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Abstract

Conceptual DFT and Quantum Chemical Topology provide two different approaches based

on the electron density to grasp chemical concepts. We present a model merging both ap-

proaches, in order to obtain physical properties from chemically meaningful fragments (bonds,

lone pairs) in the solid. One way to do so is to use an energeticmodel that includes chemical

quantities explicitly, so that the properties provided by conceptual DFT are directly related

to the inherent organization of electrons within the regions provided by topological analysis.

An example of such energy model is the Bond Charge Model (BCM)by Parr and collabo-

rators. Bonds within an ELF-BCM coupled approach present very stable chemical features,

with a bond length of ca. 1Å and 2¯e. Whereas the 2¯e corroborate classical views of chemical

bonding, the fact that bonds always expand along 1Å introduces the concept of geometrical

transferability and enables to estimate crystalline cell parameters.
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Moreover, combining these results with conceptual DFT enables deriving a model for the

band gap where the chemical hardness of a solid is given by thebond properties, charge, length

and a Madelung factor, where the latter plays the major role.In short, the fundamental gap

of zinc-blende solids can be understood as given by a 2¯ebond particle asymmetrically located

on a 1Å length box and electrostatically interacting with other bonds and with a core matrix.

This description is able to provide semi-quantitative insight into the band gap of zinc-blende

semiconductors and insulators on equal footing, as well as arelationship between band gap

and compressibility.

In other words: merging these different approaches to bonding enables to connect mea-

surable macroscopic behavior with microscopic electronicstructure properties and to obtain

microscopic insight into the chemical origin of band gaps, whose prediction is still nowadays

a difficult task.

1. Theoretical framework(s)

It is well known that the electron density is of paramount importance to fully understand the

ground-state properties of many-electron systems. As remarked by Yang et al:1 “Interactions be-

tween electrons determine the structure and properties of matter from molecules to solids. To

describe interacting electrons, the extremely simple 3D electron density can be used as the basic

variable within density functional theory2,3 negating the need in many cases for the massively

complex many-dimensional wave function.” The electron density prominence derives from the

Hohenberg-Kohn theorems,4 which prove the existence of a functional relation between the elec-

tron distribution and the observables of non-degenerate electronic systems on their ground-state.

Moreover, Density Functional Theory (DFT) is not only an alternative way to describe the elec-

tronic structure of matter but it also provides a convenientframework to construct formal defini-

tions of chemical concepts. This branch of DFT is known as conceptual DFT or chemical DFT

(c-DFT).3,5–11The formal definitions of these concepts have also permittedto demonstrate ideas

basic to chemistry such as Pearson’s Hard-Soft Acids-Bases(HSAB) rule.12 Chemical hardness,
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η, and electronegativity,χ , have been two concepts developed over time for the rationalization of

reactivity and chemical bonding on empirical grounds. It was one of the great successes of c-DFT

to provide a rigorous definition for both of them as the response of the energy of the system,E,

to the change in the number of electrons,N, at fixed external potential,ν (for example due to the

nuclear configuration):13

χ = −

(

∂E
∂N

)

ν
(1)

η =

(

∂ 2E
∂N2

)

ν
(2)

These derivatives imply that the system is open to particles. If the system is not open, the energy is

a piecewise function ofN with straight lines between integers and discontinuity of the derivatives

at integerN. If the system is open,E vs. N is a smooth function. The shape ofE vs. N reflects

the details of the interaction of the system with thechemical environment. Numerous models have

been proposed in the literature,14–18but the simplest interpolation ofE vsN is the parabola, which

provides operational definitions of theχ andη:13,19

χ =
I +A

2
(3)

η = I −A (4)

whereI is the vertical ionization potential andA is the vertical electron affinity.

Note that for solids,I −A is nothing but the fundamental gap,

η = Egap (5)

and−χ = − I+A
2 falls exactly at the midpoint of the band gap, i.e., the Fermilevel,

χ = −Ef (6)
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Clearly, chemical DFT enables to link responses of the energy with chemical information.

However, chemical information should also be encoded in theelectron density and other 3D fields

related to it. Indeed, many theories have been developed to understand electronic structure in

real space based on the mathematical framework of topology (leading to what is known as Quan-

tum Chemical Topology). The most prominent approaches are the Quantum Theory of Atoms In

Molecules (QTAIM)20,21 theory and the Electron Localization Function (ELF).22–24By means of

the topological analysis of the three-dimensional electron density and the definition of surfaces of

zero electronic flux, QTAIM divides direct space into discrete atomic basins, which provide self-

consistent atomic properties such as charges and volumes, as well as a topological inter-atomic

bond path motif, which is assigned to the molecular structure. The character of the bond can be

extracted from various characteristics calculated at the bond critical point, such as the bond el-

lipticity 25 or metallicity.26–28The Laplacian of the density is used as an indicator of local charge

concentration,29 which yields also information about bonding in real space. Currently, QTAIM is

being used by both theoreticians and experimentalists in fields ranging from solid state physics and

X-ray crystallography to drug design and biochemistry.30

The Electron Localization Function (ELF) constitutes a very useful tool for understanding

Lewis pairs in real space. ELF is based on the same-spin pair probability density, thus gener-

ating basins of localized electron pairs.22 Alternatively, ELF can also be understood as an excess

of kinetic energy density induced by the Pauli principle.23 In localized systems, the ELF value ap-

proaches 1 in regions of space where electron pairing occurs(atomic shells, bonds and lone pairs),

and 0 in the limit between those surfaces, where there is a high probability of finding electrons

from different localized pairs. As the system becomes more delocalized (e.g. bond formation31

or in metals32,33), both the values at the maxima and inter-basin approach 0.5(the value for the

homogeneous electron gas).

All these topological partitions have been widely generalized to develop the so-called Quantum

Chemical Topology framework, which includes the differentscalar fields,34–39and which has been

successfully employed for the analysis of chemical bond in molecules and solid state as well as to

4



provide further understanding of chemical reactivity.40–43

Figure 1: Bond charge model for homonuclear (left) and heteronuclear (right) molecules,A2 and
AX, respectively. The meaning of the main parameters that are needed in each case is shown in the
figures:q andRB for homonuclear molecules andq, δ andRB do for heteronuclear ones;B label
stands for the bond.

Whereas c-DFT dwells on chemical responses from the electron density, topology connects

the electron density and related fields with chemical regions (bonds, lone pairs) in real space. An

interesting approach would then be to combine both approaches, topology and conceptual DFT, in

order to obtain chemically meaningful properties from chemically meaningful fragments (bonds,

lone pairs) in the solid. One way to do so is to use a potential energy surface, PES, that includes

chemical quantities explicitly, so that the properties provided by conceptual DFT (Eqs. 1 & 2) are

directly related to the inherent organization of electronswithin the regions provided by topological

analysis.

According to this parabolic approach, the energy of the system close to equilibrium can be

assumed as given by a second order expansion. Parr and collaborators used this approach providing

a physical meaning (kinetic and potential energy) to each term in what is known as the Bond Charge

Model (BCM).44 The physical basis of the model starts from the simplest case, a homonuclear

diatomic molecule (A2), modeled as a three body system: two punctual core charges and a bond,

which is a negative charge moving freely between them. In order to keep electrical neutrality, this

charges correspond to +q/2 and -q for the cores and the bond, respectively. The bonding chargeis

represented as a -q charge particle in a box of lengthRB = νR, whereR is the interatomic distance.

Close to the equilibrium, the energy of the system can be assumed as given by a second order
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expansion, where terms can be associated a physical meaning:

E(q,R) = E0+E1 +E2 = 2EA−
Cq2

R
+

D′q

R2
B

, (7)

E0 is the core internal energy, which should not be mistaken with the energy of the free atoms,

but the energy of the atoms in the molecule once they have donatedq/2 electrons to the bonding

region (E0 = 2EA in the homonuclear case).E1 can be associated with the coulombic interactions

(core-core, core-bond) andE2 with the bond charge kinetic energy. Following this interpretation,

the constants are given by :44

C =
7
4
, D′ =

h̄2π2

2m
, (8)

and the parametersq andν are found empirically for each molecule. Note that these fittings have

lead to values ofν >1, i.e. to bond lengths longer than the interatomic distance(e.g. ν =2.3 for

H2
44).

When heteronuclear molecules are considered (see Figure 1b), two extra parameters need to be

fitted:

1. the deviation of the bonding charge from the center of the bond length. The asymmetry is

taken into account with ther1/r2 parameter, the ratio of the distances from the centre of the

bond charge to each of the cores

2. the contribution of each atom to the bond charge. This is taken into account with theδ

parameter, so that cores will hold a charge of+q/2(1+δ ) and+q/2(1−δ ), respectively.

Coupling conceptual DFT concepts to this energetic model has lead to the development of

hardness and electronegativity in molecules within the QTAIM approximation,45,46 showing for

example that protonation increases electronegativity of agroup while deprotonation decreases it.47

Note that the main idea behind the BCM model is that the space,R
3, can be split in core and

bonding regions. In the case of diatomic molecules “chemical intuition” is enough to assign these
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regions because the bonding region must be a fraction of the space between both atoms.48 However,

in more complex systems, such as solids or molecules with a non traditional bonding pattern,

assignation of bonding regions based only in geometrical parameters could be unsatisfactory. In

those cases bonding regions should be those where Lewis pairs are localized. Then, the core

and bond (valence) basins of ELF provide well-defined core and bonding regions, respectively,

for the BCM model. This was done in a first article by the authors,49 whereqB was associated

with the bond charge resulting from integration of the electron density over the valence basins of

ELF, andRB to the length of the bond basin along the bonding direction. Please note that within

this combined ELF-BCM approach, bond charges and lengths adopt chemically intuitive values

(q ≃2 e,RB < R). This model was used to understand the evolution of energy with the unit cell

size,V, and thus provide a microscopic understanding of the compressibility of solids. Moreover,

explanations for the low compressibility of superhard materials were given, unifying the origin of

the low compressibility of diamond and BN, whose chemical bond is extremely different (from

homopolar to very polarized).

Band-gap prediction is critical for applications in condensed matter and nanotechnology. As

an example, the band gap of solids, specially of semiconductors, encloses great potentiality if

tuned in the correct direction in the design of solar cells. However, its accurate prediction from

quantum chemistry methods is still difficult nowadays. Insight into the nature of the band gap and

its relationship with the chemistry of the system is thus crucial. Hence, ELF-BCM will be coupled

in this contribution to conceptual DFT to provide insight into the chemical hardness, i.e. the band

gap, of solids along the zinc-blende series, where insulators and semiconductors coexist and share

a common crystallographic description.

After introducing the theoretical and computational framework (Sections 1&2), we will present

the BCM model for solids in Section 3.1. We will then couple itto ELF quantities in Section 3.2.

We will show that bonds within an ELF-BCM coupled approach present very stable chemical

features, making them transferable along the series. Thesebonding properties will then be used in

Section 3.3 to disentangle the microscopic factors determining the band gap of zinc-blende solids
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in real space. We will show that the chemical hardness of a solid is given by the bond properties,

RB, qB andM, whereM plays the major role. We will put all these results together in Section 4 in

order to provide semi-quantitative insight into the band gap of semiconductors and insulators on

equal footing as well as the relationship of their band gaps with their compressibility. The article

ends with a summary and the main conclusions.

2. Computational details

In order to obtain ELF parameters, we have carried out DFT calculations on zinc-blende-type

structures ranging from covalent to polar-covalent (IV, III-V and II-VI families) in order to ensure

the existence of a basin associated with the bond while covering a big range of band gaps. As noted

in Ref. 49, the application of this model to metals is conceptually weak due to the common appear-

ance of several bonding basins. We have used theELK code50 with a high plane-wave cut-off to

ensure convergence:KmaxRMT=9, whereKmax is the maximum size of the reciprocal lattice vectors

andRMT holds for the smallest muffin-tin radius. In order to avoid discontinuities in the electron

density due to the muffin-tin, spherical harmonics within each atomic sphere were expanded up

to angular quantum numberlmax=14. Perdew-Wang51 and Perdew-Burke-Ernzerhof52 exchange-

correlation functionals were used. We have used 8x8x8 Monkhorst-Pack grids and a 1x10−5 Eh as

convergence criterion threshold.

Due to the difficulties found to describe band gaps with DFT, specially in semiconductors, we

have used experimental band gaps as reference. Thus, our calculations were done with the room

temperature experimental lattice parameters.53

We have used theCRITIC code developed by some of the authors to obtain the ELF topol-

ogy.54,55CRITIC is able not only to find ELF maxima and saddle points but it can also construct

basins and integrate properties.

The ELF-BCM Madelung factors,M, have been calculated with the Environ code.56 Ewald

sums have been verified with an in-house script to calculate the electrostatic energy of a periodic
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crystal composed of point-like charges and converged to 10−15 (a.u.).57

3. BCM, ELF and conceptual DFT

Band gaps in solids are usually understood in reciprocal space. However, a quick look at series of

solids soon reveals periodic trends (see for example Figure4). Thus, a relationship should exist

between band gap and Lewis pairing in real space. In order to obtain insight into the microscopic

nature of the band gap in terms of chemical quantities, we will use the bond charge model, which

was extended by Martin60 to describe the energy of covalent crystals. For simplicity, we consider a

zinc-blende-type solid,AX, with a formula unitAXB4 accounting for the four-fold coordination of

the two elements in the unit cell, whereB represents the bond entity. This series has been chosen

due to its high symmetry, which will provide greater insightinto the effects of periodicity, as well

as due to its versatileEgap, ranging from those of insulators to semiconductor materials.

3.1. BCM

In an expansion of the BCM model to solids, the energy of a AXB4 unit will be given by:

E = EA +EX +4EB (9)

whereEA andEX are constants related to the internal core energy. The bond energy,EB, is given

by:49

EB =
4D′qB

R2
B

−
Mq2

B

RB
, (10)

whereM is an average Madelung factor (also called for brevity Madelung factor) for a solid with

charges 2qB(1+δ ) and 2qB(1−δ ) at A andX atomic sites, respectively as well as a−qB charge

at each bond position. Note the use of “factor” instead of “constant” to avoid confusion with the

common “Madelung constant” concept which only applies to atoms.

9



At equilibrium Eq. 10 reduces to:

EB = −
4D′qB

R2
B

= −
Mq2

B

2RB
, (11)

3.2. BCM+ELF

We can couple the bond energy from Eq. 10 to ELF quantities in order to obtain BCM parameters

(RB, qB, δ andr1/r2) from first principles.49 This also allows calculating the Madelung factor,M.

Table 1 collects the parameters for our set of zinc-blende solids. RB is calculated from the 1D ELF

profile in between A and X. Charge values (qB andδ ) are extracted from the ELF charges. We have

assumed that cores remain untouched, so thatqval = ZA +ZX, whereZ is the atomic number and

qc the core charge. For our AXB4 compounds and given the ability of ELF to recover “chemical

values”, this yieldsqB = qval/4≃ 2. Core values for the elements up to the 4th row involved in the

solids under this study have been extracted from the ELF integrations gathered in Ref. 61. Beyond

the 4th row, calculations were performed for the atoms with the TopMod program.49 The value of

δ comes naturally from this definition. From Section 3.1, the valency,qi
val, of each atom type is

related toδ as follows:

qA
val = 4

qB

2
(1−δ ) (12)

qB
val = 4

qB

2
(1+δ ) (13)

with X being more electronegative thanA (see Figure 1 and Section 3.1). Henceδ can be directly

obtained from the valency and the bond charge:

δ = 1−
qA

val

2qB
=

qB
val

2qB
−1 (14)

Since it only depends on the bond charge (ca. 2 electrons) andthe valency, values within the same

family are very close. This can seen for example in the SiC entry of Table 1. Both C and Si have
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the sameqval = 3.9,61 yielding the sameqB and the sameδ (see Ref. 49). Finally, the position

of the bond charge is taken from the maximum of ELF along the bonding direction. It should be

noted that for a proper description of the electrostatic interactions, the center of charge would be

the best definition. However, since ELF values are being usedfor the bond size, we have kept the

ELF value for coherence. Moreover, we have checked the location of both points for a trial polar

bond. The deviation of the of ELF attractor of the C-N bond in formamine from the center of

charge was found to be 0.07 a.u., that is ca 2.5% of the bond distance.

Table 1:qB andRB parameters of ELF-BCM for a broad group of diamond-type and zinc-blende-
type solids from the IV, III-V and IIb-VI groups.49 M andEB stand for the ELF-BCM Madelung
factor and the bonding energy of the crystal, respectively.Bulk moduli at zero pressure,B0, were
taken from Ref.58 and band gaps from Ref.59 Lengths are in Å, charges in electrons,EB in atomic
units,B0 is GPa andEgap in eV.

AX RB qB M EB B0 Egap

Group IV
C 0.938 1.950 10.856 -11.644 442 5.2
Si 1.132 1.950 8.577 -7.623 98 1.12
Ge 1.003 2.100 7.414 -8.625 77.2 0.66
SiC 0.985 1.950 9.356 -9.556 211 2.86

Group III-V
BN 0.936 1.975 11.006 -12.136 397 5.0
BP 1.050 2.000 9.662 -9.739 166 4.2
BAs 1.023 2.050 8.711 -9.468 144 3.0
BSb 0.999 1.988 8.554 -8.954 108 2.6
AlP 1.122 1.975 8.925 -8.206 86 3.1
AlAs 1.080 2.025 8.028 -8.068 77 2.16
AlSb 1.093 1.963 7.304 -6.810 58 1.52
GaAs 0.992 2.100 7.662 -9.008 75 1.35
GaSb 0.986 2.038 6.764 -7.538 57 0.71
InP 1.012 1.970 8.494 -8.615 71 1.25
InAs 0.958 2.020 7.268 -8.187 60 0.35

Group IIb-VI
ZnS 1.001 2.025 10.130 -10.976 77 3.6
ZnSe 0.970 2.075 8.631 -10.134 62 2.6
ZnTe 0.971 2.038 7.415 -8.389 51 2.2
CdS 0.976 1.975 10.016 -10.512 62 2.5
CdSe 0.938 2.025 8.591 -9.697 53 1.7

It can be seen that trends arise for each family (highlightedin colors in Figure 3): group
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IV, group III-V and group IIb-VI compouds. The heads of the groups have the smallestRB and

the biggest ELF-BCM Madelung factors (see Figure 2). However, bothqB andRB changes are

negligible in comparison with the changes in the Madelung factor, M (see Figure 2). Indeed,

within this framework,qB remains very close to the Lewis expectation, ca. 2¯e, andRB is found to

lay very close to 1Å in all cases. It should be noted that this value approximately corresponds to

twice the Bohr radius (i.e. “Bohr’s diameter”).
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Figure 2: Evolution of ELF-BCM parameters along the zinc-blende series. Background colors
have been used to highlight the three families: IV (purple),V-III (green) and IIb-VI (light orange).
Lengths are in Å, charges in electrons.

This means that the size of the bond along the interbonding direction does not depend on the

lattice parameter of the crystal (which spreads over a rangeof ca. 3.5-6.1 Å), neither on the two

atoms involved in the bond. This transferability makes the use of ELF parameters within the

BCM energy model very attractive. It also enables an estimation of cell parameters as a sum of
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core+bonding contributions. In our zinc-blende solids:

a≃
4
√

3
(rA + rX +RB) (15)

Taking ELF core radii from Ref. 61 andRB =1Å, cell parameters can be estimated. Figure 3 shows

the evolution of experimental cell parameters in our zinc-blende solids, along with the values

predicted by Eq. 15. The relative (and absolute) values follow the experimental trends along

the series, with two important trends appearing related to the softness of ions. Equations 1&2

can also be used in atoms to retrieve the classical concept ofatomic hardness (as well as that of

polarizability). Moreover, in agreement with Pearson’s approach, it has been found to be related

to atomic radii, so that bigger atoms are softer and more polarizable.62–65These concepts are very

important to understand the deviations in Figure 3. Whereascompounds with a hard cation yield an

underestimation, Eq. 15 overestimates the cell parameter in compounds with a soft cation. This is

due to two contributions: theRB estimation and the model itself.RB tends to be slightly bigger than

1Å in boron and aluminum compounds, and slightly smaller than 1Å for the softer ions. However,

this cannot be the only source of deviation. A look at Table 1 reveals thatRB values smaller and

greater than one appear in both regions of Figure 3. We have identified the other source of deviation

as due to our “shared electron model”. Softer and more polarized (i.e. bigger) atoms give greater

deviations when combined together. This could be due to the greater delocalization (exchange) in

between bonding basins that is overlooked in the model. Workin in process to improve the model

in this direction. Hence, fulfillment of Eq. 15 can be understood as a first test to our model, which

works well for the homonuclear family IV and for the III-V onewith at least one hard atom.

3.3. BCM+ELF+c-DFT

If electrons were to be added or removed from the system, theywould arrive or leave the bonding

regions, respectively. This is, the core electrons do not take place in electron-number-changing

process. Therefore, according to Eq. 2, the chemical hardness of the solid will be the chemical
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hardness of the bonding regions, which is found by differentiating Eq. 10 twice with respect toqB.

This establishes a direct link between the band gap, the Madelung factor and the size of the bond

basins. In other words, merging these approaches enables torecover old concepts, such as the

involvement of valence electrons in the band gap, and semi-quantitatively relate their properties

(charge, position of the ELF maximum) with the band gap:

Egap =
M
RB

(16)

Band gaps calculated with Eq. 16 along with experimental ones are depicted in Figure 4.

Although the model is too simple to predict absolute values,it is able to explain the trends in

band gaps within each family. Note that the fact of considering a non equilibrium position would

only shift the prediction by a factor of two, so that both approaches lead to the same conclusions.

Although the model is too simple to predict absolute values,it is able to explain the trends in band

gaps within each family. The band gap is bigger for the head ofeach family, whereM is bigger

andRB smaller (see Figure 2). Band gaps also decrease for a given family (A or X fixed) as the

other atom becomes softer, e.g. BP > AlP > InP, but also BN> BP >BAs > BSb.

It can be seen in Figure 3 that problems arise for soft atoms. In our band gap model this leads

to the wrong trend in the CdS-ZnS couple. In addition of polarizability being problematic for the

shared-electron model, metals are also less accurately described in this model. Bonding regions in

metallic systems are more delocalized, so that the approximation of the bond energy is probably

insufficient.

As noted above, the global chemical hardness parameter and the size of the free atom are

inversely related. However, in our periodic systems,RB is nearly constant, so thatM becomes the

determining factor in Eq. 16. Figure 5 has been constructed for compounds up to the 4th row (see

Section 2). As can be seen, the Madelung factor becomes a goodindicator of the band gap.

Hence, it would be interesting to understand the origin ofM. In our chemical definition of zinc-

blende solids, lattices are not invariant structures. Following Glasser’s definition, our Madelung
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factor is given by:66

M = −
1

2Z

[

neq

∑
i

(

qi

qB

)

CiZi

]

. (17)

whereZ is the multiplicity of the formula unit, and thei-index runs over all non-equivalent (neq)

entities in the unit cell, withZi being their corresponding multiplicities.

Ci is the Madelung factor for each of the non-equivalent entities:

Ci = −VM
i

RB

qB
, (18)

whereVM
i is the Madelung potential at the position of thei-th non-equivalent entity. Hence,Ci and

M depend on a reference charge,qB and distance,RB.

For ourAXB4 structures, there are two contributions,CA andCX, which are position invariable,

and one which is not,CB. WhereasA andX are in fixed Wyckoff positions,CB, depends on the

position of the bond along theA-X axis. From the symmetry and stoichiometry of the zinc-blende-

type solids,M can be simplified as

M = 2CB− (1+δ )CA− (1−δ )CX, (19)

which yields different values for each of the crystals studied.

TheCi contributions toM are collected in Figure 5. WhereasCA reveals the different families,

CX reveals the internal organization within each family. The bond contribution,CB provides a

compensated picture intra and interfamily. This is represented separately in Figure 6. The Bond

Madelung factor,CB, is found to correlate fairly well with band gap evolution, playing the major

role determining the macroscopic band gap. In other words, we can understand the band gap,

defined in reciprocal space, as coming from the electrostatic interaction of the bond charge with its

environment (other bonds and cores).
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4. “Chemical and physical hardness”

Summarizing the results from Sections 3.1-3.3, the fundamental band gap of zinc-blende solids

can be understood as that of 2 electron particles asymmetrically located on a 1Å length and elec-

trostatically interacting among them and with a core matrix. Thus, two geometrical parameters

control de trends: the cell parameter and the displacement of ELF maximum (i.e.r1/r2) within the

bonding basin. Whereas the first factor can be estimated (we have seen in Figure 3 it is related to

core radii and the estimated 1Å bond length), we have not found an easy connection for estimating

the second one (approximating the behavior to that of the homonuclear case, Wyckoff position 16e,

has shown to be insufficient). However, this geometrical description of the band gap makes a di-

rect connection with the cell volume, so that it is possible to relate it with the solid compressibility.

Within the BCM model, the bulk modulus,B0, can be expressed as:49

B0 =
2M
9RB

q2
B

V
, (20)

giving the following relationship between the band gap and the bulk modulus:

B0 =
2
9

Egapq2
B

V
. (21)

This expression is intimately related to the one derived by Yang,67 where the hardness of a solid

is inversely proportional to its compressibility (recall that the compressibility,κ is the inverse

of the bulk modulus). This relationship is represented in Figure 7 for our set of solids, where

the intrinsic relationship between chemical hardness and resistance to hydrostatic compression is

apparent. Compressibility depends mainly on the chemical hardness and the volume. It has been

shown within the ELF approach that volume and compressibility are related to the chemical nature

of the Lewis entity in agreement with VSEPR principles:68

VLP > VMB > VSB> Vcore (22)

20



κLP > κMB > κSB> κcore, (23)

where LP, MB and SB stand for lone pair, multiple bond and single bond, respectively. Taking

into account that within the topological approach volumes are additive,V = ∑Vi , it can be shown

that the compressibility can be expressed asκ = ∑xiκi , whereκi refers to each Lewis’ entity

compressibility andxi = Vi
V to its cell occupation.69 Hence, softer and bigger bonds are the ones

that determine the compressibility of the system. Extremely localized solids, such as diamond,

yield very high bulk modulus and big band gaps, whereas more delocalized bonds, like those of

semiconductors, are softer and give smaller band gaps and greater compressibilities. These two

quantities being interrelated by Eq. 21.

This also highlights one of the most important take-home messages of common compounds

in main-group chemistry: localized orbitals and delocalized planewaves are two electronic orga-

nizations of great stability that give rise to very stable and detectable chemical patterns where

“everything correlates with everything”.70 Hence, the properties of their bonds determine many of

their macroscopic properties in an interrelated manner.
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5. Summary and conclusions

Band gaps are error-prone quantities within quantum chemistry, but which show an important

periodic behavior. Moreover, calculations of these properties do not provide a direct link with the

composition, which hampers inverse design. An important issue for example for solar cells. From

the chemical point of view, the link between band gap and molecular orbitals has been known

for a long time (e.g. the gap in diamond corresponds to a bonding-antibonding gap, whereas in

rock salt it corresponds to a charge transfer gap). This contribution intends to provide a working

theoretical approach to formalize the link in real space: the relationship between the chemical

bond and the band gap of solids. Making use of the Bond Charge Model, we have merged the

topological description of solids in real space with the conceptual DFT description of their band

gap in reciprocal space in order to understand its microscopic origin.

We have found that bonds within an ELF-BCM coupled approach present very stable chem-

ical features, with a bond length of ca. 1Å and 2¯e. Whereas 2¯e charges are in agreement with

classical views of chemical bonding (which was not the case of the original BCM charges), the

constant bond lengths introduce the concept of geometricaltransferability and enable estimating

cell parameters.

Using this approach to analyze band gaps we have found that the hardness of a solid is given

by the bond properties,RB, qB andM, whereM plays the major role. Moreover, band gap trends

can be explained in terms of the Madelung factor associated with the bond.

Hence, the fundamental band gap of zinc-blende solids can beunderstood as that of 2 electron

particles asymmetrically located on a 1Å length and electrostatically interacting among them and

with a core matrix. This description is able to provide semi-quantitative insight into the band gap of

zinc-blende solids (from semiconductors to insulators) onequal footing as well as the relationship

with compressibility. As far as applications to metals is concerned, due to the appearance of

numerous bonding basins, the coupling of ELF and c-DFT becomes more difficult.
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