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Abstract 
 

Vasopressin (AVP) plays a major role in the regulation of water and sodium 

homeostasis by its antidiuretic action on the kidney, mediated by V2 receptors. AVP 

secretion is stimulated by a rise in plasma osmolality, a decline in blood volume, or 

stress. V1a receptors are expressed in vascular smooth muscle cells but the role of 

vasopressin in blood pressure regulation is still a matter of debate. AVP may also 

play a role in some metabolic pathways, including gluconeogenesis, through its 

action on V1a receptors expressed in the liver.  

It is now understood that thirst and arginine-vasopressin (AVP) release are 

regulated not only by the classical homeostatic, intero-sensory plasma osmolality 

negative feedback, but also by novel, extero-sensory, anticipatory signals.  

AVP measurement is time-consuming and AVP level in the blood in the 

physiological range are often below the detection limit of the assays. Recently, an 

immuno-assay has been developed for the measurement of copeptin, a fragment of 

the pre-pro-vasopressin molecule that is easier to measure. It has been shown to be 

a good surrogate marker of AVP.  
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The hormone vasopressin (AVP) or antidiuretic hormone (ADH) plays a major 

role in the control of body water homeostasis and associated disorders. His possible 

role in blood pressure regulation remains controversial. Recently its role in chronic 

renal, cardiovascular and metabolic diseases has been a matter of growing interest. 

This is mostly due to the availability of new tools. First, efficient orally active 

antagonists, the vaptans, offer the possibility of therapeutic interventions. Second, 

advances in the study of neurone biology has provided a new light in the mechanism 

of osmosensation and neuro-hormonal circuits leading to the release of the hormone. 

Third, a recently developed immuno-assay allows the measurement of copeptin, a 

surrogate of vasopressin that is more stable in vitro and much easier to measure 

than the hormone itself.   

 

In this review, we will first provide a rapid survey of vasopressin physiology, 

receptors, target organs, and multiple biological functions (beyond its role in the 

control of body fluid homeostasis) [1, 2]. Then, we will present the new 

advancements in the understanding of osmosensation and the neuronal pathways 

that lead to the secretion of the hormone. Finally, we will describe the measurement 

of copeptin and the wide opening this has provided in epidemiologic studies and as a 

diagnostic tool.  

 

 

 

 
Vasopressin synthesis and secretion  

 

Vasopressin is a small peptidic hormone (MW = 1080) comprising 9 amino 

acids in a ring structure. It is synthetized in the hypothalamus and stored in the 

neurohypophysis. The pre-prohormone protein contains vasopressin, neurophysin, 

and copeptin that are cleaved in their course in the pituitary stalk, and released 

simultaneously in the blood in equimolar amounts.  
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The primary fonction of vasopressin is to maintain body fluid balance by 

keeping plasma osmolality within narrow limits and allowing the kidneys to adapt 

water excretion to the body's needs, in conjunction to thirst. No other hormone can 

replace vasopressin: the lack of vasopressin results in diabetes insipidus (10-15 L 

urine/d). Vasopressin has a very short biological half life (about 3 min) and it is 

cleared mostly by filtration in the kidneys. Accordingly, its effects are very prompt and 

promtly reversible.  

 

The plasma level of vasopressin in the usual range is very low (0 to 3 pg/ml ≈ 3 

x 10-12 M). Even the best assays are unable to quantify vasopressin in the low range 

of physiological values (the lowest threshold of most immuno assays is 0.5 pg/ml). 

Vasopressin concentration in the urine is several-fold higher than that in the blood, 

but its excretion rate does not truly reflect its concentration in the blood because it is 

largely influenced by the osmolar excretion. 

 

The main stimulus for the release of vasopressin is dehydration resulting in an 

increase in plasma osmolality. But for the same change in osmolality, sodium has a 

larger influence on vasopressin secretion than does urea or glucose [3]. Other stimuli 

for vasopressin secretion are a reduction in circulating blood volume, and stress 

situations [4]. The threshold and slope for vasopressin secretion versus plasma 

osmolality is very reproducible in the same subjects, and shows strong heritability [5]. 

 

Vasopressin receptors and target sites tissues 
 

Three different receptors for vasopressin have been characterized [6]. The 

effects following V2 receptor (V2R) activation are mediated by cyclic AMP while the 

effects mediated by V1a or V1b (V1aR, and V1bR also called V3) receptor activation 

are mediated by calcium signals.  The commonly known target tissues for 

vasopressin are the kidney collecting duct (with V2R) and the vascular smooth 

muscle cells (with V1aR). But vasopressin receptors are expressed in a number of 

other organs and tissues (see Figure 1) [7]. Moreover, V1aR are also expressed in 

the kidney, and V2R are expressed in the endothelium (where they play a 

vasodilatory role by inducing the formation of NO).  
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The sensitivity to vasopressin most probably differs among target organs but 

this relative sensitivity is poorly documented. And this sensitivity may be modified by 

diverse physiologic and pathologic adaptations. As an example, the stimulation of 

V1aR in the kidney requires higher concentration of vasopressin than the V2 effects 

[8]. Actually, the kidney V2R is exquisitively sensitive. In healthy humans, the infusion 

of vasopressin at  rates of 1, 5 or 25 pg/min per kg induced a significant, dose-

dependent antidiuretic action, but only the highest rate induced a measurable rise in 

plasma vasopressin [9].  

 

dDAVP (de-amino 8D-arginine vasopressin) is a peptidic V2R specific agonist, 

widely used in the diagnostic of disorders of water balance and in the treatment of 

central diabetes insipidus. Terlipressin (= glypressin), a (poorly) selective V1aR 

agonist is used in hepatorenal syndrome and oesophageal varices. Recently, potent, 

non-peptide, orally active, selective antagonists of V2R have been designed, such as 

tolvaptan [10].   

 

 

Vasopressin effects on the kidney 
 

V2 receptors are localized in the principal cells of the collecting duct (CD) and, 

to a lesser extent, in the thick ascending limb. Along the entire CD, vasopressin 

increases water permeability by promoting the insertion of aquaporin 2 (AQP2)-rich 

vesicles in the luminal membrane of the CD cells. This allows an increase in water 

reabsorption when a favorable osmotic driving force is present (generated by solute 

accumulation in the surrounding interstitium). In addition, vasopressin exerts two 

other effects on the CD through V2R (Figure 2A). 1. In the cortical and outer 

medullary CD, vasopressin stimulates sodium reabsorption by its action on the 

luminal sodium channel ENaC. This drives water iso-osmotically and thus helps 

concentrate all other solutes in the lumen. 2. In the terminal inner medullary CD, 

vasopressin increases the permeability to urea by activating the facilitated urea 

transporters UT-A1 and UT-A3. This allows concentrated urea to diffuse in the 

medullary interstitium and thus maintain in the interstitium a high urea concentration 
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that favors water reabsorption [11, 12]. In the thick ascending limb, vasopressin 

stimulates the Na-K-2Cl cotransporter NKCC2, and thus promotes sodium 

reabsorption. But this effect requires a higher concentration of the hormone than that 

on the CD [13]. Altogether these combined effects on several membrane transporters 

and channels contribute jointly to urine concentration.  

 

These V2R-mediated effects are partially counteracted by V1aR effects in two 

ways. Luminal V1aR, exposed to urinary vasopressin, induce the production of 

prostaglandins by CD cells that, indirectly, attenuate the adenylate cyclase response 

to V2R stimulation. Second, V1aR are also abundantly expressed in interstitial cells 

of the medulla where they stimulate the production of prostaglandins that vasodilate 

the medullary vasculature. This opposes the possible vasoconstrictive effect of V1aR 

in the descending vasa recta and induces an increase in medullary blood flow that 

compromizes the osmotic gradient of the medulla. Thus, there is a subtle balance 

between V2R and V1aR effects in the kidney, as demonstrated in rats [8, 11]. 

 

Vasopressin action on the CD and thick ascending limb improve urine 

concentration, but they lead to some sodium and urea retention. The fractional 

excretion of sodium and urea (and most probably that of other solutes) is reduced 

when urine is more concentrated ((Figure 2B)). The vasopressin-dependent sodium 

retention may contribute to salt-sensitive hypertension and is compensated by the 

pressure-natriuresis mechanism [11]. The urea retention may lead to an increase in 

plasma urea concentration and, by an indirect mechanism, to a rise in glomerular 

filtration rate (GFR). It has been shown in both rats and humans that GFR increases 

with increasing urine osmolality (Figure 3) [14-16]. This "hyperfiltration" is propably 

an indirect consequence of the tubular action of vasopressin [17, 18]. In the long 

term, it may have adverse effects, as described elsewhere [17, 19]. An adverse effect 

of vasopressin is also observed in autosomal polycystic kidney disease, but through 

a different and more direct mechanism because AVP-dependent cAMP stimulates 

cyst enlargement (see [17] and other review by Olivier Devuyst et al in this journal).  

 

There are two different options for reducing to vasopressin actions. Either a 

voluntary increase in fluid intake [20], or the use of selective vasopressin antagonists 

[10]. However, they differ in some aspects. An increase in water intake will lower 
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plasma osmolality and vasopressin secretion. In contrast, V2R antagonists, that 

induce a water loss, will increase plasma osmolality and thus stimulate vasopressin 

secretion. The effects of vasopressin on V1a and V1b receptors may thus be 

potentiated. However, no rise in blood pressure has been observed in healthy 

subjects or patients treated with vaptans.  

 

Effects on the liver and pancreatic islets 
 

The expression of vasopressin V1aR in the liver and of V1bR in pancreatic 

islets was known for a long time, based mostly on in vitro studies in isolated perfused 

liver or pancreas or in isolated hepatocytes. But very little attention was given to the 

possible in vivo consequences of vasopressin action on these organs. It is now 

recognized that vasopressin stimulates the secretion of either insulin or glucagon by 

beta and alpha cells of the pancreas, respectively (depending on the level of 

glycemia). In the liver, vasopressin stimulates several metabolic pathways including 

glycogenolysis, gluconeogenesis and ureagenesis, glutamine and proline 

metabolism. These effects may differ according to fed or fasted condition and to 

glycemia. They are very similar to those induced by glucagon. But they occur through 

the activiation of different second messengers (Ca++ for AVP and cAMP for 

glucagon), suggesting that these effects might be additive.   

 

In recent years, several studies have revealed significant associations between 

high vasopressin levels (or its diverse surrogates, low fluid intake, low urine flow rate, 

high osmolality, or plasma copeptin concentration) and the prevalence or incidence 

of metabolic syndrome or diabetes (see other reviews in this journal). Interventional 

studies in humans and experimental studies in animal models are needed to further 

evaluate the contribution of vasopressin to renal and metabolic disorders. Figure 4 

summarises the multiple effects of vasopressin on the kidney and liver and their 

possible adverse consequences.  
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Mammals  are "osmoregulators". They have evolved mechanisms that maintain 

extracellular fluid osmolality near a stable value [21], yet values fluctuate around a 

set point : in humans, for example, 40 min of strenuous exercise [22, 23] or 24 h of 

water deprivation [24] increase plasma osmolality by more than 10 mosmol/kg H2O. 

In a dehydrated individual, drinking the equivalent of two large glasses of water 

(∼850 ml) lowers plasma osmolality by approximately 6 mosmol/kg H2O within 30 

minutes [25] . Similarly, ingestion of 13 g of salt increases plasma osmolality by 

approximately 5 mosmol/kg H2O within 30 minutes [26]. 

 

It is now understood that thirst and arginine-vasopressin (AVP) release are 

regulated not only by the classical homeostatic, intero-sensory plasma osmolality 

negative feedback, but also by novel, extero-sensory, anticipatory signals. 

 

 

Intero-sensory and extero-sensory regulation of thirst and 
vasopressin release 

 

1. Deviations in intero-sensory stimuli 

 

 Differences between the extracellular fluid  (ECF) osmolality and the desired 

set-point induce proportional homeostatic responses according to the principle of 

negative feedback [21, 27] (Figure 5A). ECF hyperosmolality stimulates the 

sensation of thirst [28] to promote water intake and the release of vasopressin [29] 

that will enhance water reabsorption in the kidney. By contrast, ECF hypo-osmolality 

suppresses basal vasopressin secretion in rats and humans [30]. Thirst and 

vasopressin release appear thus far as a purely homeostatic response to deviations 

in intero-sensory stimuli : blood osmolality, pressure or volume. The techniques 

used in the 1960’s and 1970’s to describe these intero-sensory stimuli lacked the 
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ability to track thirst neurons of the lamina terminalis and vasopressin neurons 

projecting to the posterior pituitary in real time in behaving animals, and so could not 

assess extero-sensory information regulating these processes [31].  

 

2. Extero-sensory stimulation : anticipation for thirst stimulation and vasopressin 

release 

 

Recent experiments using optogenetic tools in awake animals demonstrate that 

a substantial fraction of normal drinking behavior and vasopressin release is not 

regulated directly by changes in the blood, and instead, appears to  anticipate 

homeostatic changes before they occur [32]. Anticipatory signals for thirst and 

vasopressin release converge on the same homeostatic neurons, subfornical organ 

neurons specifically, that monitor the tonicity of blood [28, 29].  Subfornical organ 

excitatory neurons (SFONos1) (Figure 6) [33-36], activated by water restriction, had 

their activity rapidly returning to baseline  after water access well before any 

measurable change in plasma osmolality occurs [28]. This rapid anticipatory 

response to drinking has been suggested by blood-oxygen-level-dependent (BOLD 

signal) measurements during thirst stimulation in humans. The BOLD signal from the 

anterior cingulate cortex area, known to be responsible for the conscious perception 

of thirst, decreased rapidly after water consumption, well before any systemic 

absorption of water [37]. There is a delay of around ten minutes [21] between the 

ingestion of water and its full absorption into the bloodstream. These new data 

explain how drinking can quench thirst within seconds, long before the ingested 

water has had time to alter the blood volume or osmolality.  

 

The rapid anticipatory response to drinking has at least two components: an 

immediate signal that tracks fluid ingestion, and a delayed signal that reports on fluid 

tonicity, possibly generated by an oesophageal or gastric osmosensor. The 

alleviation of dry mouth information will flow up the fifth cranial trigeminal nerve, the 

taste of water will be relayed by the chorda tympani included into the seventh nerve, 

pharyngo-esophageal impulses metering volume swallowed, by the ninth nerve and 

lower esophageal and gastric sensation —including distension— by the 10th cranial 

nerve; but the exact sensing receptors of these afferents are unknown. On a 

Darwinian point of view, the rapid, volumetrically exact intake of water consequent 
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upon thirst or of a salt solution in case of sodium-depletion, carries high survival 

advantage: it permits animals to go to a water or salt source, to rapidly correct the 

deficit, and leave the place, reducing their exposure to predators that have learned to 

wait there [38]. 

 

3. Coordination of eating, drinking and vasopressin release 

 

Eating increases the need for water for two reasons: 1) there is a need to 

replace the fluid utilized for swallowing (saliva) and digestion (water diverted from the 

circulation into the gastrointestinal tract); 2) to counteract the increase in blood 

osmolality caused by the absorption of salts and other osmoles from food. As 

described recently in a review on thirst [32], anticipatory signals about ongoing food 

ingestion are communicated to the lamina terminalis by multiple mecanisms. 1) 

Somatosensory signals from the oral cavity that report on food swallowing or its 

effects on the saliva. 2) Several hormones associated with eating and satiety have 

been proposed to modulate thirst neurons and vasopressin release, including amylin, 

cholecystokinin, ghrelin, histamines, insulin, and leptin. Some of these hormones 

might be increased in patients with diabetes mellitus and may explain their high 

vasopressin plasma concentration [39]. 

 

The responses to drinking and feeding are bidirectional, yet asymmetric : using 

electrophysiological recordings in genetically identified supraoptic nuclei pituitary-

projecting vasopressin (VPpp) neurons in water-restricted mice, Yael Mandelblat-Cerf 

et al. [29] observed rapid decreases in spiking within seconds of presentation of cues 

signaling water availability, beginning prior to water ingestion. In contrast, ingestion of 

dry food —a hyperosmotic challenge— elicited rapid increases in VPpp neuron 

activity, prior to any increase in plasma osmolality.  

 

 If prandial thirst is not quenched by drinking, then further food consumption is 

reduced, a phenomenon known as dehydration-induced anorexia that could be 

observed in young patients with congenital nephrogenic diabetes insipidus [40]. 

  

Altogether, these new data explain the speed of thirst satiation, the fact that oral 

cooling is thirst-quenching and the widespread coordination of eating, drinking and 

http://www.sciencedirect.com/science/article/pii/S0896627316308595
http://www.sciencedirect.com/science/article/pii/S0896627316308595
http://www.sciencedirect.com/science/article/pii/S0896627316308595
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vasopressin release.  

 

 

Osmosensitive cells shrinking during dehydration is mechanically 
coupled to the activation of delta-N TRPV1 channels 

 

All cells respond to dehydration or to hyperhydration by changing volume, but 

cells of the subfornical organ (SFO), organum vasculosum of the lamina terminalis 

(OVLT), and median preoptic nucleus (MnPO) of the hypothalamus are “perfect” 

osmoreceptors, that is, their changes in volume are maintained as long as the 

osmotic stimulus persists [21, 27]. Cell shrinking during dehydration is mechanically 

coupled to the activation of delta-N TRPV1 channels [36] (a molecular co-detector of 

body temperature and osmotic stress) through a densely interweaved microtubule 

network present only in osmosensitive cells  (Figure 5B) [27], including excitatory 

thirst neurons from the SFO bearing angiotensin-I receptors.. This coupling allows 

dehydration and decreased systemic volume stimuli to be integrated because SFO 

neurons are outside of the blood-brain barrier [33]. Systemic hypotonicity might be 

perceived by TRPV4 channels [41]. 

 

 

 

 

 

 

 

With the development of immunoassay for several other pituitary hormones in the 

early 1970s, measurement of AVP became an obvious goal. The first AVP assay was 

developed by Robertson’s group [42]. Like most other AVP assays [43], it was a 

competitive radioimmunoassay (RIA). However, until today, AVP measurement 

remains cumbersome and complex. AVP can be measured only in a few specialized 
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laboratories, and the data generated using existing assays have not convinced the 

clinical community to use AVP in their diagnostic workup studies. 

 

Measurement of Copeptin as alternative to AVP 
 

The discovery of the first prohormone by Donald Steiner in 1967 (see review in 

[44]) and the successful use of the C-peptide of the insulin precursor as a surrogate 

marker for insulin release paved the way for a suitable alternative. The solution was to 

replace the problematic measurement of a bioactive, rapidly cleared peptide hormone 

like AVP by the measurement of another larger peptide derived from its precursor and 

showing a better stability in vitro. Due to their stoichiometric generation, the amounts 

of pro-hormone fragments released reflect those of the respective mature hormones, 

offering an alternative way to assess the release of the hormone. Applying this 

approach to the AVP precursor, the C-terminal glycopeptide, termed “copeptin” by 

Roger Acher [45], is  the ideal “shadow” fragment reflecting AVP release (Figure 7A).  

 

Several copeptin assays are now available. The only assays with sufficient 

technical description and clinical data justifying their routine clinical use are 1. the 

original sandwich immunoluminometric assay (LIA) as described previously [46] 

except that the capture antibody was replaced by a murine monoclonal antibody 

directed to amino acids 137–144 of pro-AVP, and 2. its automated immunofluorescent 

successor (on the KRYPTOR platform).  

 

Both assays are CE certified and therefore approved for clinical use in the EU 

and some other countries accepting the CE mark. Other “for research use only” assays 

are available in the USA and China, and individual “home brew” assays are being 

developed by research groups. The disadvantage of these assays, besides not being 

approved or certified for patient care, lies in their lack of technical and clinical 

validation. As there is still no official reference calibration, it would seem reasonable to 

use only clinically approved and certified assays for patient care.  

 

These are the advantages of copeptin measurement compared to AVP.  
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- Sample volume: the copeptin assay requires only 50 µL serum or plasma, 

whilst AVP assays need one or more ml of plasma. 

- Extraction: no extraction step or other pre-analytical procedures such as the 

addition of protease inhibitors is needed. 

- Time to results: results are available in approximately 0.5 to 2.5 h, whereas 

many of the competitive AVP immunoassays require more than 48 h due to extensive 

incubation steps and the need for antibody equilibrium.  

- Sensitivity: As a sandwich immunoassay, it is more sensitive than competitive 

AVP immunoassays, as demonstrated by the analytical detection limit of < 1 pmol/L. 

The assay can detect copeptin in plasma or serum even when plasma osmolality is 

low, whereas AVP is often not detectable in plasma samples within the low 

physiological range of osmolality. 

- Stability:  Copeptin, unlike AVP, is very stable ex vivo. Recovery was greater 

than 80% in serum and plasma samples for at least 7 days at room temperature, and 

14 days at 4°C (Figure 7B). 

 

 

Normal range of copeptin 
 

The normal range for copeptin is now well defined. Data from the first study with 

healthy volunteers, which was carried out without prior fluid control or fasting, indicated 

a median copeptin plasma concentration of 4.2 pmol/L (range, 1–13.8 pmol/L) [46]. 

Other studies confirmed this initial report: range of copeptin values between 1 and 13 

pmol/L (upper 97.5 percentile) with median values < 5 pmol/L [47, 48]. Men 

consistently show higher values than women, but the difference in median values is 

only about 1 pmol/L. Higher concentrations of AVP in males than females had also 

been reported in several studies, although in smaller number of subjects (see revue in 

[49]).  

 

Copeptin and AVP levels have been compared in 500 subjects (equal numbers 

of each sex) of a French population [50]. A highly significant correlation was found 

between copeptin and AVP in the 319 people in whom both compounds were above 

the detection limit. (r = 0.686, p < 0.001). The copeptin values were systematically 
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higher than those for vasopressin, and even more so in the low range of vasopressin 

[50]. 

 

Influence of plasma or serum osmolality 
 

In healthy subjects, copeptin (like mature AVP) is regulated within the normal 

range but may fluctuate according to physiological conditions. Copeptin increases 

towards higher values in the normal range during fasting, and declines rapidly in vivo 

towards low normal values after intake of water [46]. 

 

In a study of healthy volunteers, copeptin showed identical changes during 

disordered water states or osmolality as previously shown for AVP: water deprivation 

increased serum copeptin from 4.6±1.7 to 9.2±5.2 pmol/L (p<0.0001). Copeptin 

increased from 4.9±3.0 to 19.9±4.8 pmol/L (p<0.0001) with additional infusion of 

hypertonic saline. Conversely, copeptin decreased from 6.2±2.4 to 2.4±2.1 pmol/L 

(p<0.01) during hypotonic saline infusion [51] (Figure 8A). 

 

A direct comparison between copeptin and AVP serum concentrations in 

relationship to serum osmolality in healthy subjects was performed using the AVP 

assay established by Gary Robertson [52]. This comparison showed a stronger 

correlation between copeptin and serum osmolality (r = 0.77) than between AVP and 

serum osmolality (r = 0.49).  

 

Influence of blood pressure 
 

The effect of experimental hemorrhagic shock on copeptin was studied in a small 

number of baboons [53]. After induction of hemorrhagic shock, median copeptin 

increased sharply from 7.5 to 269 pmol/L. Copeptin dropped after one hour of 

reperfusion and continued to decline until it reached a plateau of 24 pmol/L at the end 

of the experiment. The mean arterial blood pressure followed inverse kinetics in all 

animals, decreasing during bleeding, and increasing slowly after reperfusion (Figure 
8B) [53]. This demonstrates that the response of copeptin to critical conditions like 

shock is much more pronounced than to changes in osmolality. 
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Influence of exercise 
 

In healthy individuals, serum copeptin concentration in the blood increased during 

exercise, but did not exceed the 99th percentile of the normal range [46]. The situation 

is different in patients with cardiovascular disease. In patients with a history of angina 

pectoris undergoing a diagnostic treadmill exercise test, serum copeptin can increase 

to levels far beyond the normal range [54]. 

 

Conclusion: copeptin for the clinician 
 

The evidence to date shows that copeptin is a good surrogate marker for AVP 

release, and measuring copeptin is both practical and easy.  Copeptin is now used in 

different clinical situations in which its measurement has helped in the diagnosis of 

disease or in management of the patients. This is reflected in the increasing number 

of copeptin publications since the development of the copeptin assay, and some of 

these studies will be presented in this special issue of JIM. 

 

 

 

 

 None from any of the three authors 
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Figure 1.  The different target sites for vasopressin via its V2, V1a and V1b 
receptors. A. In addition to its classical target organs, the kidney (with V2 

receptors) and vascular smooth muscle cells (with V1a receptors), many other 

organs express receptors for vasopressin. In some organs, both V2 and V1a 

receptors are expressed, however in different cell types. B. Localisation of 
vasopressin binding sites in the rat kidney and liver with selective V2 or 
V1a ligands. Top right : binding of the 125I-labelled V2 receptor selective 

agonist dDAVP. Autoradiogram reproduced from a cover picture of Kidney Int 

(2009, 76(2) with permission of the authors, Robert C. Speth (College of 

Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA) and Jia L. 

Zhuo (University of Mississipi Medical Center, Jackson, MS, USA). Top left and 

bottom : binding of the 3H-labelled V1a receptor selective antagonist SR49059. 

Adapted from [7]. 

 
Figure 2. Vasopressin actions along the nephron and their consequences on 

water and solute handling. A. Representative nephron showing the different 

transporters/channels influenced by vasopressin action through V2 receptors. 

Modified after [11]. B. With increasing urine osmolality, the fractional excretion 

of sodium and urea decline in parallel with urine flow rate. Results observed in 

normal rats, based on 24 h urine collections and measurement of glomerular 

filtration rate by inulin clearance. Data of individual rats from the study reported 

in [14]. 

 

Figure 3. Hyperfiltration as a consequence of vasopressin V2 receptor-
mediated action on the kidney. A and B. Glomerular filtration rate (GFR) was 

measured by inulin clearance in healthy subjects on two occasions at a two 

week interval in random order: once with a high hydration (HH) and once with a 

low (normal) hydration (LH). In every subject, GFR was higher on the LH than 

on the HH condition (A). A significant correlation was observed between GFR 

and urine osmolality in the HH but not in the LH condition (B). Adapted from 

[15]. C. In 74 normal rats  with different levels of diuresis (during usual short 

term clearance experiments under anesthesia), GFR is positively and linearly 
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correlated with urine osmolality. Reproduced from [16]. D. In normal rats in 

which urine concentration was either decreased or increased for one week (by 

increasing water intake or infusing dDAVP, respectively), GFR is positively and 

linearly correlated with urine osmolality. Adapted from [14]. 

 

Figure 4. The multiple effects of vasopressin on the kidney and liver and their 
possible adverse consequences. 

 
Figure 5.  Cell autonomous osmoreception in vasopressin neurons.  

A. Changes in osmolality cause inversely proportional changes in soma 
volume. Shrinkage activates delta-N transient receptor vanilloid-type (TRPV1) 

channels. The ensuing depolarization increases the firing rate of action potential 

and vasopressin (VP) release from axon terminals in the neurohypophysis. 

Increased VP levels in blood enhance water reabsorption by the kidney 

(antidiuresis) to restore extracellular fluid osmolality toward the set point. 

Hypotonic stimuli inhibit TRPV1. The resulting hyperpolarization and inhibition 

of firing reduces VP release and promotes diuresis. Modified from [27]. B.  
Shrinking of hypothalamic osmoreceptor neurons during dehydration is 
mechanically coupled to the activation of delta-N TRPV1 channels. As a 

result of cell shrinking, the plasma membrane shifts inward (right), increasing 

the proportion of microtubules that push onto (and activate) delta-N Trpv1 

channels [36].  Reproduced with permission from [36]. 

 

Figure 6. Anticipatory thirst and central control of volemia.  Neurons in the 

subfornical organ (SFO) mediate anticipatory thirst (pathway indicated with blue 

arrows). SFO neurons are activated when mice are dehydrated. This activity is 

almost immediately inhibited by drinking, owing to unknown signals that stem 

from the oral cavity, and which might act through the trigeminal ganglion. Other 

extero-sensory stimulation, implicating oesophageal or gastric osmosensor, are 

not represented. SFO neurons project to other median-pre-optic (MnPO) and 

organum vasculosum of the lamina terminalis (OVLT) circumventricular nuclei 

and to vasopressin producing neurons in the SFO and para-ventricular nuclei 

(PVN)  [33]. Dendritic release of vasopressin in the PVN is perceived by 

vasopressin V1a receptors on pre-autonomic neurons with consequent 
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stimulation of renal afferents, a central control of volemia [34]: the lamina 

terminalis and autonomic nervous system are separated by just two synapses: 

excitatory neurons in the lamina terminalis project to neurons in the PVN which, 

in turn, send descending projections to autonomic regions of the hindbrain and 

spinal cord.  PP = posterior pituitary; ANS = autonomic nervous system. 

Modified from [35]. 

 

Figure 7. Principle of prohormone processing and the copeptin assay and 
stability of copeptin measurement. A. The sandwich immunoassay uses two 

antibodies to the amino acid sequence 132–164 of preprovasopressin in the C 

terminal region of the precursor. This assay offers considerable advantages over 

measuring AVP. B. Good ex vivo stability of copeptin in serum and plasma at 

room temperature [46]. 

 

Figure 8. Changes in copeptin concentration as influenced by water intake, 
hypo- or hypertonic saline infusion, or bleeding. A. In healthy volunteers, 

plasma copeptin increased or decreased after infusion of hypotonic or hypertonic 

saline infusion, respectively. Here, copeptin followed the well-established pattern 

of AVP. Modified after [51]. B. Plasma copeptin concentration and mean 
arterial pressure (MAP) in four baboons before, during, and after 
hemorrhagic shock. The baboons were anesthetized and placed on a ventilator. 

They were then bled down to a MAP of 40 mmHg in two stages. During the first 

hour of resuscitation, the MAP was brought to 100 mmHg by the infusion of 25% 

of the shed blood plus Ringer solution, and during the third hour of resuscitation, 

an additional 25% of the shed blood plus Ringer solution was administered to 

raise the MAP to baseline levels. The total duration in hours and the time points 

of blood draw during bleeding and reperfusion are indicated. R0 is the time point 

after 3 h of bleeding and immediately before reperfusion was started. 

Reproduced from [53]. 
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