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Abstract 24 

Because specialist species evolved in more temporally and spatially homogeneous environments 25 

than generalist species, they are supposed to experience less fluctuating selection. For this reason, 26 

we expect specialists to show lower overall genetic variation as compared to generalists. We also 27 

expect populations from specialist species to be smaller and more fragmented, with lower neutral 28 

genetic diversity. We tested these hypotheses by investigating patterns of genetic diversity along a 29 

habitat specialization gradient in wild birds, based on estimates of heritability, coefficients of 30 

variation of additive genetic variance, and heterozygosity available in the literature. We found no 31 

significant effect of habitat specialization on any of the quantitative genetic estimators but 32 

generalists had higher heterozygosity. This effect was mainly a consequence of the larger 33 

population size of generalists. Our results suggest that evolutionary potential does not differ at the 34 

population level between generalist and specialist species, but the trend observed in 35 

heterozygosity levels and population sizes may explain their difference in susceptibility to 36 

extinction.  37 
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Introduction 48 

Native specialist species are becoming less abundant in disturbed landscape to the benefit of 49 

generalist species (Shultz et al. 2005, Le Viol et al. 2012). There is some evidence that 50 

climate (Davey et al. 2013) and land use (Devictor et al. 2008a, b) changes are driving this 51 

decline of specialization in wild communities, leading to a functional biotic homogenization 52 

(Clavel et al. 2011). The higher sensitivity of specialists to global changes is expected to 53 

result from their narrower ecological niche, which is associated with smaller and more 54 

fragmented populations, more vulnerable to the destruction of their habitat. The persistence of 55 

species will ultimately depend upon two mechanisms: range shift or adaptation to 56 

environmental changes, through phenotypic plasticity or microevolution (Lynch and Lande 57 

1993). Anthropogenic changes are now considered as the greatest evolutionary force (Palumbi 58 

2001, Steffen et al. 2011) and it therefore becomes crucial to determine how specialist and 59 

generalist species differ in their ability to respond to these changes. Assessing whether 60 

generalist and specialist species differ in terms of evolutionary potential should give valuable 61 

information on their respective ability to defer extinction through evolution. 62 

 The two alternative strategies (specialist vs generalist) are generally thought to arise 63 

depending on fitness trade-offs between alternate phenotypes across environments (Richmond 64 

et al. 2005, Poisot et al. 2011): spatially and temporally variable environments should favour 65 

generalist strategies, because generalists can achieve higher average performance than 66 

specialists across multiple environments. In turn, stable environments should favour 67 

specialists which are able to exploit more efficiently a single resource (see Moran 1992 for 68 

theoretical evidence, and Kassen 2002 for experimental evidence). Expressed in terms of 69 

selection pressures, heterogeneous environments generate fluctuating selection, while in a 70 

homogeneous or stable environment, selection is more likely to be stabilising, or persistently 71 

directional (Keightley and Hill 1988). Additionally, generalist strategies may become less 72 



profitable under high levels of local stabilizing selection, because trade-offs for the 73 

performance in different niches become accordingly strong (Svardal et al. 2014). Specialists 74 

can therefore be expected to evolve under stronger and more consistent selection pressures 75 

that could deplete overall genetic variability. In contrast, the exposure of generalists to a 76 

variety of environments, and to spatially and temporally fluctuating selection, could help 77 

maintain a higher genetic diversity. For these reasons, we expect to find higher evolutionary 78 

potential in generalist species than in specialist ones, which could partly explain the highest 79 

sensitivity of specialists to environmental changes. 80 

Only a scarce number of empirical studies support this prediction so far. Hägele and 81 

Rowell-Rahier (2000) showed in a herbivorous insect genera that host specialist species have 82 

a lower heritability (and thus a lower evolutionary potential) of growth rate than host 83 

generalists. A review of selection experiments in bacteria by Kassen (2002) also suggests that 84 

environmental heterogeneity may be driving both the quantity of genetic variation in a 85 

population and the niche width of individuals, resulting in the evolution of generalists and the 86 

maintenance of genetic variation in heterogeneous environments. However, the link between 87 

specialization and evolutionary potential is largely unknown in wild populations.  88 

 89 

Here, we review available estimates of evolutionary potential in relation to habitat 90 

specialisation and population size in wild bird populations. As emphasised in the univariate 91 

breeder’s equation, R = h² S (Lande 1979), the predicted evolutionary response (R) depends on 92 

the selection gradient (S) and on the evolutionary potential of a trait, measured as its heritability 93 

(h², the ratio between the amount of genetic additive variance and total phenotypic variance). We 94 

thus mainly focused on estimates of heritability and additive genetic variance as they also 95 

represent the most widely reported estimates of evolutionary potential for quantitative traits 96 

(Postma 2014). We predict higher genetic variance for generalist species (heritability, 97 



hereafter h², and the additive genetic coefficient of variation, hereafter CVA, are the two 98 

standardized estimates of genetic variance we used).  99 

We also reviewed estimates of heterozygosity (hereafter Hz), a widely available 100 

measure of genetic diversity known to depend on demographic processes such as inbreeding 101 

level, drift and population size (Soulé 1976, Frankham et al. 2002). Hz is not a direct 102 

estimator of evolutionary potential, as it does not relate to additive genetic variance, but rather 103 

a proxy for overall genetic diversity, which is often considered in conservation study as an 104 

indicator of population health. More specifically, Hz has been correlated with extinction risks 105 

(Evans and Sheldon 2008) and population fitness (Reed and Frankham 2003). On this topic 106 

again, little empirical work can be found, but a study carried out on the bark beetle (Kelley et 107 

al. 2000) indicated that specialist sister-species indeed had reduced levels of Hz when 108 

compared to generalist ones. Simply because of a narrower ecological niche, specialist species 109 

have access to a more limited range of habitats than generalist ones. For this reason, 110 

populations of specialists may be smaller and more fragmented which is likely to negatively 111 

impact genetic diversity by limiting effective population size and gene flow (Whitlock and 112 

Barton 1997). We therefore predict that specialists should have lower Hz than generalists, 113 

mainly as a result of smaller population size.  114 

 115 

  116 



Material & Methods 117 

Data collection 118 

Habitat specialization indexes 119 

Assessing specialization by categorizing habitat types has been criticized as too subjective 120 

and unrealistic (Bazzaz 1991, Thompson et al. 1998, Fridley et al. 2007). Therefore, we used 121 

two different indices based on independent methods: The Species Specialization Index (SSI), 122 

as defined by Julliard et al. (2006) and the relative niche width measurement (ϴ) as introduced 123 

in plants by Fridley et al (2007) and in birds by Ducatez et al. (2014). Both indices use 124 

different approaches and are therefore not strongly correlated, but rather represent the 125 

diversity of methods available to measure habitat specialisation.  126 

 The SSI is defined as the coefficient of variation of a species abundance across a set of 127 

predefined habitats (Julliard et al. 2004). A high SSI thus implies that a species abundance 128 

varies strongly across habitats. Specialist species have higher values of SSI, generalists have 129 

lower values. SSI was calculated for 234 species at the European scale, the territory being 130 

partitioned into 98 habitat categories defined in the EUNIS database (see Le Viol et al., 2012 131 

for details). Affinity of each species for nesting and foraging in a given habitat is coded by 132 

experts on three levels (3: primary habitats; 2: secondary; 1: others). Note that because the 133 

coefficient of variation is the standard deviation scaled to the mean, SSI does not depend on 134 

population size.  135 

  The niche width (ϴ) is based on the expectation that a generalist species occurs in a 136 

range of habitat categories that vary considerably in species composition, whereas a specialist 137 

species is found in habitats that contain a consistent suite of other species. The idea of using 138 

the compositional diversity of species that co-occur with a target species to measure the 139 

degree of specialization was introduced by Colwell and Futuyma (1971). Specialist species 140 

have lower values of ϴ, generalists have higher values. To avoid a bias due to differences in 141 

species range, this index is based on habitat co-occurrence (rather than realized species co-142 



occurrence), meaning that two species that occupy the same habitat type in different places 143 

are considered as co-occurring, even if their range does not overlap, e.g. this avoids island 144 

species to be automatically considered as specialists. The niche width was estimated using 145 

species co-occurrence data within each of the 82 IUCN habitat subcategories, and considering 146 

all extant 9870 species listed by the IUCN (see Ducatez et al., 2014 for details). For a given 147 

species, habitat width was measured as ϴ = γ / μ(α), where γ is the cumulative number of 148 

species in the habitats used by a given species and μ(α) is the mean habitat species richness 149 

calculated over the different habitats inhabited by that species. This specialization index is 150 

positively correlated with population size (Pearson’s product-moment correlation ρ = 0.25, 95 151 

% Confidence Interval [0.044, 0.43], p-value = 0.02, see supplementary material S1 for the 152 

correlation of both specialization indexes with population size). 153 

 Habitat specialization was chosen over other available specialization indices as it 154 

gathers the greatest number of niche axes in one parameter and is consequently the most 155 

integrative. Indeed, temperature and food availability depend on habitat, which makes habitat 156 

specialization linked with thermic and food specialization (Barnagaud et al. 2012). Our 157 

dataset of quantitative estimates of evolutionary potential (i.e. quantitative genetic 158 

parameters) includes species that cover a range of 3.1 in SSI (from 2.3 to 5.4) and of 6.4 in 159 

niche width (from 1.58 to 8), and the neutral diversity data (i.e. Hz) covers a range of 4.6 in 160 

SSI (from 2.3 to 6.9) and of 10.6 in niche width (from 1 to 10.6), when the total range 161 

available for SSI is 8, ranging from 1.8 to 9.9 and the total range for niche width is 13.54, 162 

ranging from 1 to 14.54. The distributions of both specialization index for each of our datasets 163 

can be found in supplementary figure S2. 164 

 165 



Population size 166 

Information on local population size was not available so the population size data we used 167 

was extracted from the BirdLife International website in May 2014 (http://www.birdlife.org/). 168 

Population sizes correspond to the total number of individuals in the world according to the 169 

censuses published by BirdLife (2005, 2008). 170 

 171 

Quantitative data: heritability and coefficient of additive genetic variance 172 

We chose the bird taxon because it gathers the greatest number of quantitative estimators 173 

across all taxa (Postma, 2014). In order to gather estimates of evolutionary potential (h² and 174 

CVA) in bird populations, we performed a search in the Web Of Knowledge research engine. 175 

We used the key-words: Topic= (« bird* ») AND (« heritabil* » OR « genetic* estimate* ») 176 

and the search was performed in February 2013. When studies aimed at quantifying the 177 

response of quantitative parameters to different environmental conditions (e.g. food quality), 178 

only parameters estimated under natural conditions were used. These references were further 179 

checked against the list gathered by Postma (2014), in order to maximize the number of 180 

references providing estimates of heritability and coefficients of additive genetic variance. h² 181 

and CVAs can be estimated with two different methods: the parent offspring regression and 182 

the animal model. The former is the earliest method and has been used since the end of the 183 

19
th

 century. It estimates heritability by the phenotypic correlation between parents and 184 

offspring (Lynch and Walsh 1998). The latter, the animal model, has been applied in ecology 185 

for merely more than a decade. The animal model is a mixed model using information about 186 

relatedness among individuals to infer the part of phenotypic variance due to additive genetic 187 

variance (Henderson 1973, Kruuk 2004). Because parent offspring regression may 188 

overestimate heritability (shared environments increase the resemblance between parents and 189 

offspring), the method used to estimate quantitative parameters was specified in our dataset 190 

and subsequent analyses. 191 



  Only life-history and morphological traits (See supplementary material, table S3 for 192 

trait classification) were kept, as for behavioural traits the type of traits were extremely 193 

heterogeneous and for physiological traits, data were available for only four traits from two 194 

studies. We considered here that pooling heritabilities or CVAs from different traits measured 195 

in a population is relevant, as we were not looking for an accurate estimate of evolutionary 196 

potential, but for an estimate of the general level of additive genetic variance in the 197 

population. Both h² and CVA represent standardised measures of additive genetic variance, 198 

respectively to the total phenotypic variance and to the mean. 199 

 200 

Genetic diversity 201 

We used the heterozygosity (Hz) data published by Evans and Sheldon (2008). They collected 202 

Hz values measured at microsatellite loci for wild bird species in the literature and used 203 

expected Hz because it is less sensitive to sample size (Nei 1978) and the occurrence of null 204 

alleles (Callen et al. 1993). When multiple studies were available for one species, Evans & 205 

Sheldon (2008) kept the study with the largest sample size and the highest number of 206 

microsatellites loci used to estimate Hz. Thus, while the quantitative genetics estimates are 207 

available for several populations in some species, the estimates for Hz are only available for 208 

one population per species. We used the Hz values for the 54 species that matched our SSI 209 

specialization index and for the 183 species in their dataset that matched our estimation of the 210 

niche width (ϴ).   211 

 212 

Phylogeny 213 

To account for the non-independence of species, we used species relatedness extracted from 214 

phylogenetic trees. Phylogenetic trees were obtained from the website www.birdtree.org that 215 

provides subsets of the first complete bird phylogeny (Jetz et al. 2012). Each model was run 216 

with 100 alternative trees. 217 

http://www.birdtree.org/


 218 

Statistical analyses 219 

To assess the effect of habitat specialization on evolutionary potential (h², CVA) or neutral 220 

genetic diversity (Hz) we used linear mixed models. Ideally, models should include as fixed 221 

effects population size (log-transformed) and an estimator of habitat specialization (SSI or 222 

niche width ϴ). However, for h² and CVA, population size was only available for few species, 223 

resulting in a too small sample size to run our models. We thus included population size in 224 

models considering Hz but not in models considering h² and CVA. In terms of random 225 

variables, a phylogeny effect was included in all models to account for species non-226 

independence.  227 

Because of a more complex data structure, analyses of h² and CVA included several additional 228 

fixed and random effects compared to models run for heterozygosity. First, we expected 229 

systematic differences between certain types of traits (morphological or life history traits, 230 

Postma, 2014). Consequently, we added “Type of trait” as a fixed effect in models with two 231 

levels, “morphological” and “life-history”. Similarly, as the method used to estimate 232 

heritabilities (animal model or parent-offspring regression) entails a systematic difference, we 233 

added an “Estimation method” fixed effect in models investigating heritability. 234 

Second, h² and CVA estimates are trait and population specific because they are based 235 

on observations of some characteristics of individuals sampled from a given population. 236 

Therefore it was necessary to include in the models two additional random effects: 237 

“population identity” and “trait”, with a nested structure. “Trait” was nested within 238 

“population identity” and “population identity” within “phylogeny”. The MCMCglmm R 239 

package (Hadfield 2013) does not model nested effects, but the variables were designed in 240 

order to account for this nested structure: each species/population/trait combination was given 241 

a unique ID allowing to take into account each level in a meaningful way (phylogeny 242 



(species), population within species, trait within population within species). Some species 243 

(e.g. Fulica atra) were represented by one estimator for only one population when others (e.g. 244 

Passer domesticus) were represented by multiple populations, and multiple traits for each 245 

population. The random effects “population identity” and “trait” allow taking this lack of 246 

balance into account. 247 

Finally, the standard error associated with heritability estimates was included as a 248 

random effect to account for measurement error. Unfortunately, this was not possible with 249 

CVA, due to the paucity of errors reported, nor with heterozygosity for which standard errors 250 

were not available.  The random effects were assumed to follow normal distributions with a 251 

mean of 0 and a variance equal to
2

a A for the phylogeny (where 
2

a  is the phylogenetic 252 

variance and A is the phylogenetic relatedness matrix), a variance equal to 
2

m M for the error 253 

effect (where 
2

m  is the measurement error variance and M is a diagonal matrix containing the 254 

square standard error of the published estimates; we fixed the variance
2

m  to 1 as the sampling 255 

variances are known, see Hadfield & Nakagawa 2009 for details) and variances equal to 
2 I 256 

for the remaining effects (where 
2 represents the population variance within species, the trait 257 

variance within population within species or the residual variance; I is the identity matrix). 258 

 These models were run using Bayesian methods as implemented in the MCMCglmm 259 

R package. 1 000 000 iterations of each model were run. The first 50 000 iterations were used 260 

to initiate the chain, not to estimate parameters, and the thinning interval was set to 10. The 261 

amount of iterations was considered sufficient as autocorrelations were low (<0.06) for fixed 262 

and random effects.  263 

 An inverse-gamma prior for random effects was used (V = 1 and nu = 0.002), in order 264 

to minimise the effect of prior information on posterior distribution. To assess prior 265 

sensitivity, the same models were run using a parameter expanded prior (V = 1, nu = 1, 266 



alpha.mu = 0, alpha.V = 10000) and a weakly informative prior (V = σ/4, n = 1 where σ is the 267 

total variance of the dependent variable). Using different priors did not affect the results 268 

(Supplementary Table S5 and S6). 269 

 To account for phylogeny uncertainty, each model was run with each of the 100 270 

alternative trees provided by Jetz et al. (2012), and the estimates presented in the result 271 

section represent the average over the 100 models. 272 

Results 273 

Available data for quantitative genetics estimates 274 

For the analysis using the SSI index, 520 estimates of h² and 150 estimates of CVA from 275 

respectively 64 and 13 studies were gathered, with an average of 3.52 traits per study for h² 276 

and 6.62 per studies for CVA. Variance among studies in number of estimates is large, ranging 277 

from 1 to 48 for h² and from 1 to 14 for CVA. The number of estimates calculated from parent 278 

offspring regression is 363 for h² against 157 from “animal model” and 39 for CVA against 279 

111 from “animal model”. Only life-history and morphological traits were kept, with 280 

respectively 132 and 388 estimates for h², and 43 and 107 for CVA. 281 

For the analysis using the niche width measurement (ϴ), a total of 923 h² and 190 CVA 282 

estimates from respectively 64 and 20 studies were gathered, with an average of 2.6 traits per 283 

study for h² and 5.7 per study for CVA. Variance among studies in the number of estimates 284 

was large, ranging from 1 to 48 for h² and from 1 to 14 for CVA. 707 h² estimates came from 285 

parent-offspring regressions and 216 from “animal models”. For CVA, 52 were estimated 286 

from parent offspring regression and 139 from “animal models”. Only life-history and 287 

morphological traits were kept in the analyses (due to the low number of physiological and 288 

behavioural traits), with respectively 176 and 747 estimates for h², and 61 and 129 for CVA. 289 

 290 



Effect of specialization on additive genetic variance (h², CVA) 291 

Heritability was not predicted by specialization, whether considering the SSI (Table 1, 292 

posterior mean = 0.054, 95% CI [-0.022, 0.14], pMCMC = 0.13, Fig 2a) or the niche width 293 

(ϴ, Table 2, posterior mean = -0.018 95% CI [-0.057, 0.023], pMCMC = 0.36, Fig 3a) as 294 

indices of habitat specialization. Morphological traits had higher heritability than life-history 295 

traits in both data sets (Table1 & Table 2), and estimates from the animal model were lower 296 

than estimates from parent-offspring regressions for the SSI data (Table1).  297 

Similarly, CVA was not predicted by either the SSI (posterior mean = 0.66, 95% CI [-298 

1.3, 2.7], pMCMC = 0.48, Fig 2b) or the niche width (ϴ) (Table2, posterior mean = -0.26, 299 

95% CI [-1.9, 1.5], pMCMC = 0.71, Fig 3b). 300 

 301 

Effect of specialization and population size on genetic diversity (Hz) 302 

Heterozygosity was not predicted by either the SSI (Table 3, posterior mean=0.014, 95% CI [-303 

0.025, 0.053], pMCMC = 0.48) or the niche width (Table 3, posterior mean=0.051, 95% CI [-304 

0.021, 0.12], pMCMC = 0.16), but population size did have a significant effect on 305 

heterozygosity (Table 3, posterior mean=0.044, 95% CI [0.023, 0.064], P <0.001, and 306 

posterior mean=0.036, 95% CI [0.020, 0.054], P <0.001). Species with larger global 307 

population sizes had higher levels of heterozygosity. Because niche width and population size 308 

are positively correlated (Pearson’s product-moment correlation=0.25, df=88, P=0.020), an 309 

effect of niche width on heterozygosity appears when population size is not part of the model 310 

(posterior mean=0.071, 95% CI [0.022, 0.12], pMCMC =0.0045). The SSI however was not 311 

correlated to population size (Pearson’s product-moment correlation=-0.27, df=35, P=0.10) 312 

Discussion 313 

The ability of wild populations to persist in a changing environment depends largely on their 314 

evolutionary potential (Hoffmann and Sgrò 2011, Vander Wal et al. 2013). We expected a 315 



higher evolutionary potential in generalists as compared to specialists, based on the different 316 

selection pressures their ecology suggests they are exposed to. In contrast with this, across 36 317 

wild bird populations and using two different specialization indexes, we found no significant 318 

effect of specialization on evolutionary potential -as estimated by quantitative genetics 319 

estimates, h² and CVA. Specialization did not correlate with genetic diversity measured by Hz 320 

either, but we found a significant positive relationship between population size and 321 

heterozygosity. In turn, population size correlates positively with niche width (but not with 322 

the SSI index), indicating that species with larger niches (generalists) also tend to exhibit 323 

more genetic diversity, as a consequence of their larger population sizes. The fact that 324 

populations of generalist species are larger than populations of specialist species can be 325 

explained by several factors, such as larger available habitat patches, better connectivity 326 

between patches, or higher dispersal rates (Kattan 1992, Stireman 2005). In turn, higher 327 

genetic diversity in larger populations is in line with theoretical and empirical expectations  328 

(Soulé 1976, Frankham 1996). Our results thus suggest that the effect of specialization on 329 

genetic diversity results from demographic processes rather than evolutionary processes such 330 

as long-term differences in selection pressures. Indeed, we found that specialization had an 331 

effect on heterozygosity through population size, but not on quantitative genetic estimates: 332 

neutral markers are tightly linked to demography, migration, drift and mutation while 333 

selection is expected to shape variance of quantitative traits (Sgrò et al. 2011).  334 

The prediction that specialists should have in general lower evolutionary potential than 335 

generalists due to stronger and more consistent selection pressures was not confirmed by this 336 

study. So far, the empirical support for this hypothesis was limited, to our knowledge, to two 337 

local scale study in insects (Hagele & Rowell-Rahier 2000 and Kelley et al. 2000) and to 338 

experimental evolution in bacteria, as reviewed by Kassen (2002). Several reasons (outlined 339 



below) may explain the absence of pattern, but in any case, the generality of this result will 340 

need to be confirmed (or infirmed) by more empirical studies from wild populations. 341 

First, we know little about the origin of generalism. For example, if a species niche is 342 

fully covered by specialized populations, each population exploiting a part of the niche only, 343 

the species will be described as generalist. In this case, high genetic diversity is expected 344 

among populations, but not necessarily within populations, making the pattern undetectable 345 

when genetic parameters are sampled at the population level (as it is the case for h² and CVA). 346 

This particular genetic structure may have evolved under large spatial scale environmental 347 

variation. The ability of populations to respond to new selection pressures may then depend 348 

on the amount of gene flow among populations. To provide further insights in this direction, 349 

an informative index would be the FST, which compares within population genetic variation to 350 

among-population genetic variation, a core question in our investigation. Unfortunately, 351 

estimating FST requires heterozygosity measures in multiple populations for each studied 352 

species, which would be available only after implementing new field studies. 353 

 A second major issue is the definition of “evolutionary potential”. Because it was the 354 

most readily provided estimate of additive genetic variance in natural populations and because 355 

of its central role in the breeder’s equation, we used heritability. However, because it is a ratio 356 

and because of its univariate definition, heritability can be a misleading estimate of 357 

evolutionary potential. Heritability is a ratio of variances and as such its direction of variation 358 

can be interpreted in multiple ways, i.e. higher heritability can be the result of either higher 359 

additive genetic variance or lower environmental variance. This is of fundamental importance 360 

here since environmental variance could be larger for generalist species dealing with more 361 

heterogeneous environments than specialist species, hence masking any potential increase in 362 

additive genetic variance. A solution around this issue is the use of coefficients of variation of 363 

additive genetic variance rather than heritability (Houle 1992, Hansen et al. 2003, 2011, 364 



Hansen and Houle 2008). Unfortunately, CVA was reported for only 15 species, and often 365 

published without associated standard errors. Moreover, 45% of those estimators are likely to 366 

be biased (Garcia-Gonzalez et al. 2012). It was thus not possible to reliably assess the effect 367 

of specialisation on CVA but this is an avenue worthwhile pursuing in the future. Another 368 

aspect through which heritability may not be a suitable estimate of evolutionary potential is its 369 

univariate and trait specific nature as it may not reflect overall evolvability and constraints 370 

(e.g. genetic correlations, Sih et al. 2004). Multivariate approaches are therefore be needed to 371 

bring further light on these issues (Walsh and Blows 2009, Hansen et al. 2011, Teplitsky et al. 372 

2014).  373 

 Third, on a more functional note, the absence of patterns for quantitative genetic 374 

estimates in our study may also be explained by a lack of knowledge about the functionality 375 

of the traits. Indeed, in the study of Hagele & Rowell-Rahier (2000), growth rate heritability 376 

was related to a diet specialization index. As a selection pressure resulting from food 377 

availability is expected to directly impact growth rate, the niche parameter used to assess 378 

specialization index was thus tightly linked to the trait for which evolutionary potential was 379 

measured. In this way, the effect of selection pressure is more likely to be detected when 380 

measuring heritability. However, this would not mean overall lower evolutionary potential in 381 

specialists, but only for a subset of traits closely associated to the specialization parameter. In 382 

our case, with the dataset obtained from the literature, such a clear functional link between 383 

traits and habitat specialization is not available: we chose a integrative specialization 384 

parameters and investigated the additive genetic variance for all available traits together. 385 

However, a population can be submitted to strong selection pressures, for instance on wing 386 

size (Hall et al. 2004) or beak shape (Grant, B., Grant 2003), that would reduce genetic 387 

variance for these traits, a pattern that would not be detected in our analyses because we 388 

pooled genetic variance estimates irrespectively of the traits’ function. In the case of reduced 389 



overall evolutionary potential, we would expect a decreased genetic variance in traits closely 390 

associated to fitness. We thus tried to restrict the data to heritability estimates related to 391 

fitness traits (e.g. clutch size, breeding success) but the sample size was drastically reduced in 392 

this case (90 heritabilities for 24 species), which didn’t allow us to estimate effects properly. 393 

 In conclusion, our study indicates that there is no detectable effect of habitat 394 

specialization on evolutionary potential in birds, at least when considering estimates of 395 

additive genetic variance currently available in the literature. However, this does not mean 396 

that specialist and generalist species stand the same chances when facing environmental 397 

changes: our study suggests that species with narrower habitat niches have smaller 398 

populations with reduced levels of neutral genetic diversity, which indicate increased 399 

extinction risks (Evans and Sheldon 2008). In the close future, new estimates of additive 400 

genetic variance for wild populations may be available, such as multivariate ones, allowing 401 

for further exploration of the relationship between specialization and evolutionary potential. 402 
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Table1. Effect of Species Specialization Index (SSI) on two quantitative estimates of evolutionary potential: heritability and coefficient of variation of 552 

additive genetic variance (CVA).. Estimates of effects are given by posterior means (Post. Mean) and their associated 95% confidence intervals (CI 95%). pMCMC 553 

values are also given for fixed effects. For the effect of type of trait, the reference level is ‘life history’ as compared to ‘morphological’. For the effect of the 554 

estimation method, the reference level is ‘animal model’ as compared to ‘parent offspring regression’.   555 

Explanatory var. Heritability CVA 

 Effect Post. mean CI 95% Pc Post.mean CI 95% Pc 
 

F
ix

ed
 

Intercept 0.0299 -0.261/0.281 0.866 9.81 2.79/16.5 0.013
**

 

SSI 0.0535 -0.0218/0.139 0.128 0.664 -1.31/2.67 0.479  

Type of trait: 

morphological 
0.192 0.130/0.252 <0.001

***
 -8.25 -11.3/-5.03 <0.001***  

Estimation 

method: 

regression 

0.0452 0.00283/0.0871 0.036
*
 -0.848 3.71/1.96 0.549 

 

R
a
n

d
o
m

 

Phylogeny 0.004 0.000/0.017  4.07 0.000/18.7  

Population 0.002 0.000/0.013  0.677 0.000/3.39   

Trait 0.021 0.016/0.029  17.3 8.25/30.7   

Residual 0.004 0.003/0.006  25.8 19.0/36.0   

  556 



Table2  Effect of species niche width Index (θ) on two estimates of genetic variance: heritability and coefficient of variation of additive genetic variance (CVA). 557 

Estimates of effects are given by posterior means (Post. Mean) and their associated 95% confidence intervals (CI 95%). pMCMC values are also given for fixed effects. For the 558 

effect of type of trait, the reference level is ‘life history’ as compared to ‘morphological’. For the effect of the estimati on method, the reference level is ‘animal model’ as 559 

compared to ‘parent offspring regression’.  560 

 Explanatory var. Heritability CVa 

 Effect Post.mean CI 95% Pc Post.mean CI 95% Pc 

F
ix

ed
 

Intercept 0.34 0.086 / 0.59 0.011 12 4 / 20 0.012 

ϴ -0.018 -0.057 / 0.023 0.36 -0.26 -1.9 / 1.5 0.71 

Type of trait : 

Morphological 
0.21 0.17 / 0.25 <0.001 -7.0 -10 / -4.0 <0.001 

Estimation method : 

regression 
-0.00097 -0.045 / 0.044 0.97 -1.5 -5.4 / 2.2 0.44 

R
an

d
o
m

 

Phylogeny 0.040 0.012 / 0.074 

 

3.8 0.00013 / 19 

 

Population 0.0060 0.0026 / 0.0096 1.7 0.00012 / 8.1 

Trait 0.0061 0.0020 / 0.011 4.8 0.00014 / 21 

Residual 0.017 0.014 / 0.021 74 54 / 93 

 561 

  562 



Table3. Effect of species niche width (θ) and Species Specialization Index (SSI)  on heterozygosity (Hz). Estimates of effects are given by posterior means (Post. 563 

Mean) and their associated 95% confidence intervals (CI 95%). pMCMC values are also given for fixed effects. The second model includes population size as a fixed effect. 564 

 565 

 Explanatory var. Heterozygosity Response var. Heterozygosity 

 Effect Post.mean CI 95% Pc Effect Post.mean CI 95% Pc 

F
ix

ed
 

Intercept 0.047 -0.21 / 0.29 0.71 Intercept 0.058 -0.28 / 0.39 0.72 

ϴ 0.051 -0.021 / 0.12 0.16 SSI 0.014 -0.025 / 0.053 0.48 

Log Population size 
0.044 0.023 / 0.064 <0.001 

Log Population size 0.036 0.020 / 0.054 <0.001 

 R
an

d
o
m

 Phylogeny 0.0047 0.00023 / 0.012 

 

Phylogeny 0.010 0.00020 / 0.030  

Residual 0.020 0.014 / 0.028 Residual 0.014 0.0044 / 0.024  

 566 

 567 

  568 



 569 

 570 

Fig1 Distribution of coefficients of variation of genetic additive variance (CVA, a), heritabilities (b) and heterozygosity (c) along gradient of 571 

habitat specialization (SSI).  572 

 573 

Fig2 Distribution of coefficients of variation of genetic additive variance (CVA, a), heritabilities (b) and heterozygosity (c) along gradient of 574 

habitat niche width (θ). 575 
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 593 

Table S3  Estimators (Post.mean), confidence intervals (CI) and critical probabilities (Pc) for the fixed and random effects of the three mixed 594 

models corresponding to each estimator of evolutionary potential: heritability, CVa and Heterozygosity. For weakly informative priors. 595 

 Response var. Heritability CVa Heterozygosity 

 Effect Post.mean CI 95% pMCMC Post.mean CI 95% Pc Post.mean CI 95% pMCMC 

F
ix

ed
 

Intercept 0.050 -0.210/0.309 0.680 9.21 -1.63/20.1 0.088
** 

0.657 0.419/0.887 <10
-5***

 

SSI 0.046 -0.023/0.117 0.139 0.740 -2.24/3.82 0.607 -0.003 -0.047/0.041 0.158 

Type of Trait : 

morphologique 

0.198 0.140/0.256 <10
-5*** 

-7.77 -11.28/-4.24 2.10
-5***

 

 

Calcul method : 

regression 

0.046 0.005/0.088 0.030
* 

-1.40 -4.36/1.61 0.355 

R
an

d
o
m

 

Phylogeny 0.008 0.001/0.021 

 

13.7 1.01/39.7 

 

0.025 0.000/0.072  

Population 0.007 0.001/0.014 5.75 1.02/13.53 

 

Trait 0.021 0.015/0.027 18.74 8.18/30.12 

Residual 0.004 0.003/0.006 27.19 19.1/36.2 0.016 0.015/0.031  

 596 

 597 



Table S4  Estimators (Post.mean), confidence intervals (CI) and critical probabilities (Pc) for the fixed and random effects of the three mixed 598 

models corresponding to each estimator of evolutionary potential: heritability, CVa and Heterozygosity. For parameter expanded prior. 599 

 Response var. Heritability CVa Heterozygosity 

 Effect Post.mean CI 95% pMCMC Post.mean CI 95% Pc Post.mean CI 95% pMCMC 

F
ix

ed
 

Intercept 0.053 -0.162/0.270 0.579 9.59 -0.194/19.9 0.057.
 

0.695 0.411/0.980 <10
-5***

 

SSI 0.044 -0.018/0.103 0.136 0.656 --2.05/3.37 0.583 -0.012 -0.078/0.052 0.704 

Type of trait : 

morphological 

0.198 0.142/0.255 <10
-5*** 

-7.93 -11.2/-4.49 <10
-5***

 

 Estimation 

method : 

regression 

0.048 0.007/0.090 0.022
* 

--1.17 -4.05/1.74 0.426 

R
an

d
o
m

 

Phylogeny 0.004 0.000/0.017 

 

14.8 0.000/55.8 

 

0.007 0.000/0.026  

Population 0.005 0.000/0.013 2.03 0.000/7.81 

 

Trait 0.022 0.015/0.028 19.6 9.03/31.6 

Résidual 0.004 0.002/0.006 26.6 18.8/35.3 0.052 0.030/0.077  

 600 

 601 
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