E. Davidson, Emerging properties of animal gene regulatory networks, Nature, vol.340, issue.7326, pp.911-920, 2010.
DOI : 10.1016/j.ydbio.2009.06.007

M. Levine, Transcriptional Enhancers in Animal Development and Evolution, Current Biology, vol.20, issue.17, pp.754-763, 2010.
DOI : 10.1016/j.cub.2010.06.070

URL : http://doi.org/10.1016/j.cub.2010.06.070

U. Alon, Network motifs: theory and experimental approaches, Nature Reviews Genetics, vol.301, issue.6, pp.450-461, 2007.
DOI : 10.1091/mbc.9.12.3273

N. Balaskas, A. Ribeiro, J. Panovska, E. Dessaud, and N. Sasai, Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient in the Vertebrate Neural Tube, Cell, vol.148, issue.1-2, pp.273-284, 2012.
DOI : 10.1016/j.cell.2011.10.047

J. Briscoe, A. Pierani, T. Jessell, and J. Ericson, A Homeodomain Protein Code Specifies Progenitor Cell Identity and Neuronal Fate in the Ventral Neural Tube, Cell, vol.101, issue.4, pp.435-445, 2000.
DOI : 10.1016/S0092-8674(00)80853-3

C. Chamberlain, J. Jeong, C. Guo, B. Allen, and A. Mcmahon, Notochord-derived Shh concentrates in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning, Development, vol.135, issue.6, pp.1097-1106, 2008.
DOI : 10.1242/dev.013086

J. Ericson, S. Morton, A. Kawakami, H. Roelink, and T. Jessell, Two Critical Periods of Sonic Hedgehog Signaling Required for the Specification of Motor Neuron Identity, Cell, vol.87, issue.4, pp.661-673, 1996.
DOI : 10.1016/S0092-8674(00)81386-0

T. Oosterveen, S. Kurdija, Z. Alekseenko, C. Uhde, and M. Bergsland, Mechanistic Differences in the Transcriptional Interpretation of Local and Long-Range Shh Morphogen Signaling, Developmental Cell, vol.23, issue.5, pp.1006-1019, 2012.
DOI : 10.1016/j.devcel.2012.09.015

K. Peterson, Y. Nishi, W. Ma, A. Vedenko, and L. Shokri, Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning, Genes & Development, vol.26, issue.24, pp.2802-2816, 2012.
DOI : 10.1101/gad.207142.112

URL : http://genesdev.cshlp.org/content/26/24/2802.full.pdf

J. Ericson, P. Rashbass, A. Schedl, S. Brenner-morton, and A. Kawakami, Pax6 Controls Progenitor Cell Identity and Neuronal Fate in Response to Graded Shh Signaling, Cell, vol.90, issue.1, pp.169-180, 1997.
DOI : 10.1016/S0092-8674(00)80323-2

B. Novitch, A. Chen, and T. Jessell, Coordinate Regulation of Motor Neuron Subtype Identity and Pan-Neuronal Properties by the bHLH Repressor Olig2, Neuron, vol.31, issue.5, pp.773-789, 2001.
DOI : 10.1016/S0896-6273(01)00407-X

M. Sander, S. Paydar, J. Ericson, J. Briscoe, and E. Berber, Ventral neural patterning by Nkx homeobox genes: Nkx6.1 controls somatic motor neuron and ventral interneuron fates, Genes & Development, vol.14, issue.17, pp.2134-2139, 2000.
DOI : 10.1101/gad.820400

URL : http://genesdev.cshlp.org/content/14/17/2134.full.pdf

A. Vallstedt, J. Muhr, A. Pattyn, A. Pierani, and M. Mendelsohn, Different Levels of Repressor Activity Assign Redundant and Specific Roles to Nkx6 Genes in Motor Neuron and Interneuron Specification, Neuron, vol.31, issue.5, pp.743-755, 2001.
DOI : 10.1016/S0896-6273(01)00412-3

A. Helms and J. Johnson, Specification of dorsal spinal cord interneurons, Current Opinion in Neurobiology, vol.13, issue.1, pp.42-49, 2003.
DOI : 10.1016/S0959-4388(03)00010-2

M. Goulding, G. Chalepakis, U. Deutsch, J. Erselius, and P. Gruss, Pax-3, a novel murine DNA binding protein expressed during early neurogenesis, EMBO J, vol.10, pp.1135-1147, 1991.

B. Jostes, C. Walther, and P. Gruss, The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system, Mechanisms of Development, vol.33, issue.1, pp.27-37, 1990.
DOI : 10.1016/0925-4773(90)90132-6

A. Bang, N. Papalopulu, M. Goulding, and C. Kintner, Expression of Pax-3 in the Lateral Neural Plate Is Dependent on a Wnt-Mediated Signal from Posterior Nonaxial Mesoderm, Developmental Biology, vol.212, issue.2, pp.366-380, 1999.
DOI : 10.1006/dbio.1999.9319

K. Liem, J. Tremml, G. Roelink, H. Jessell, and T. , Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm, Cell, vol.82, issue.6, pp.969-979, 1995.
DOI : 10.1016/0092-8674(95)90276-7

M. Goulding, A. Lumsden, and P. Gruss, Signals from the notochord and floor plate regulate the region-specific expression of two Pax genes in the developing spinal cord, Trends in Genetics, vol.9, issue.7, pp.1001-1016, 1993.
DOI : 10.1016/0168-9525(93)90082-S

Y. Litingtung and C. Chiang, Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3, Nat Neurosci, vol.3, pp.979-985, 2000.

K. Degenhardt, R. Milewski, A. Padmanabhan, M. Miller, and M. Singh, Distinct enhancers at the Pax3 locus can function redundantly to regulate neural tube and neural crest expressions, Developmental Biology, vol.339, issue.2, pp.519-527, 2010.
DOI : 10.1016/j.ydbio.2009.12.030

R. Milewski, N. Chi, J. Li, C. Brown, and M. Lu, Identification of minimal enhancer elements sufficient for Pax3 expression in neural crest and implication of Tead2 as a regulator of Pax3, Development, vol.131, issue.4, pp.829-837, 2004.
DOI : 10.1242/dev.00975

T. Natoli, M. Ellsworth, C. Wu, K. Gross, and S. Pruitt, Positive and negative DNA sequence elements are required to establish the pattern of Pax3 expression, Development, vol.124, pp.617-626, 1997.

S. Pruitt, A. Bussman, A. Maslov, T. Natoli, and R. Heinaman, Hox/Pbx and Brn binding sites mediate Pax3 expression in vitro and in vivo, Gene Expression Patterns, vol.4, issue.6, pp.671-685, 2004.
DOI : 10.1016/j.modgep.2004.04.006

A. Garnett, T. Square, and D. Medeiros, BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border, Development, vol.139, issue.22, pp.4220-4231, 2012.
DOI : 10.1242/dev.081497

K. Engleka, A. Gitler, M. Zhang, D. Zhou, and F. High, Insertion of Cre into the Pax3 locus creates a new allele of Splotch and identifies unexpected Pax3 derivatives, Developmental Biology, vol.280, issue.2, pp.396-406, 2005.
DOI : 10.1016/j.ydbio.2005.02.002

L. Erskine, K. Patel, and J. Clarke, Progenitor Dispersal and the Origin of Early Neuronal Phenotypes in the Chick Embryo Spinal Cord, Developmental Biology, vol.199, issue.1, pp.26-41, 1998.
DOI : 10.1006/dbio.1998.8912

S. Leber, S. Breedlove, and J. Sanes, Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord, J Neurosci, vol.10, pp.2451-2462, 1990.

S. Leber and J. Sanes, Migratory paths of neurons and glia in the embryonic chick spinal cord, J Neurosci, vol.15, pp.1236-1248, 1995.

L. Moran-rivard, T. Kagawa, H. Saueressig, M. Gross, and J. Burrill, Evx1 Is a Postmitotic Determinant of V0 Interneuron Identity in the Spinal Cord, Neuron, vol.29, issue.2, pp.385-399, 2001.
DOI : 10.1016/S0896-6273(01)00213-6

H. Seo, B. Saetre, B. Havik, S. Ellingsen, and A. Fjose, The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain, Mechanisms of Development, vol.70, issue.1-2, pp.49-63, 1998.
DOI : 10.1016/S0925-4773(97)00175-5

A. Visel, M. Blow, Z. Li, T. Zhang, and J. Akiyama, ChIP-seq accurately predicts tissue-specific activity of enhancers, Nature, vol.447, issue.7231, pp.854-858, 2009.
DOI : 10.1101/gr.229202. Article published online before March 2002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745234

A. Marson, S. Levine, M. Cole, G. Frampton, and T. Brambrink, Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells, Cell, vol.134, issue.3, pp.521-533, 2008.
DOI : 10.1016/j.cell.2008.07.020

E. Moro, G. Ozhan-kizil, A. Mongera, D. Beis, and C. Wierzbicki, In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains, Developmental Biology, vol.366, issue.2, pp.327-340, 2012.
DOI : 10.1016/j.ydbio.2012.03.023

R. Dorsky, L. Sheldahl, and R. Moon, A Transgenic Lef1/??-Catenin-Dependent Reporter Is Expressed in Spatially Restricted Domains throughout Zebrafish Development, Developmental Biology, vol.241, issue.2, pp.229-237, 2002.
DOI : 10.1006/dbio.2001.0515

N. Currier, K. Chea, M. Hlavacova, D. Sussman, and D. Seldin, Dynamic expression of a LEF-EGFP Wnt reporter in mouse development and cancer, genesis, vol.411, pp.183-194, 2010.
DOI : 10.4049/jimmunol.173.10.6189

S. Maretto, M. Cordenonsi, S. Dupont, P. Braghetta, and V. Broccoli, Mapping Wnt/??-catenin signaling during mouse development and in colorectal tumors, Proceedings of the National Academy of Sciences, vol.19, issue.4, pp.3299-3304, 2003.
DOI : 10.1038/1270

URL : http://www.pnas.org/content/100/6/3299.full.pdf

O. Mohamed, H. Clarke, and D. Dufort, ?-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo, Developmental Dynamics, vol.4, issue.2, pp.416-424, 2004.
DOI : 10.1242/jcs.1993.Supplement_17.22

J. Muhr, E. Andersson, M. Persson, T. Jessell, and J. Ericson, Groucho-Mediated Transcriptional Repression Establishes Progenitor Cell Pattern and Neuronal Fate in the Ventral Neural Tube, Cell, vol.104, issue.6, pp.861-873, 2001.
DOI : 10.1016/S0092-8674(01)00283-5

M. Bergsland, D. Ramskold, C. Zaouter, S. Klum, and R. Sandberg, Sequentially acting Sox transcription factors in neural lineage development, Genes & Development, vol.25, issue.23, pp.2453-2464, 2011.
DOI : 10.1101/gad.176008.111

URL : http://genesdev.cshlp.org/content/25/23/2453.full.pdf

V. Frost, T. Grocott, M. Eccles, and A. Chantry, Gene Expression and Modulation by the TGF?? Superfamily, Critical Reviews in Biochemistry and Molecular Biology, vol.233, issue.1, pp.371-391, 2008.
DOI : 10.1006/dbio.2000.0195

J. Epstein, J. Cai, T. Glaser, L. Jepeal, and R. Maas, Identification of a Pax paired domain recognition sequence and evidence for DNA-dependent conformational changes, J Biol Chem, vol.269, pp.8355-8361, 1994.

B. Adams, P. Dorfler, A. Aguzzi, Z. Kozmik, and P. Urbanek, Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis., Genes & Development, vol.6, issue.9, pp.1589-1607, 1992.
DOI : 10.1101/gad.6.9.1589

J. Treisman, E. Harris, and C. Desplan, The paired box encodes a second DNA-binding domain in the paired homeo domain protein., Genes & Development, vol.5, issue.4, pp.594-604, 1991.
DOI : 10.1101/gad.5.4.594

S. Jun and C. Desplan, Cooperative interactions between paired domain and homeodomain, Development, vol.122, pp.2639-2650, 1996.

W. Xu, M. Rould, S. Jun, C. Desplan, and C. Pabo, Crystal structure of a paired domain-DNA complex at 2.5 ?? resolution reveals structural basis for pax developmental mutations, Cell, vol.80, issue.4, pp.639-650, 1995.
DOI : 10.1016/0092-8674(95)90518-9

H. Xu, M. Rould, W. Xu, J. Epstein, and R. Maas, Crystal structure of the human Pax6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding, Genes & Development, vol.13, issue.10, pp.1263-1275, 1999.
DOI : 10.1101/gad.13.10.1263

T. Czerny, G. Schaffner, and M. Busslinger, DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site., Genes & Development, vol.7, issue.10, pp.2048-2061, 1993.
DOI : 10.1101/gad.7.10.2048

K. Vogan and P. Gros, The C-terminal Subdomain Makes an Important Contribution to the DNA Binding Activity of the Pax-3 Paired Domain, Journal of Biological Chemistry, vol.122, issue.45, pp.28289-28295, 1997.
DOI : 10.1101/gad.10.17.2198

F. Relaix, D. Montarras, S. Zaffran, B. Gayraud-morel, and D. Rocancourt, Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells, The Journal of Cell Biology, vol.48, issue.1, pp.91-102, 2006.
DOI : 10.1083/jcb.200312007

URL : https://hal.archives-ouvertes.fr/hal-00311188

C. Seger, M. Hargrave, X. Wang, R. Chai, and S. Elworthy, Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease, Developmental Dynamics, vol.119, issue.pt 12, pp.2440-2451, 2011.
DOI : 10.1242/jcs.02908

M. Berger, G. Badis, A. Gehrke, S. Talukder, and A. Philippakis, Variation in Homeodomain DNA Binding Revealed by High-Resolution Analysis of Sequence Preferences, Cell, vol.133, issue.7, pp.1266-1276, 2008.
DOI : 10.1016/j.cell.2008.05.024

A. Jolma, J. Yan, T. Whitington, J. Toivonen, and K. Nitta, DNA-Binding Specificities of Human Transcription Factors, Cell, vol.152, issue.1-2, pp.327-339, 2013.
DOI : 10.1016/j.cell.2012.12.009

S. Hutchinson, S. Cheesman, L. Hale, J. Boone, and J. Eisen, Nkx6 proteins specify one zebrafish primary motoneuron subtype by regulating late islet1 expression, Development, vol.134, issue.9, pp.1671-1677, 2007.
DOI : 10.1242/dev.02826

URL : http://dev.biologists.org/content/develop/134/9/1671.full.pdf

A. Moriyama, I. Kii, T. Sunabori, S. Kurihara, and I. Takayama, GFP transgenic mice reveal active canonical Wnt signal in neonatal brain and in adult liver and spleen, genesis, vol.16, issue.2, pp.90-100, 2007.
DOI : 10.1002/dvg.20268

N. Frankel, G. Davis, D. Vargas, S. Wang, and F. Payre, Phenotypic robustness conferred by apparently redundant transcriptional enhancers, Nature, vol.36, issue.7305, pp.490-493, 2010.
DOI : 10.1086/physzool.8.4.30151263

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909378

J. Hong, D. Hendrix, and M. Levine, Shadow Enhancers as a Source of Evolutionary Novelty, Science, vol.103, issue.34, p.1314, 2008.
DOI : 10.1073/pnas.0604484103

M. Perry, A. Boettiger, J. Bothma, and M. Levine, Shadow Enhancers Foster Robustness of Drosophila Gastrulation, Current Biology, vol.20, issue.17, pp.1562-1567, 2010.
DOI : 10.1016/j.cub.2010.07.043

M. Perry, A. Boettiger, and M. Levine, Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo, Proceedings of the National Academy of Sciences, vol.305, issue.5685, pp.13570-13575, 2011.
DOI : 10.1126/science.1099247

I. Ovcharenko, G. Loots, B. Giardine, M. Hou, and J. Ma, Mulan: Multiple-sequence local alignment and visualization for studying function and evolution, Genome Research, vol.15, issue.1, pp.184-194, 2005.
DOI : 10.1101/gr.3007205

URL : http://genome.cshlp.org/content/15/1/184.full.pdf

M. Larkin, G. Blackshields, N. Brown, R. Chenna, and P. Mcgettigan, Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, issue.21, pp.2947-2948, 2007.
DOI : 10.1093/bioinformatics/btm404

URL : https://hal.archives-ouvertes.fr/hal-00206210

T. Bailey, M. Boden, F. Buske, M. Frith, and C. Grant, MEME SUITE: tools for motif discovery and searching, Nucleic Acids Research, vol.37, issue.Web Server, pp.202-208, 2009.
DOI : 10.1093/nar/gkp335

URL : https://academic.oup.com/nar/article-pdf/37/suppl_2/W202/3929432/gkp335.pdf

S. Gupta, J. Stamatoyannopoulos, T. Bailey, and W. Noble, Quantifying similarity between motifs, Genome Biology, vol.8, issue.2, p.24, 2007.
DOI : 10.1186/gb-2007-8-2-r24

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2007-8-2-r24?site=genomebiology.biomedcentral.com

V. Hamburger and H. Hamilton, A series of normal stages in the development of the chick embryo, Developmental Dynamics, vol.108, issue.4, pp.231-272, 1951.
DOI : 10.1002/jez.1401080304

F. Relaix, M. Polimeni, D. Rocancourt, C. Ponzetto, and B. Schafer, The transcriptional activator PAX3-FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo, Genes & Development, vol.17, issue.23, pp.2950-2965, 2003.
DOI : 10.1101/gad.281203

G. Friedrich and P. Soriano, Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice., Genes & Development, vol.5, issue.9, pp.1513-1523, 1991.
DOI : 10.1101/gad.5.9.1513

C. Thisse and B. Thisse, High-resolution in situ hybridization to whole-mount zebrafish embryos, Nature Protocols, vol.75, issue.1, pp.59-69, 2008.
DOI : 10.1038/nprot.2007.514

G. Davis, D. 'alessio, J. Patel, and N. , Pax3/7 genes reveal conservation and divergence in the arthropod segmentation hierarchy, Developmental Biology, vol.285, issue.1, pp.169-184, 2005.
DOI : 10.1016/j.ydbio.2005.06.014

C. Hammond, Y. Hinits, D. Osborn, J. Minchin, and G. Tettamanti, Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish, Developmental Biology, vol.302, issue.2, pp.504-521, 2007.
DOI : 10.1016/j.ydbio.2006.10.009

URL : http://doi.org/10.1016/j.ydbio.2006.10.009

J. Minchin and S. Hughes, Sequential actions of Pax3 and Pax7 drive xanthophore development in zebrafish neural crest, Developmental Biology, vol.317, issue.2, pp.508-522, 2008.
DOI : 10.1016/j.ydbio.2008.02.058

N. Holden and C. Tacon, Principles and problems of the electrophoretic mobility shift assay, Journal of Pharmacological and Toxicological Methods, vol.63, issue.1, pp.7-14, 2011.
DOI : 10.1016/j.vascn.2010.03.002