

TOPOLOGICAL STUDY OF CHEMICAL BONDS UNDER PRESSURE: Hydrogen as a model case

Vanessa Labet

Paris, FRANCE

1. Intro - Molecular solids under pressure: generalities

2. Solid Hydrogen under pressure : focus on the H----H distances (intra + intermolecular) - Cornell

3. Study of a non periodic model for solid H under pressure: topological tools (NCI + ELF)

1. Intro - Molecular solids under pressure: generalities

2. Solid Hydrogen under pressure : focus on the H---H distances (intra + intermolecular) - Cornell

3. Study of a non periodic model for solid H under pressure: topological tools (NCI + ELF)

1. Intro - Molecular solids under pressure: generalities

2. Solid Hydrogen under pressure : focus on the H---H distances (intra + intermolecular) - Cornell

3. Study of a non periodic model for solid H under pressure
: topological tools (NCI + ELF)

Molecular solids under Pressure :

T = 0K Enthalpy H = E + pV

Finding ways of decreasing volume V

- 1. Squeezing the « van der Waals space »
- 2. Increasing coordination numbers
- 3. Shortening bonds
- 4. Electrons moving off their atoms

Grochala et al. Angew. Chem. Int. Ed. 2007, 46, 3620-3642

Molecular solids under Pressure :

- 1. Squeezing the «van der Waals space»
- 2. Increasing coordination numbers
- 3. Shortening bonds
- 4. Electrons moving off their atoms

Molecular solids under Pressure :

- 1. Squeezing the «van der Waals space»
- 2. Increasing coordination numbers
- 3. Shortening bonds
- 4. Electrons moving off their atoms

Molecular solids under Pressure :

- 1. Squeezing the «van der Waals space»
- 2. Increasing coordination numbers
- 3. Shortening bonds
- 4. Electrons moving off their atoms

Polymerization

What about Hydrogen ?

Molecular solids under Pressure :

- 1. Squeezing the «van der Waals space»
- 2. Increasing coordination numbers
- 3. Shortening bonds
- 4. Electrons moving off their atoms

Polymerization

What about Hydrogen ?

1	1 1 H hydrogen					I	UPAC	Period	dic Tał	ole of	the Ele	ement	5					18 2 He helium
	[1.008]	2	1	Key:									13	14	15	16	17	4.0026
	3 Li 6.94 [6.938, 6.997]	4 Be beryllium 9.0122		atomic num Symbo name conventional atomic standard atomic	S 6 7 8 9 7 Immbol name Carbon Carbon NO F No No F No No											10 Ne neon 20.180		
	11 Na sodium	12 Mg magnesium 24.305	3	4	5	6	7	8	9	10	11	12	13 Al aluminium	14 Si silicon 28.085	15 P phosphorus	16 S sulfur 32.06	17 Cl chlorine 35.45	18 Ar argon
	19 K potassium	20 Ca calcium	21 Sc scandium	22 Ti titanium	23 V vanadium	24 Cr chromium	25 Mn manganese	26 Fe iron	27 Co cobalt	28 Ni nickel	29 Cu copper	30 Zn zinc	31 Ga gallium	32 Ge germanium	33 As arsenic	34 Se selenium	35 Br bromine	36 Kr krypton
	39.098	40.078(4)	44.956	47.867	50.942	51.996	54.938	55.845(2)	58.933	58.693	63.546(3)	65.38(2)	69.723	72.630(8)	74.922	78.971(8)	79.904 [79.901, 79.907]	83.798(2)
	37 Rb rubidium	38 Sr strontium	39 Y yttrium	40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 Tc technetium	44 Ru ruthenium	45 Rh rhodium	46 Pd palladium	47 Ag silver	48 Cd cadmium	49 In indium	Sn tin	51 Sb antimony	52 Te tellurium	53 I iodine	54 Xe xenon
	85.468	87.62	88.906	91.224(2)	92.906	95.95		101.07(2)	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60(3)	126.90	131.29
	CS caesium	56 Ba barium	57-71 Ianthanoids	72 Hf hafnium	73 Ta tantalum	74 W tungsten	75 Re rhenium	76 OS osmium	iridium	78 Pt platinum	79 Au gold	Hg mercury	81 TI thallium	Pb lead	Bi bismuth	Po polonium	At astatine	86 Rn radon
	132.91	137.33		178.49(2)	180.95	183.84	186.21	190.23(3)	192.22	195.08	196.97	200.59	[204.38, 204.39]	207.2	208.98			
	87 Fr francium	Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 Ds darmstadtium	111 Rg roentgenium	Cn copernicium	113 Nh nihonium	114 FI flerovium	115 MC moscovium	116 Lv livermorium	117 Ts tennessine	oganesson
															-			
				57 La Ianthanum	58 Ce cerium	59 Pr praseodymium	60 Nd neodymium	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu lutetium
				89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
INTERNATIONAL UNION OF AC actinium Protactinium Protactin								No	Lr lawrencium									

Same behavior expected (P-induced polymerization)

What about Hydrogen ?

Same behavior expected (P-induced polymerization)

 Structural modifications induced by P not so easy to characterize experimentally (weak X-ray scattering)

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.

What about Hydrogen ?

Same behavior expected (P-induced polymerization)

- Structural modifications induced by P not so easy to characterize experimentally (weak X-ray scattering)
- P required to induce H₂ dissociation much higher than expected initially

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.

What about Hydrogen ?

	IUPAC Periodic Table of the Elements												18					
	1 H hydrogen					_												2 He helium
	1.008 [1.0078, 1.0082]	2		Key:									13	14	15	16	17	4.0026
	Li Ethiann 6.54	4 Be beryllium		atomic num Symbo name	iber Ol weight								5 B boron 10.81	6 C carbon 12.011	7 N nitrogen	8 Oxygen 15.999	9 F fluorine	10 Ne neon
	[6.938, 6.997] 11 Na sodium 22,990	9.0122 12 Mg magnesium 24.305 [24.304, 24.307]	3	standard atomic v	veight 5	6	7	8	9	10	11	12	13 AI aluminium 26.982	14 Si silicon 28.085 [28.084.28.086]	15 P phosphorus 30.974	16 S sulfur 32.06 (32.059, 32.076)	18.998 17 Cl chlorine 35.45 [35.446, 35.457]	20.180 18 Ar argon 39.948
	19 K potassium	20 Ca calcium	21 Sc scandium	22 Ti titanium	23 V vanadium	24 Cr chromium	25 Mn manganese	26 Fe iron	27 Co cobalt	28 Ni nickel	29 Cu copper	30 Zn zinc	31 Ga gallium	32 Ge germanium	33 As arsenic	34 Se selenium	35 Br bromine	36 Kr krypton
	39.098	40.078(4)	44.956	47.867	50.942	51.996	54.938	55.845(2)	58.933	58.693	63.546(3)	65.38(2)	69.723	72.630(8)	74.922	78.971(8)	[79.901, 79.907]	83.798(2)
	37 Rb rubidium	38 Sr strontium	39 Y yttrium	40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 TC technetium	44 Ru ruthenium	45 Rh rhodium	46 Pd palladium	47 Ag silver	48 Cd cadmium	49 In indium	Sn tin	51 Sb antimony	52 Te tellurium	53 II iodine	54 Xe xenon
	85.468	87.62	88.906	91.224(2)	92.906	95.95		101.07(2)	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60(3)	126.90	131.29
	55 CS caesium	56 Ba barium	57-71 Ianthanoids	72 Hf hafnium	73 Ta tantalum	74 W tungsten	75 Re rhenium	76 OS osmium	77 Ir iridium	78 Pt platinum	79 Au gold	80 Hg mercury 200.59	81 TI thallium 204.38 1204.38, 204.391	82 Pb lead	83 Bi bismuth	84 Po polonium	85 At astatine	86 Rn radon
	87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 Fl flerovium	115 MC moscovium	116 Lv livermorium	117 Ts tennessine	118 Og oganesson
				57 La Ianthanum	58 Ce cerium	59 Pr praseodymium 140.91	60 Nd neodymium	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu lutetium
			05	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY Actinium Protectinum Protect									No	Lr								

Double motivation

•	Η	:	1 st 6	eler	nent
---	---	---	-------------------	------	------

• H-H bond : prototypical 2e-2c covalent bond

What about Hydrogen ?

1	1	`				1	UPAC	Period	lic Tak	le of	the Ele	ement	S					18
- []	1 H hydrogen	ĺ											-					Per helium
	1.008 [1.0078, 1.0082]	2		Key:									13	14	15	16	17	4.0026
	3 Li 6.94 [6.938, 6.997]	4 Be beryllium 9.0122		atomic num Symbo name conventional atomic standard atomic	iber ol weight weight								5 B boron 10.81 [10.806, 10.821]	6 C carbon 12.011 [12.009, 12.012]	7 N nitrogen 14.007 [14.006, 14.008]	8 Oxygen 15.999 [15.999, 16.000]	9 F fluorine 18.998	10 Ne neon 20.180
	11 Na sodium 22.990	12 Mg magnesium 24.305 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus 30.974	16 S sulfur 32.06 [32.059, 32.076]	17 Cl chlorine 35.45 [35.446, 35.457]	18 Ar argon 39.948
	19 K potassium	20 Ca calcium	21 Sc scandium	22 Ti titanium	23 V vanadium	24 Cr chromium	25 Mn manganese	26 Fe iron	27 Co cobalt	28 Ni nickel	29 Cu copper	30 Zn zinc	31 Ga gallium	32 Ge germanium	33 As arsenic	34 Se selenium	35 Br bromine	36 Kr krypton
-	39.098	40.078(4)	44.956	47.867	50.942	51,996	54.938	55.845(2)	58.933	58.693	63.546(3)	65.38(2)	69.723	72.630(8)	74.922	78.971(8)	[79.901, 79.907]	83.798(2)
	37 Rb rubidium	38 Sr strontium	39 Y yttrium	40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 TC technetium	44 Ru ruthenium	45 Rh rhodium	46 Pd palladium	47 Ag silver	48 Cd cadmium	49 In indium	Sn tin	51 Sb antimony	52 Te tellurium	53 I iodine	54 Xe xenon
	85.468	87.62	88.906	91.224(2)	92.906	95.95		101.07(2)	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60(3)	126.90	131.29
	55 Cs caesium	56 Ba barium	57-71 Ianthanoids	72 Hf hafnium	73 Ta tantalum	74 W tungsten 183.84	75 Re rhenium	76 OS osmium 190.23(3)	77 Ir iridium	78 Pt platinum	79 Au gold	80 Hg mercury 200.59	81 TI thallium 204.38 [204.38, 204.39]	82 Pb lead	83 Bi bismuth	84 Po polonium	85 At astatine	86 Rn radon
	87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitnerium	110 Ds darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 Fl flerovium	115 Mc moscovium	116 Lv livermorium	117 TS tennessine	118 Og oganesson
				57 La Ianthanum	58 Ce cerium	59 Pr praseodymium	60 Nd neodymium	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu lutetium
				89	90	91	92	93	94	95	96	97	98	99	107.20	100.93	102	1/4.9/
INTERNA PURE AN	INTERNATIONAL UNION OF AC TH Pa U Nprotection Production Productin Production Production									Lr								

Double motivation

•	Η	•] st	element
---	---	---	-------------	---------

• H-H bond : prototypical 2e-2c covalent bond

A key to understand the behavior of bonds under pressure

What about Hydrogen ?

1	1					I	UPAC	Perio	dic Tak	ole of	the Ele	ement	s					18
1	1 H hydrogen					-							-					2 He helium
. N.	1.008	2	_	Key:									13	14	15	16	17	4.0026
	3 Li 6.94 [6.938, 6.997]	4 Be beryllium 9.0122		atomic num Symb name conventional atomic standard atomic	nber Ol weight weight								5 B boron 10.81 [10.806, 10.821]	6 C carbon 12.011 [12.009, 12.012]	7 N nitrogen 14.007 [14.006, 14.008]	8 Oxygen 15.999 [15.999, 16.000]	9 F fluorine 18.998	10 Ne neon 20.180
	11 Na sodium 22.990	12 Mg magnesium 24.305 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus 30.974	16 S sulfur 32.06 [32.059, 32.076]	17 Cl chlorine 35.45 [35.446, 35.457]	18 Ar argon 39.948
	19 K potassium	20 Ca calcium	21 Sc scandium	22 Ti titanium	23 V vanadium	24 Cr chromium	25 Mn manganese	26 Fe	27 Co cobalt	28 Ni nickel	29 Cu copper	30 Zn zinc	31 Ga gallium	32 Ge germanium	33 As arsenic	34 Se selenium	35 Br bromine 78.904	36 Kr krypton
	39.098 37 Rb rubidium	40.078(4) 38 Sr strontium	39 Y yttrium	47.867 40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 TC technetium	44 Ru ruthenium	45 Rh rhodium	46 Pd palladium	63.546(3) 47 Ag silver	48 Cd cadmium	49 In indium	50 50 5n tin	51 Sb antimony	52 Te tellurium	[79.901, 79.907] 53 iodine	54 Xe xenon
	85.468 55 CS caesium 132.91	87.62 56 Ba barium 137.33	88.906 57-71 Ianthanoids	91.224(2) 72 Hf hafnium 178.49(2)	92.906 73 Ta tantalum 180.95	95.95 74 W tungsten 183.84	75 Re rhenium 186.21	101.07(2) 76 OS osmium 190.23(3)	102.91 77 iridium 192.22	106.42 78 Pt platinum 195.08	107.87 79 Au gold 196.97	112.41 80 Hg mercury 200.59	114.82 81 TI thallium 204.38 [204.38, 204.39]	118.71 82 Pb lead 207.2	121.76 83 Bi bismuth 208.98	127.60(3) 84 Po polonium	85 At astatine	86 Rn radon
	87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 Mc moscovium	116 Lv livermorium	117 Ts tennessine	118 Og oganessor
				57 La Ianthanum	Ce cerium	59 Pr praseodymium	60 Nd neodymium	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu Iutetium
		T \(1)		138.91	140.12	140.91	144.24	02	150.36(2)	151.96	157.25(3)	158.93	162.50	164.93	167.26	168.93	173.05	174.97
INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY 22104 23104 23104 23103 23104 12104 23103 23104 23104 23103 23104 23104 23103 23104 23104 23103 23104 23104 23103 23104 23104 23103 23104 23104 23103 23104 23104 23103 23104 23104 23103 23104 23103 23104 23103 23104 23103 23104 23103 23104 23103 23104 23103 23104 23104 23103 23104 2310									Lr									

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.

Double motivation

•	Η	:	1 st	element
---	---	---	-------------	---------

 H-H bond : prototypical 2e-2c covalent bond

> A key to understand the behavior of bonds under pressure

- « Polymerized H » should be a metal with appealing properties
 - High T superconductor
 - Metallic superfluid

What about Hydrogen ?

1	1	`				1	UPAC	Period	dic Tak	ole of	the Ele	ement	S					18
- [1 H hydrogen												-					2 He helium
<u> </u>	1.008	2		Key:									13	14	15	16	17	4.0026
	3 Li 6.94 [6.938, 6.997]	4 Be beryllium 9.0122		atomic num Symb name convertional atomic standard atomic	nber ol								5 B boron 10.81 [10.806, 10.821]	6 C carbon 12.011 [12.009, 12.012]	7 N nitrogen 14.007 [14.005, 14.008]	8 Oxygen 15.999 [15.999, 16.000]	9 F fluorine 18.998	10 Ne neon 20.180
	11 Na sodium	12 Mg magnesium 24.305	3	4	5	6	7	8	9	10	11	12	13 Al aluminium	14 Si silicon 28.085	15 P phosphorus	16 S sulfur 32.06	17 Cl chlorine 35.45	18 Ar argon
	19 K potassium	20 Ca calcium	21 Sc scandium	22 Ti titanium	23 V vanadium	24 Cr chromium	25 Mn manganese	26 Fe iron	27 Co cobait	28 Ni nickel	29 Cu copper	30 Zn zinc	31 Ga gallium	32 Ge germanium	33 As arsenic	34 Se selenium	35 Br bromine	36 Kr krypton
	39.098	40.078(4)	44.956	47.867	50.942	51.996	54.938	55.845(2)	58.933	58.693	63.546(3)	65.38(2)	69.723	72.630(8)	74.922	78.971(8)	[79.901, 79.907]	83.798(2)
	37 Rb rubidium	38 Sr strontium	39 Y yttrium	40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 Tc technetium	44 Ru ruthenium	45 Rh rhodium	46 Pd palladium	47 Ag silver	48 Cd cadmium	49 In indium	Sn tin	51 Sb antimony	52 Te tellurium	53 I iodine	54 Xe xenon
	85.468	87.62	88.906	91.224(2)	92.906	95.95		101.07(2)	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60(3)	126.90	131.29
	55 Cs caesium 132.91	56 Ba barium 137.33	57-71 Ianthanoids	72 Hf hafnium 178.49(2)	73 Ta tantalum 180.95	74 W tungsten 183.84	75 Re rhenium 186.21	76 OS osmium 190.23(3)	77 Ir iridium 192.22	78 Pt platinum 195.08	79 Au gold 196.97	80 Hg mercury 200.59	81 TI thallium 204.38 [204.38, 204.39]	82 Pb lead 207.2	83 Bi bismuth 208.98	84 Po polonium	85 At astatine	86 Rn radon
	87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 Mc moscovium	116 Lv livermorium	117 Ts tennessine	118 Og oganessor
				57 La Ianthanum	Ce cerium	59 Pr praseodymium	60 Nd neodymium	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu lutetium
				138.91	140.12	140.91	144.24		150.36(2)	151.96	157.25(3)	158.93	162.50	164.93	167.26	168.93	173.05	174.97
INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY AC actinum 22104 22001 91 92 93 94 95 96 96 97 98 99 91 000 101 101 102 PURE AND APPLIED CHEMISTRY 22104 22001 2000 100 101 101 102 100 100 101 101								102 No nobelium	103 Lr lawrencium									

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.

Double motivation

•	Η	:	1 s†	element
---	---	---	-------------	---------

• H-H bond : prototypical 2e-2c covalent bond

A key to understand the behavior of bonds under pressure

- « Polymerized H » should be a metal with appealing properties
 - High T superconductor
 - Metallic superfluid

Holly Grail of physics

Source : I.F. Silvera/Harvard Univ. - Adapted by E. Cononver and J. Hirshfeld (https://www.sciencenews.org/article/pressure-make-metallic-hydrogen)

Source : I.F. Silvera/Harvard Univ. - Adapted by E. Cononver and J. Hirshfeld (https://www.sciencenews.org/article/pressure-make-metallic-hydrogen)

- 4 molecular phases known at low T, as P ↗
 - I: H₂ freely rotating
 - II : orientational ordering
 - III : softening of the intramolecular vib

Source : I.F. Silvera/Harvard Univ. - Adapted by E. Cononver and J. Hirshfeld (https://www.sciencenews.org/article/pressure-make-metallic-hydrogen)

- 4 molecular phases known at low T, as P ↗
 - I: H₂ freely rotating
 - II : orientational ordering
 - III : softening of the intramolecular vib
- Use of numerical simulation coupled to evolurionary algorithms to propose structural models

- 4 molecular phases known at low T, as P ↗
 - I: H₂ freely rotating
 - II : orientational ordering
 - III : softening of the intramolecular vib
- Use of numerical simulation coupled to evolutionary algorithms to propose structural models
 - Many structures very close in enthalpy
 - Interactions responsible for the coesion are essentially the same
 - Essentially the same response to P

C. J. Pickard and R. J. Needs, Nature Physics, 2007, 3, 473

- 4 molecular phases known at low T, as P ↗
 - I: H_2 freely rotating
 - II : orientational ordering
 - III : softening of the intramolecular vib
- Use of numerical simulation coupled to evolutionary algorithms to propose structural models
 - Many structures very close in enthalpy
 - Interactions responsible for the coesion are essentially the same
 - Essentially the same response to P

C. J. Pickard and R. J. Needs, Nature Physics, 2007, 3, 473

- 4 molecular phases known at low T, as P ≯
 - I: H_2 freely rotating
 - II : orientational ordering
 - III : softening of the intramolecular vib
- Use of numerical simulation coupled to evolutionary algorithms to propose structural models
 - Many structures very close in enthalpy
 - Interactions responsible for the coesion are essentially the same
 - Essentially the same response to P 7

C. J. Pickard and R. J. Needs, Nature Physics, 2007, 3, 473

- 4 molecular phases known at low T, as P ≯
 - I : H_2 freely rotating
 - II : orientational ordering
 - III : softening of the intramolecular vib
- Use of numerical simulation coupled to evolutionary algorithms to propose structural models
 - Many structures very close in enthalpy
 - Interactions responsible for the coesion are essentially the same
 - Essentially the same response to P 7

C. J. Pickard and R. J. Needs, Nature Physics, 2007, 3, 473

- 4 molecular phases known at low T, as P ↗
 - I: H_2 freely rotating
 - II : orientational ordering
 - III : softening of the intramolecular vib
- Use of numerical simulation coupled to evolutionary algorithms to propose structural models
 - Many structures very close in enthalpy
 - Interactions responsible for the coesion are essentially the same
 - Essentially the same response to P 7

C. J. Pickard and R. J. Needs, Nature Physics, 2007, 3, 473

Intermolecular

Intermolecular

Intermolecular

Intramolecular

Intermolecular

Intramolecular

Intermolecular

Intramolecular

Intermolecular

Intramolecular

Intermolecular

Intramolecular

2 competing effects influencing the H₂ bond length

Bond shortening - The physical wall

Diatomic molecule

Potential Energy Curve

Bond shortening - The physical wall

Bond shortening - The physical wall

H₂ molecule in a spheroidal box

LeSar & Herschbach, J. Phys. Chem 85, 2798 (1981)
Bond shortening - The physical wall

LeSar & Herschbach, J. Phys. Chem 85, 2798 (1981)

Bond shortening - The physical wall

As P increases H-H intramolecular bonds

First strengthen and shorten ...

... then weaken and elongate

« Physical wall »

Orbital mixing

As P increases H-H intramolecular bonds

First strengthen and shorten ...

... then weaken and elongate

« Physical wall »

Orbital mixing

Shortening and elongation observed numerically on periodic structural models for dense solid H

As P increases H-H intramolecular bonds

First strengthen and shorten ...

... then weaken and elongate

« Physical wall »

Orbital mixing

Shortening and elongation observed numerically on periodic structural models for dense solid H What about strengthening and weakening ?

Badger's rule (bond strength related to bond length)

As P increases H-H intramolecular bonds

First strengthen and shorten ...

... then weaken and elongate

« Physical wall »

Orbital mixing

Shortening and elongation observed numerically on periodic structural models for dense solid H What about strengthening and weakening ?

Badger's rule (bond strength related to bond length)

Use of topological tools

As P increases H-H intramolecular bonds

First strengthen and shorten ...

... then weaken and elongate

« Physical wall »

Orbital mixing

Shortening and elongation observed numerically on periodic structural models for dense solid H What about strengthening and weakening ?

Badger's rule (bond strength related to bond length)

Use of topological tools

Relevance of a cluster model ? (easier to manipulate)

Which structural model for solid H2 under pressure ?

Drummond et al., Nature Communications 6, 7794 (2015)

Which structural model for solid H2 under pressure ?

Drummond et al., Nature Communications 6, 7794 (2015)

The $\ll 3 H_2 \gg \text{motif}$

Drummond et al., Nature Communications 6, 7794 (2015)

6 protons constrained to be on a ring of radius d

- 6 protons constrained to be on a ring of radius d
- D_{3h} symmetry imposed
 → 1 degree of freedom to optimize (r_{H-H}, R_{H2-H2})

- 6 protons constrained to be on a ring of radius d
- D_{3h} symmetry imposed
 → 1 degree of freedom to optimize (r_{H-H}, R_{H2-H2})
- d ∖to model P ↗

- 6 protons constrained to be on a ring of radius d
- D_{3h} symmetry imposed
 → 1 degree of freedom to optimize (r_{H-H}, R_{H2-H2})
- d ∖to model P ↗

- 6 protons constrained to be on a ring of radius d
- D_{3h} symmetry imposed
 → 1 degree of freedom to optimize (r_{H-H}, R_{H2-H2})
- d ∖to model P ↗

- 6 protons constrained to be on a ring of radius d
- D_{3h} symmetry imposed
 → 1 degree of freedom to optimize (r_{H-H}, R_{H2-H2})
- d ∖to model P ↗

Plotting $s = f(\rho)$

Reduced gradient density

Plotting $s = f(\rho)$

E. R. Johnson et al., J. Am. Chem. Soc., 2010, 132, 6498.

0.30

E. R. Johnson et al., J. Am. Chem. Soc., 2010, 132, 6498.

ρ (a.u.)

ρ (a.u.)

Plotting $s = f(\rho)$

ρ (a.u.)

Riffet, Labet, Contreras-Garcia, PCCP, accepted

 $(\lambda_1 < \lambda_2 < \lambda_3)$

Riffet, Labet, Contreras-Garcia, PCCP, accepted

 λ_2 : eigenvalue of the ρ Hessian matrix $(\lambda_1 < \lambda_2 < \lambda_3 \,)$

 $\lambda_2 < 0$: attractive interaction $\lambda_2 > 0$: repulsive interaction

 $(\lambda_1 < \lambda_2 < \lambda_3)$

 $\lambda_2 < 0$: attractive interaction $\lambda_2 > 0$: repulsive interaction

Riffet, Labet, Contreras-Garcia, PCCP, accepted
NCI index – inventaire of the interactions

- 1. H-H intramolecular covalent bonds
- 2. Attractive intermolecular interaction (vdW)
- 3. Repulsive intermolecular interaction

Riffet, Labet, Contreras-Garcia, PCCP, accepted

 λ_2 : eigenvalue of the ρ Hessian matrix ($\lambda_1 < \lambda_2 < \lambda_3$)

 $\lambda_2 < 0$: attractive interaction $\lambda_2 > 0$: repulsive interaction

As d \searrow (models P \nearrow)

• Intermolecular interactions strengthen (both attractive and repulsive)

As d \searrow (models P \nearrow)

• Intermolecular interactions strengthen (both attractive and repulsive)

Riffet, Labet, Contreras-Garcia, PCCP, accepted

As d ↘ (models P ↗)

- Intermolecular interactions strengthen (both attractive and repulsive)
- Intramolecular interactions
 - Strengthen (d > 1.25)
 - Weaken (0.9 < d < 1.25)
 - Strengthen again once polymerized(d < 0.9)

As d ↘ (models P ↗)

- Intermolecular interactions strengthen (both attractive and repulsive)
- Intramolecular interactions
 - Strengthen (d > 1.25)
 - Weaken (0.9 < d < 1.25)
 - Strengthen again once polymerized(d < 0.9)

At a given d, comparison of the electronic distribution

H₂ of the interacting system

H₂ of the interacting system Isolated from its neighbors

At a given d, comparison of the electronic distribution

H₂ of the interacting system

H₂ of the interacting system Isolated from its neighbors

Before complete polymerization

Riffet, Labet, Contreras-Garcia, PCCP, accepted

Before complete polymerization

ρ organizes like in an isolated molecule having the same length

ρ organizes like in an isolated molecule having the same length

ρ organizes like in an isolated molecule having the same length

Prolate shape

Deformation to avoid intermol. regions

Prolate

shape

ρ organizes like in an isolated molecule having the same length

ELF (0.95)

Prolate shape

Deformation to avoid intermol. regions

ELF (0.95)

Retreat in the intramol.region. Bonds are breaking.

ρ organizes like in an isolated molecule having the same length

Prolate shape

Deformation to avoid intermol. regions

H₂ longer than a normal mol.

 ρ_{BCP} smaller than in a « elongated » H_2 mol.

ρ reorganization: intra → inter

ELF (0.95)

Retreat in the intramol.region. Bonds are breaking.

ρ organizes like in an isolated molecule having the same length

Prolate shape

Deformation to avoid intermol. regions

Volume of interaction

Volume of interaction

Localizing these points in the 3D space allows defining the volume of interaction.

Volume of interaction

d(Å)

1.8

2.0

Dipolar attraction

2.2

Attractive
Repulsive

-A- Total

2.4

1.6

1.4

Repulsion

1.0

55

50

45

40 35

30

25 20 15

> 10 5

> > 0

Bond

form.

Volume (a.u.)

1.2

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 r_s The global volume of interaction behaves like in a chemical reaction (maximum at the TS)

Localizing these points in the 3D space allows defining the volume of interaction.

Summary

Analysis of H-H distances :

- Coexistence of 2 phenomena having opposite effects on the H₂ bond length
 - Physical wall (H-H bonds shorter and stiffer)
 - Orbital mixing (H-H bonds longer and weaker)

Topological tools

As H₂ molecules are coming closer and closer

- Bond length adaptation + Electronic distribution adaptation
- 3 successive regimes: dipolar attraction, repulsion, bond formation
- Relevance of a very simple non periodic model to capture the essence of the P-induced phnomenon

After squeezing hydrogen in numerical experiments ...

... experiencing squeezed time

