorithms to propose structural models
- Many structures very close in enthalpy
- Interactions responsible for the coesion are essentially the same
- Essentially the same response to P フ

Dense solid hydrogen - Summary

- 4 molecular phases known at low T, as P \nearrow
- I: H_{2} freely rotating
- II : orientational ordering
- III : softening of the intramolecular vib
- Use of numerical simulation coupled to evolurionary algorithms to propose structural models
- Many structures very close in enthalpy
- Interactions responsible for the coesion are essentially the same
- Essentially the same response to P フ

Dense solid hydrogen - Summary

- 4 molecular phases known at low T, as P \nearrow
- I: H_{2} freely rotating
- II : orientational ordering
- III : softening of the intramolecular vib
- Use of numerical simulation coupled to evolurionary algorithms to propose structural models
- Many structures very close in enthalpy
- Interactions responsible for the coesion are essentially the same
- Essentially the same response to P フ

Inter- and intramolecular H-H separations

Inter- and intramolecular H-H separations

Inter- and intramolecular H-H separations

Intermolecular

Intramolecular

Inter- and intramolecular H-H separations

Intermolecular

Labet, Gonzalez-Morelos, Hoffmann, Ashcorft, JCP, 136, 074501 (2012)

2 competing effects influencing the H_{2} bond length

Bond shortening - The physical wall

Diatomic molecule
Potential Energy Curve

Bond shortening - The physical wall

Diatomic molecule
Potential Energy Curve

Bond shortening - The physical wall

$V=\infty$
H_{2} molecule in a spheroidal box

Bond shortening - The physical wall

Bond shortening - The physical wall

LeSar \& Herschbach, J. Phys. Chem 85, 2798 (1981)

Bond lengthening - Orbital mixing

$$
\mathbb{N}_{\sigma_{8}} \text { - }
$$

$$
\begin{aligned}
& \cdots d_{z} \text { — } \\
& \mathcal{P}^{0} d_{x} \xlongequal{\underline{\mathbb{L}}}
\end{aligned}
$$

Bond lengthening - Orbital mixing

Intermediate summary

As P increases

H-H intramolecular bonds

First strengthen and shorten then weaken and elongate
«Physical wall»	Orbital mixing

Intermediate summary

As P increases

H-H intramolecular bonds

First strengthenand shorten then weakenand elongate
«Physical wall»

Shortening and elongation observed numerically
on periodic structural models for dense solid H

Intermediate summary

As P increases

H-H intramolecular bonds

First strengthen and shorten ...

... then weaken and elongate
«Physical wall»

Shortening and elongation observed numerically
on periodic structural models for dense solid H

What about strengthening and weakening?

Badger's rule
(bond strength related to bond length)

Intermediate summary

As P increases

H-H intramolecular bonds

First strengthen

 and shorten then weaken and elongate
«Physical wall»

Shortening and elongation observed numerically
on periodic structural models for dense solid H

What about strengthening and weakening?

Badger's rule
(bond strength related to bond length)

Use of topological tools

Intermediate summary

As P increases

H-H intramolecular bonds

First strengthen

 and shorten then weaken and elongate
«Physical wall»

Shortening and elongation observed numerically
on periodic structural models for dense solid H

What about strengthening and weakening?

Badger's rule
(bond strength related to bond length)

Use of topological tools

Relevance of a cluster model ? (easier to manipulate)

Which structural model for solid H2 under pressure?

Drummond et al., Nature Communications 6, 7794 (2015)

Which structural model for solid H2 under pressure?

Distorted

graphenelike layers

C2/c-24 models phase III
P2 ${ }_{1}$ /c-24 models phase II

The « $3 \mathrm{H}_{2}$ » motif

Distorted graphenelike layers

P2 ${ }_{1}$ /c-24 models phase II

Non-periodic model

Non-periodic model

- 6 protons constrained to be on a ring of radius d

Non-periodic model

- 6 protons constrained to be on a ring of radius d
- $\mathrm{D}_{3 \mathrm{~h}}$ symmetry imposed
$\rightarrow 1$ degree of freedom to optimize $\left(r_{H-H}, R_{\mathrm{H}_{2}-\mathrm{H}_{2}}\right)$

Non-periodic model

- 6 protons constrained to be on a ring of radius d
- $\mathrm{D}_{3 \mathrm{~h}}$ symmetry imposed
$\rightarrow 1$ degree of freedom to optimize $\left(r_{H-H}, R_{\mathrm{H}_{2}-\mathrm{H}_{2}}\right)$
- d \downarrow to model P $\boldsymbol{\gamma}$

Non-periodic model

- 6 protons constrained to be on a ring of radius d
- $\mathrm{D}_{3 \mathrm{~h}}$ symmetry imposed
$\rightarrow 1$ degree of freedom to optimize $\left(r_{\mathrm{H}-\mathrm{H}}, \mathrm{R}_{\mathrm{H} 2-\mathrm{H} 2}\right)$
- d \downarrow to model P $\boldsymbol{\gamma}$

van der Waals space squeezed out

Non-periodic model

- 6 protons constrained to be on a ring of radius d
- $\mathrm{D}_{3 \mathrm{~h}}$ symmetry imposed
$\rightarrow 1$ degree of freedom to optimize $\left(r_{\mathrm{H}-\mathrm{H}}, \mathrm{R}_{\mathrm{H} 2-\mathrm{H} 2}\right)$
- d \to model P ィ
$\mathrm{d}(\AA)$

Non-periodic model

- 6 protons constrained to be on a ring of radius d
- $\mathrm{D}_{3 \mathrm{~h}}$ symmetry imposed
$\rightarrow 1$ degree of freedom to optimize $\left(r_{\mathrm{H}-\mathrm{H}}, \mathrm{R}_{\mathrm{H} 2-\mathrm{H} 2}\right)$
- d \to model P ィ
$\mathrm{d}(\AA)$

Plotting $s=f(\rho)$

$$
s=\frac{1}{C_{S}} \frac{|\nabla \rho|}{\rho^{4 / 3}} \quad \text { Reduced gradient density }
$$

Plotting $s=f(\rho)$

$$
s=\frac{1}{C_{S}} \frac{|\nabla \rho|}{\rho^{4 / 3}} \quad \text { Reduced gradient density }
$$

NCl index

Plotting $s=f(\rho)$

$$
s=\frac{1}{C_{S}} \frac{|\nabla \rho|}{\rho^{4 / 3}} \quad \text { Reduced gradient density }
$$

NCl index

Plotting $s=f(\rho)$

$$
s=\frac{1}{C_{S}} \frac{|\nabla \rho|}{\rho^{4 / 3}} \quad \text { Reduced gradient density }
$$

NCl index

Plotting $s=f(\rho)$

$$
s=\frac{1}{C_{S}} \frac{|\nabla \rho|}{\rho^{4 / 3}} \quad \text { Reduced gradient density }
$$

Reveals the presence of intramolecular interactions

NCl index

Plotting $s=f(\rho)$

$$
s=\frac{1}{C_{S}} \frac{|\nabla \rho|}{\rho^{4 / 3}} \quad \text { Reduced gradient density }
$$

NCl index

Plotting $s=f(\rho)$

$$
s=\frac{1}{C_{S}} \frac{|\nabla \rho|}{\rho^{4 / 3}} \quad \text { Reduced gradient density }
$$

NCl index

Plotting $s=f(\rho)$

$$
s=\frac{1}{C_{S}} \frac{|\nabla \rho|}{\rho^{4 / 3}} \quad \text { Reduced gradient density }
$$

E. R. Johnson et al., J. Am. Chem. Soc., 2010, 132, 6498.

NCl index

Plotting $s=f(\rho)$

$$
s=\frac{1}{C_{S}} \frac{|\nabla \rho|}{\rho^{4 / 3}} \quad \text { Reduced gradient density }
$$

NCl index

Plotting $s=f(\rho)$

Spikes $\rho \leftrightarrow$ interaction strength

$$
s=\frac{1}{C_{S}} \frac{|\nabla \rho|}{\rho^{4 / 3}} \quad \text { Reduced gradient density }
$$

NCI index - inventaire of the interactions

NCI index - inventaire of the interactions

λ_{2} : eigenvalue of the ρ Hessian matrix

$$
\left(\lambda_{1}<\lambda_{2}<\lambda_{3}\right)
$$

NCI index - inventaire of the interactions

$\lambda_{2}<0:$ attractive interaction
$\lambda_{2}>0:$ repulsive interaction

NCI index - inventaire of the interactions

λ_{2} : eigenvalue of the ρ Hessian matrix

$$
\left(\lambda_{1}<\lambda_{2}<\lambda_{3}\right)
$$

$$
\begin{aligned}
& \lambda_{2}<0: \text { attractive interaction } \\
& \lambda_{2}>0: \text { repulsive interaction }
\end{aligned}
$$

NCI index - inventaire of the interactions

Isosurfaces $s=0.5$

2

1. H-H intramolecular covalent bonds
2. Attractive intermolecular interaction (vdW)
3. Repulsive intermolecular interaction

λ_{2} : eigenvalue of the ρ Hessian matrix

$$
\left(\lambda_{1}<\lambda_{2}<\lambda_{3}\right)
$$

$$
\begin{aligned}
& \lambda_{2}<0: \text { attractive interaction } \\
& \lambda_{2}>0: \text { repulsive interaction }
\end{aligned}
$$

NCI index - evolution with pressure

a)
$d \searrow ; P \nearrow$

NCI index - evolution with pressure

As d \searrow (models P \nearrow)

- Intermolecular interactions strengthen (both attractive and repulsive)
a)

$d \searrow ; P$ ス

NCI index - evolution with pressure

$d \searrow ; P$ ス

NCI index - evolution with pressure

As d \downarrow (models P 7)

- Intermolecular interactions strengthen (both attractive and repulsive)
- Intramolecular interactions
- Strengthen ($d>1.25$)
- Weaken (0.9 < d < 1.25)
- Strengthen again once polymerized $(\mathrm{d}<0.9)$
a)

NCI index - evolution with pressure

As d \downarrow (models P 7)

- Intermolecular interactions strengthen (both attractive and repulsive)
- Intramolecular interactions
- Strengthen ($d>1.25$)
- Weaken (0.9 < d < 1.25)
- Strengthen again once polymerized $(\mathrm{d}<0.9)$

$d \searrow ; ~ P ~ オ ~$

Badger's rule!

Comparison with an H_{2} adapted in length

At a given d,

comparison of the electronic distribution
H_{2} of the interacting system
H_{2} of the interacting system
Isolated from its neighbors

Comparison with an H_{2} adapted in length

At a given d,

comparison of the electronic distribution
H_{2} of the interacting system
H_{2} of the interacting system
Isolated from its neighbors

Comparison with an H_{2} adapted in length

Comparison with an H_{2} adapted in length

Before complete polymerization

Before complete polymerization

3 regimes

$\mathrm{d}(\AA)$

3 regimes

$\mathrm{d}(\AA)$

3 regimes

$\mathrm{d}(\AA)$

ρ organizes like in an isolated molecule having the same length
H_{2} shorter than a normal mol.
$\rho_{B C P}$ higher than in a «shortened » H_{2} mol.
ρ reorganization: inter \rightarrow intra

3 regimes

$\mathrm{d}(\AA)$

ρ organizes like in an isolated molecule having the same length

Deformation
to avoid intermol. regions
ρ reorganization: inter \rightarrow intra

ELF (0.95) | Deformation |
| :---: |
| to avoid |
| intermol. regions |

3 regimes

$\mathrm{d}(\AA)$
H_{2} longer
than a normal mol.
ρ_{BCP} smaller than in a «elongated» H_{2} mol.
ρ reorganization: intra \rightarrow inter

H_{2} shorter than a normal mol.
$\rho_{B C P}$ higher than in a «shortened » H_{2} mol.
ρ reorganization: inter \rightarrow intra
ρ organizes like in an isolated molecule having the same length

Deformation
to avoid intermol. regions

3 regimes

H_{2} longer
than a normal mol.
ρ_{BCP} smaller than in a «elongated» $\mathrm{H}_{2} \mathrm{~mol}$.
ρ reorganization: intra \rightarrow inter

ELF (0.95)

Retreat in the intramol.region.
Bonds are breaking.
ρ organizes like in an isolated molecule having the same length

Deformation
to avoid intermol. regions

3 regimes

H_{2} longer
than a normal mol.
ρ_{BCP} smaller than in a «elongated» $\mathrm{H}_{2} \mathrm{~mol}$.
ρ reorganization: intra \rightarrow inter

ELF (0.95)

Retreat in the intramol.region.
Bonds are breaking.
ρ organizes like in an isolated molecule having the same length

Deformation
to avoid intermol. regions

Volume of interaction

Volume of interaction

Localizing these points in the 3D space allows defining the volume of interaction.

Volume of interaction

Summary

Analysis of H-H distances :

- Coexistence of 2 phenomena having opposite effects on the H_{2} bond length
- Physical wall (H-H bonds shorter and stiffer)
- Orbital mixing (H-H bonds longer and weaker)

Topological tools

As H_{2} molecules are coming closer and closer

- Bond length adaptation + Electronic distribution adaptation
- 3 successive regimes: dipolar attraction, repulsion, bond formation
- Relevance of a very simple non periodic model to capture the essence of the P-induced phnomenon

After squeezing hydrogen in numerical experiments ...

... experiencing squeezed time

