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On understanding the chemical origin of band gaps
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Abstract

Conceptual DFT and Quantum Chemical Topology provide tWermint approaches based
on the electron density to grasp chemical concepts. We mresenodel merging both ap-
proaches, in order to obtain physical properties from chahyi meaningful fragments (bonds,
lone pairs) in the solid. One way to do so is to use an energstidel that includes chemical
guantities explicitly, so that the properties provided lopeeptual DFT are directly related
to the inherent organization of electrons within the regipnovided by topological analysis.
An example of such energy model is the Bond Charge Model (B6Parr and collabo-
rators. Bonds within an ELF-BCM coupled approach present stable chemical features,
with a bond length of ca. 1A ance2Whereas the@corroborate classical views of chemical
bonding, the fact that bonds always expand along 1A intreslube concept of geometrical

transferability and enables to estimate crystalline calbmeters.
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Moreover, combining these results with conceptual DFT ksatleriving a model for the
band gap where the chemical hardness of a solid is given dyoitne properties, charge, length
and a Madelung factor, where the latter plays the major risieshort, the fundamental gap
of zinc-blende solids can be understood as given bglao2d particle asymmetrically located
on a 1A length box and electrostatically interacting withestbonds and with a core matrix.
This description is able to provide semi-quantitative ghsiinto the band gap of zinc-blende
semiconductors and insulators on equal footing, as well @$aéionship between band gap
and compressibility.

In other words: merging these different approaches to gndnables to connect mea-
surable macroscopic behavior with microscopic electratiacture properties and to obtain
microscopic insight into the chemical origin of band gapkpege prediction is still nowadays

a difficult task.

1. Theoretical framework(s)

It is well known that the electron density is of paramount aripnce to fully understand the
ground-state properties of many-electron systems. Asnie@day Yang et al: “Interactions be-
tween electrons determine the structure and propertiesattemfrom molecules to solids. To
describe interacting electrons, the extremely simple 3atebn density can be used as the basic
variable within density functional theofy negating the need in many cases for the massively
complex many-dimensional wave function.” The electrongitynprominence derives from the
Hohenberg-Kohn theorenfswhich prove the existence of a functional relation betwéenelec-
tron distribution and the observables of non-degeneraigrenic systems on their ground-state.
Moreover, Density Functional Theory (DFT) is not only areatitative way to describe the elec-
tronic structure of matter but it also provides a convenfearhework to construct formal defini-
tions of chemical concepts. This branch of DFT is known asxeptual DFT or chemical DFT
(c-DFT).3>"11The formal definitions of these concepts have also permitteemonstrate ideas

basic to chemistry such as Pearson’s Hard-Soft Acids-Bé&$88B) rule. 1?2 Chemical hardness,



n, and electronegativity, have been two concepts developed over time for the rateatan of
reactivity and chemical bonding on empirical grounds. Iswae of the great successes of c-DFT
to provide a rigorous definition for both of them as the resgoof the energy of the systefs,

to the change in the number of electroNs,at fixed external potentiai; (for example due to the

nuclear configuration3

- (),

2
-(55).

These derivatives imply that the system is open to partitiélse system is not open, the energy is
a piecewise function dN with straight lines between integers and discontinuityhef derivatives
at integem\. If the system is opert vs. N is a smooth function. The shapeBfvs. N reflects
the details of the interaction of the system with dhemical environmentNumerous models have
been proposed in the literatuté&;18put the simplest interpolation & vs N is the parabola, which

provides operational definitions of tixeandn: 1319

X="5" ®)
n=1-A @

wherel is the vertical ionization potential amlis the vertical electron affinity.

Note that for solidsl — A is nothing but the fundamental gap,

N = Egap (5)
and—x = —% falls exactly at the midpoint of the band gap, i.e., the Fdewel,
X =—Es (6)



Clearly, chemical DFT enables to link responses of the gneiith chemical information.
However, chemical information should also be encoded iretbetron density and other 3D fields
related to it. Indeed, many theories have been developedderstand electronic structure in
real space based on the mathematical framework of topoleggifig to what is known as Quan-
tum Chemical Topology). The most prominent approacheshar®uantum Theory of Atoms In
Molecules (QTAIMY??1theory and the Electron Localization Function (EL%y2* By means of
the topological analysis of the three-dimensional electtensity and the definition of surfaces of
zero electronic flux, QTAIM divides direct space into digeratomic basins, which provide self-
consistent atomic properties such as charges and volumegelhas a topological inter-atomic
bond path motif, which is assigned to the molecular strgctdihe character of the bond can be
extracted from various characteristics calculated at thallcritical point, such as the bond el-
lipticity 2 or metallicity?>-28 The Laplacian of the density is used as an indicator of lobatge
concentratior?® which yields also information about bonding in real spacerréntly, QTAIM is
being used by both theoreticians and experimentalistslasfranging from solid state physics and
X-ray crystallography to drug design and biochemistty.

The Electron Localization Function (ELF) constitutes ayvaseful tool for understanding
Lewis pairs in real space. ELF is based on the same-spin palrapility density, thus gener-
ating basins of localized electron pafisAlternatively, ELF can also be understood as an excess
of kinetic energy density induced by the Pauli principfdn localized systems, the ELF value ap-
proaches 1 in regions of space where electron pairing o¢atosnic shells, bonds and lone pairs),
and 0 in the limit between those surfaces, where there isla grigbability of finding electrons
from different localized pairs. As the system becomes meteddlized (e.g. bond formatidh
or in metal$?33), both the values at the maxima and inter-basin approacktteSvalue for the
homogeneous electron gas).

All these topological partitions have been widely geneesdito develop the so-called Quantum
Chemical Topology framework, which includes the differscalar fields*~3%and which has been

successfully employed for the analysis of chemical bondahegules and solid state as well as to



provide further understanding of chemical reactivity*
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Figure 1: Bond charge model for homonuclear (left) and loeteclear (right) moleculeg; and
AX, respectively. The meaning of the main parameters thateeded in each case is shown in the
figures: g andRg for homonuclear molecules aml 6 andRg do for heteronuclear oneB;label
stands for the bond.

Whereas c-DFT dwells on chemical responses from the eleckensity, topology connects
the electron density and related fields with chemical regi@onds, lone pairs) in real space. An
interesting approach would then be to combine both appest¢bpology and conceptual DFT, in
order to obtain chemically meaningful properties from craaity meaningful fragments (bonds,
lone pairs) in the solid. One way to do so is to use a potentiaigy surface, PES, that includes
chemical quantities explicitly, so that the propertiesymted by conceptual DFT (Egs. 1 & 2) are
directly related to the inherent organization of electrathin the regions provided by topological
analysis.

According to this parabolic approach, the energy of theesystlose to equilibrium can be
assumed as given by a second order expansion. Parr andocatiafs used this approach providing
a physical meaning (kinetic and potential energy) to each be what is known as the Bond Charge
Model (BCM).** The physical basis of the model starts from the simplest, @a$@monuclear
diatomic molecule4;), modeled as a three body system: two punctual core chargkea bhond,
which is a negative charge moving freely between them. lemta keep electrical neutrality, this
charges correspond taj#2 and ¢ for the cores and the bond, respectively. The bonding chiarge
represented as g eharge particle in a box of lengis = VR, whereR s the interatomic distance.

Close to the equilibrium, the energy of the system can benasdwas given by a second order



expansion, where terms can be associated a physical meaning

Cf D
E(q,R):Eo+E1+E2:2EA——q2+—q @)

R R’
Eop is the core internal energy, which should not be mistakeh e energy of the free atoms,
but the energy of the atoms in the molecule once they havetedga2 electrons to the bonding
region Ep = 2Ea in the homonuclear casd}; can be associated with the coulombic interactions
(core-core, core-bond) areb with the bond charge kinetic energy. Following this intetation,
the constants are given b{f*:

e

/

and the parametecrgsandv are found empirically for each molecule. Note that thesef#t have
lead to values o >1, i.e. to bond lengths longer than the interatomic distgeag v =2.3 for
Ho%4).

When heteronuclear molecules are considered (see Figurevblextra parameters need to be

fitted:

1. the deviation of the bonding charge from the center of treddength. The asymmetry is
taken into account with the /r, parameter, the ratio of the distances from the centre of the

bond charge to each of the cores

2. the contribution of each atom to the bond charge. Thisksrtanto account with thé

parameter, so that cores will hold a chargetof/2(1+ &) and+q/2(1— ), respectively.

Coupling conceptual DFT concepts to this energetic modelléad to the development of
hardness and electronegativity in molecules within the Approximation#>4® showing for
example that protonation increases electronegativitygwbap while deprotonation decrease$it.

Note that the main idea behind the BCM model is that the sg&gecan be split in core and

bonding regions. In the case of diatomic molecules “chehmtaition” is enough to assign these
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regions because the bonding region must be a fraction optimesdetween both atoril@However,

in more complex systems, such as solids or molecules withnatraalitional bonding pattern,
assignation of bonding regions based only in geometricamaters could be unsatisfactory. In
those cases bonding regions should be those where Lewis gr@rlocalized. Then, the core
and bond (valence) basins of ELF provide well-defined cort lzonding regions, respectively,
for the BCM model. This was done in a first article by the autfSrwhereqgg was associated
with the bond charge resulting from integration of the ef@ctdensity over the valence basins of
ELF, andRg to the length of the bond basin along the bonding directidaase note that within
this combined ELF-BCM approach, bond charges and lengtbptathemically intuitive values
(q~2 e,Rg < R). This model was used to understand the evolution of energytive unit cell
size,V, and thus provide a microscopic understanding of the cossgy#ity of solids. Moreover,
explanations for the low compressibility of superhard mate were given, unifying the origin of
the low compressibility of diamond and BN, whose chemicaid@s extremely different (from
homopolar to very polarized).

Band-gap prediction is critical for applications in conded matter and nanotechnology. As
an example, the band gap of solids, specially of semicowdsicencloses great potentiality if
tuned in the correct direction in the design of solar cell@wever, its accurate prediction from
guantum chemistry methods is still difficult nowadays. ¢igiinto the nature of the band gap and
its relationship with the chemistry of the system is thus@l Hence, ELF-BCM will be coupled
in this contribution to conceptual DFT to provide insightanhe chemical hardness, i.e. the band
gap, of solids along the zinc-blende series, where instdaiod semiconductors coexist and share
a common crystallographic description.

After introducing the theoretical and computational fravoek (Sections 1&2), we will present
the BCM model for solids in Section 3.1. We will then coupl&itELF quantities in Section 3.2.
We will show that bonds within an ELF-BCM coupled approacksent very stable chemical
features, making them transferable along the series. Towsding properties will then be used in

Section 3.3 to disentangle the microscopic factors detengithe band gap of zinc-blende solids



in real space. We will show that the chemical hardness ofid sgiven by the bond properties,
Rs, gg andM, whereM plays the major role. We will put all these results togetineBection 4 in
order to provide semi-quantitative insight into the bang ghsemiconductors and insulators on
equal footing as well as the relationship of their band gaipis their compressibility. The article

ends with a summary and the main conclusions.

2. Computational details

In order to obtain ELF parameters, we have carried out DFTutaions on zinc-blende-type
structures ranging from covalent to polar-covalent (IVA\Mland 11-VI families) in order to ensure
the existence of a basin associated with the bond while oayarbig range of band gaps. As noted
in Ref. 49, the application of this model to metals is conaelty weak due to the common appear-
ance of several bonding basins. We have usedthecode® with a high plane-wave cut-off to
ensure convergenc&maRuvT =9, whereKaxis the maximum size of the reciprocal lattice vectors
andRyT holds for the smallest muffin-tin radius. In order to avoidatdintinuities in the electron
density due to the muffin-tin, spherical harmonics withicreatomic sphere were expanded up
to angular quantum numbéfa=14. Perdew-Warr} and Perdew-Burke-Ernzerh8fexchange-
correlation functionals were used. We have used 8x8x8 MorsitiPack grids and a 1x1DE;, as
convergence criterion threshold.

Due to the difficulties found to describe band gaps with DgEcgally in semiconductors, we
have used experimental band gaps as reference. Thus, outat@ins were done with the room
temperature experimental lattice parameférs.

We have used th€RI Tl C code developed by some of the authors to obtain the ELF topol-
ogy.>#°>CRI TI Cis able not only to find ELF maxima and saddle points but it dan eonstruct
basins and integrate properties.

The ELF-BCM Madelung factordyl, have been calculated with the Environ coieEwald

sums have been verified with an in-house script to calcuteestectrostatic energy of a periodic



crystal composed of point-like charges and converged t3°1@.u.) >’

3. BCM, ELF and conceptual DFT

Band gaps in solids are usually understood in reciprocalespdowever, a quick look at series of
solids soon reveals periodic trends (see for example Figurdhus, a relationship should exist
between band gap and Lewis pairing in real space. In orddstearoinsight into the microscopic
nature of the band gap in terms of chemical quantities, weus@ the bond charge model, which
was extended by Martf? to describe the energy of covalent crystals. For simpliei/consider a
zinc-blende-type solid)\X, with a formula unitAX B, accounting for the four-fold coordination of
the two elements in the unit cell, wheBerepresents the bond entity. This series has been chosen
due to its high symmetry, which will provide greater insigito the effects of periodicity, as well

as due to its versatilEgap, ranging from those of insulators to semiconductor maeria

3.1. BCM

In an expansion of the BCM model to solids, the energy of a AXBit will be given by:
E =Epr+Ex+4Eg (9)

whereEp andEx are constants related to the internal core energy. The bosidg Eg, is given

by:4°

_4D'gg Mgz

E
B R% RB )

(10)

whereM is an average Madelung factor (also called for brevity Madeglfactor) for a solid with
charges 8s(1+ &) and 21g(1— J) at A andX atomic sites, respectively as well as-gg charge
at each bond position. Note the use of “factor” instead oh&tant” to avoid confusion with the

common “Madelung constant” concept which only applies tore.



At equilibrium Eq. 10 reduces to:

_4D'gs ~ Mgj

EB: R% __ZRB,

(11)

3.2. BCM+ELF

We can couple the bond energy from Eq. 10 to ELF quantitiesderao obtain BCM parameters
(Rg, s, & andry/r,) from first principles?® This also allows calculating the Madelung factur,
Table 1 collects the parameters for our set of zinc-blenddssdzg is calculated from the 1D ELF
profile in between A and X. Charge valueg @ndd) are extracted from the ELF charges. We have
assumed that cores remain untouched, soghgat= Za + Zx, whereZ is the atomic number and
gc the core charge. For our AXBcompounds and given the ability of ELF to recover “chemical
values”, this yieldsjg = qya /4 ~ 2. Core values for the elements up to theréw involved in the
solids under this study have been extracted from the ELgiat®ns gathered in Ref. 61. Beyond
the 4" row, calculations were performed for the atoms with the TopNrogram?® The value of

0 comes naturally from this definition. From Section 3.1, thlfmcy,q{,al, of each atom type is

related tod as follows:

G = 42 (1-0) (12)
Q=42 (1+9) (13)

with X being more electronegative than(see Figure 1 and Section 3.1). Herd&cean be directly

obtained from the valency and the bond charge:

o0=1 =
208 208

(14)

Since it only depends on the bond charge (ca. 2 electronghandlency, values within the same

family are very close. This can seen for example in the Si@eaftTable 1. Both C and Si have
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the samay, = 3.9,1 yielding the samejg and the samé (see Ref. 49). Finally, the position
of the bond charge is taken from the maximum of ELF along thedbay direction. It should be
noted that for a proper description of the electrostatiergnttions, the center of charge would be
the best definition. However, since ELF values are being tmethe bond size, we have kept the
ELF value for coherence. Moreover, we have checked theitotaf both points for a trial polar
bond. The deviation of the of ELF attractor of the C-N bondomfamine from the center of
charge was found to be 0.07 a.u., that is ca 2.5% of the botahds.

Table 1:gg andRg parameters of ELF-BCM for a broad group of diamond-type and-hlende-
type solids from the IV, I1I-V and Ilb-VI group4? M andEg stand for the ELF-BCM Madelung
factor and the bonding energy of the crystal, respectiv@lfk moduli at zero pressur&g, were
taken from Ref® and band gaps from R&P. Lengths are in A, charges in electrof, in atomic
units,Bg is GPa andEgap in eV.

AX Rs Os M Es Bo Egap
Group IV
C 0.938 1.950 10.856 -11.644 442 5.2
Si 1.132 1.950 8.577 -7.623 98 1.12
Ge 1.003 2.100 7.414 -8.625 77.2 0.66
SiC 0.985 1950 9.356 -9.556 211 2.86
Group 111-V
BN 0.936 1975 11.006 -12.136 397 5.0
BP 1.050 2.000 9.662 -9.739 166 4.2
BAs 1.023 2.050 8.711 -9.468 144 3.0
BSb 0999 1988 8554 -8954 108 2.6
AP 1122 1975 8925 -8.206 86 3.1
AlAs 1.080 2.025 8.028 -8.068 77 2.16
AlSb 1.093 1963 7.304 -6.810 58 1.52
GaAs 0.992 2.100 7.662 -9.008 75 1.35
GaSb 0.986 2.038 6.764 -7.538 57 0.71
InP 1.012 1970 8.494 -8615 71 1.25
InAs 0.958 2.020 7.268 -8.187 60 0.35
Group llIb-VI
ZnS 1.001 2.025 10.130 -10.976 77 3.6
ZnSe 0.970 2.075 8.631 -10.134 62 2.6
ZnTe 0.971 2.038 7.415 -8389 51 2.2
CdsS 0976 1975 10.016 -10.512 62 25
CdSe 0.938 2.025 8.591 -9.697 53 1.7

It can be seen that trends arise for each family (highlightedolors in Figure 3): group
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IV, group 1lI-V and group Ilb-VI compouds. The heads of th@gps have the smalleBg and
the biggest ELF-BCM Madelung factors (see Figure 2). Howevethgs and Rg changes are
negligible in comparison with the changes in the Madelurgoia M (see Figure 2). Indeed,
within this framework gs remains very close to the Lewis expectation, ag.ahdRg is found to
lay very close to 1A in all cases. It should be noted that this& approximately corresponds to

twice the Bohr radius (i.e. “Bohr’s diameter”).
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Figure 2: Evolution of ELF-BCM parameters along the zinerae series. Background colors
have been used to highlight the three families: IV (purplell) (green) and 11b-VI (light orange).
Lengths are in A, charges in electrons.

This means that the size of the bond along the interbondiregtion does not depend on the
lattice parameter of the crystal (which spreads over a rafga. 3.5-6.1 A), neither on the two
atoms involved in the bond. This transferability makes tee of ELF parameters within the

BCM energy model very attractive. It also enables an estonaif cell parameters as a sum of

12



core+bonding contributions. In our zinc-blende solids:

aﬁ%(rA‘f‘rX‘f‘RB) (15)

Taking ELF core radii from Ref. 61 ariRk =1A, cell parameters can be estimated. Figure 3 shows
the evolution of experimental cell parameters in our zifente solids, along with the values
predicted by Egq. 15. The relative (and absolute) valuesviolhe experimental trends along
the series, with two important trends appearing relatechéosbftness of ions. Equations 1&2
can also be used in atoms to retrieve the classical concegibofic hardness (as well as that of
polarizability). Moreover, in agreement with Pearson’sr@ach, it has been found to be related
to atomic radii, so that bigger atoms are softer and morerpalale %2~ These concepts are very
important to understand the deviations in Figure 3. Whereagpounds with a hard cation yield an
underestimation, Eq. 15 overestimates the cell parametmmpounds with a soft cation. This is
due to two contributions: thigg estimation and the model itseRg tends to be slightly bigger than
1A in boron and aluminum compounds, and slightly smallenthA for the softer ions. However,
this cannot be the only source of deviation. A look at Tableveals thaRg values smaller and
greater than one appear in both regions of Figure 3. We hawgiietd the other source of deviation
as due to our “shared electron model”. Softer and more adr{i.e. bigger) atoms give greater
deviations when combined together. This could be due torater delocalization (exchange) in
between bonding basins that is overlooked in the model. \ivoirk process to improve the model
in this direction. Hence, fulfillment of Eq. 15 can be undeost as a first test to our model, which

works well for the homonuclear family IV and for the 111-V ondth at least one hard atom.

3.3. BCM+ELF+c-DFT

If electrons were to be added or removed from the system,loeyd arrive or leave the bonding
regions, respectively. This is, the core electrons do na fdace in electron-number-changing

process. Therefore, according to Eq. 2, the chemical hasdokthe solid will be the chemical

13
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Figure 3: Evolution of experimental and estimated (Eq. H) garameters (in A). Families are
highlighted by a color code (purple for group 1V, green foogp I11-V and light orange for group
11-VIb).
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hardness of the bonding regions, which is found by diffeagimg Eq. 10 twice with respect t.
This establishes a direct link between the band gap, the Magédactor and the size of the bond
basins. In other words, merging these approaches enabtesdweer old concepts, such as the
involvement of valence electrons in the band gap, and semnifatively relate their properties

(charge, position of the ELF maximum) with the band gap:

M
Egap= % (16)

Band gaps calculated with Eq. 16 along with experimentakare depicted in Figure 4.
Although the model is too simple to predict absolute values able to explain the trends in
band gaps within each family. Note that the fact of consiaged non equilibrium position would
only shift the prediction by a factor of two, so that both aggmhes lead to the same conclusions.
Although the model is too simple to predict absolute valuitgs,able to explain the trends in band
gaps within each family. The band gap is bigger for the heagbhah family, wherévl is bigger
andRg smaller (see Figure 2). Band gaps also decrease for a giagly fgA or X fixed) as the
other atom becomes softer, e.g. BP > AIP > InP, but also BN> BRs> BSh.

It can be seen in Figure 3 that problems arise for soft atomeut band gap model this leads
to the wrong trend in the CdS-ZnS couple. In addition of ga&dility being problematic for the
shared-electron model, metals are also less accuratadyiloled in this model. Bonding regions in
metallic systems are more delocalized, so that the appediomof the bond energy is probably
insufficient.

As noted above, the global chemical hardness parameterhansiZze of the free atom are
inversely related. However, in our periodic systeRgjs nearly constant, so thit becomes the
determining factor in Eq. 16. Figure 5 has been construateddmpounds up to théUrow (see
Section 2). As can be seen, the Madelung factor becomes aiggicdtor of the band gap.

Hence, it would be interesting to understand the origiMofn our chemical definition of zinc-

blende solids, lattices are not invariant structures. dvolig Glasser’s definition, our Madelung

15
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Figure 4: Band gap (in eV) for IV (purple), 1lI-V (green) aneN1 (light orange) compounds from

experimental data and from Eqg. 16.
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factor is given by®®
118 a

whereZ is the multiplicity of the formula unit, and thieindex runs over all non-equivalenéqg
entities in the unit cell, wittZ; being their corresponding multiplicities.

Ci is the Madelung factor for each of the non-equivalent etiti

c=—e (18)
OB

Where\/i"’I is the Madelung potential at the position of ik non-equivalent entity. Henc€; and
M depend on a reference chargg,and distanceRg.

For ourAX B structures, there are two contributio@g,andCx, which are position invariable,
and one which is noCg. WhereasA and X are in fixed Wyckoff positionsCg, depends on the
position of the bond along th&-X axis. From the symmetry and stoichiometry of the zinc-béend

type solidsM can be simplified as
M=2Cg—(1+9)Ca— (1—9)Cx, (29)

which yields different values for each of the crystals stddi

TheC; contributions tdM are collected in Figure 5. Where@g reveals the different families,
Cx reveals the internal organization within each family. Thondb contributionCg provides a
compensated picture intra and interfamily. This is repntesk separately in Figure 6. The Bond
Madelung factorCg, is found to correlate fairly well with band gap evolutiohaying the major
role determining the macroscopic band gap. In other wordscan understand the band gap,
defined in reciprocal space, as coming from the electrastagraction of the bond charge with its

environment (other bonds and cores).
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4. “Chemical and physical hardness”

Summarizing the results from Sections 3.1-3.3, the funaaahdand gap of zinc-blende solids
can be understood as that of 2 electron particles asymrmakiyriocated on a 1A length and elec-
trostatically interacting among them and with a core matiikus, two geometrical parameters
control de trends: the cell parameter and the displaceniéitfo maximum (i.e.r1/r2) within the
bonding basin. Whereas the first factor can be estimated &we $een in Figure 3 it is related to
core radii and the estimated 1A bond length), we have notdf@measy connection for estimating
the second one (approximating the behavior to that of thedmuciear case, Wyckoff position &6
has shown to be insufficient). However, this geometricatdpson of the band gap makes a di-
rect connection with the cell volume, so that it is possiblestate it with the solid compressibility.

Within the BCM model, the bulk moduluByp, can be expressed 43:

_ 2M g}
BO - %V? (20)
giving the following relationship between the band gap dreddulk modulus:
2
By — 2 =02t (21)

=9 v

This expression is intimately related to the one derived agg®’ where the hardness of a solid
is inversely proportional to its compressibility (recdtlat the compressibilityk is the inverse
of the bulk modulus). This relationship is represented iguFe 7 for our set of solids, where
the intrinsic relationship between chemical hardness asgtance to hydrostatic compression is
apparent. Compressibility depends mainly on the chemigalriess and the volume. It has been
shown within the ELF approach that volume and compressilate related to the chemical nature

of the Lewis entity in agreement with VSEPR principfs:

WVLp > VmB > Vs> Veore (22)
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KLp > KMB > KsB> Kcore, (23)

where LP, MB and SB stand for lone pair, multiple bond and Isifpnd, respectively. Taking
into account that within the topological approach volumesaditiveV = YV, it can be shown
that the compressibility can be expressedkas Y xikj, wherek; refers to each Lewis’ entity
compressibility and; = \é to its cell occupatiorf® Hence, softer and bigger bonds are the ones
that determine the compressibility of the system. Extrgn@talized solids, such as diamond,
yield very high bulk modulus and big band gaps, whereas melecdlized bonds, like those of
semiconductors, are softer and give smaller band gaps &adegrcompressibilities. These two
guantities being interrelated by Eq. 21.

This also highlights one of the most important take-homesagss of common compounds
in main-group chemistry: localized orbitals and delocadiplanewaves are two electronic orga-
nizations of great stability that give rise to very stablel aletectable chemical patterns where
“everything correlates with everythind® Hence, the properties of their bonds determine many of

their macroscopic properties in an interrelated manner.
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Figure 7: Relationship between the bulk modulus and the Igapdin the zinc-blende series ac-
cording to Eq. 21.
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5. Summary and conclusions

Band gaps are error-prone quantities within quantum chemisut which show an important
periodic behavior. Moreover, calculations of these proeeido not provide a direct link with the
composition, which hampers inverse design. An importauador example for solar cells. From
the chemical point of view, the link between band gap and ouée orbitals has been known
for a long time (e.g. the gap in diamond corresponds to a Imgadntibonding gap, whereas in
rock salt it corresponds to a charge transfer gap). Thisritoniton intends to provide a working
theoretical approach to formalize the link in real spaces ridlationship between the chemical
bond and the band gap of solids. Making use of the Bond ChamggeMwe have merged the
topological description of solids in real space with the agptual DFT description of their band
gap in reciprocal space in order to understand its micrasaomin.

We have found that bonds within an ELF-BCM coupled approaelsent very stable chem-
ical features, with a bond length of ca. 1A anel 2Vhereas & charges are in agreement with
classical views of chemical bonding (which was not the cdsteoriginal BCM charges), the
constant bond lengths introduce the concept of geometraasferability and enable estimating
cell parameters.

Using this approach to analyze band gaps we have found thdiattiness of a solid is given
by the bond propertie®s, gg andM, whereM plays the major role. Moreover, band gap trends
can be explained in terms of the Madelung factor associaitdtie bond.

Hence, the fundamental band gap of zinc-blende solids camderstood as that of 2 electron
particles asymmetrically located on a 1A length and elstatically interacting among them and
with a core matrix. This description is able to provide s@uantitative insight into the band gap of
zinc-blende solids (from semiconductors to insulatorsggumal footing as well as the relationship
with compressibility. As far as applications to metals is\@erned, due to the appearance of

numerous bonding basins, the coupling of ELF and c-DFT besamore difficult.
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