H. Adachi, Y. Saijoh, K. Mochida, S. Ohishi, H. Hashiguchi et al., Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer, Genes & Development, vol.13, issue.12, pp.1589-600, 1999.
DOI : 10.1101/gad.13.12.1589

M. Agetsuma, H. Aizawa, T. Aoki, R. Nakayama, M. Takahoko et al., The habenula is crucial for experience-dependent modification of fear responses in zebrafish, Nature Neuroscience, vol.23, issue.11, pp.1354-1360, 2010.
DOI : 10.1016/j.neubiorev.2005.03.021

H. Aizawa, M. Goto, T. Sato, and H. Okamoto, Temporally regulated asymmetric neurogenesis causes left-right difference in the zebrafish habenular structures. Dev Cell, pp.87-98, 2007.

H. Aizawa, R. Amo, and H. Okamoto, Phylogeny and ontogeny of the habenular structure. Front Neurosci, p.138, 2011.

R. Amo, H. Aizawa, M. Takahoko, M. Kobayashi, R. Takahashi et al., Identification of the Zebrafish Ventral Habenula As a Homolog of the Mammalian Lateral Habenula, Journal of Neuroscience, vol.30, issue.4, pp.1566-74, 2010.
DOI : 10.1523/JNEUROSCI.3690-09.2010

L. Appelbaum and Y. Gothilf, Mechanism of pineal-specific gene expression: The role of E-box and photoreceptor conserved elements, Molecular and Cellular Endocrinology, vol.252, issue.1-2, pp.27-33, 2006.
DOI : 10.1016/j.mce.2006.03.021

D. Arai, K. Hayakawa, J. Ohgane, M. Hirosawa, Y. Nakao et al., An epigenetic regulatory element of the Nodal gene in the mouse and human genomes, Mechanisms of Development, vol.136, pp.143-54, 2015.
DOI : 10.1016/j.mod.2014.12.003

D. Arendt, K. Tessmar-raible, H. Snyman, A. Dorresteijn, and J. Wittbrodt, Ciliary Photoreceptors with a Vertebrate-Type Opsin in an Invertebrate Brain, Science, vol.306, issue.5697, pp.869-71, 2004.
DOI : 10.1126/science.1099955

C. Asbreuk, H. Van-schaick, J. Cox, M. Smidt, and J. Burbach, Survey for paired-like homeodomain gene expression in the hypothalamus: restricted expression patterns of Rx, Alx4 and goosecoid, Neuroscience, vol.114, issue.4, pp.883-892, 2002.
DOI : 10.1016/S0306-4522(02)00325-1

S. Bandín, R. Morona, and A. González, Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis, Frontiers in Neuroanatomy, vol.141, issue.58, p.107, 2015.
DOI : 10.1242/dev.115691

C. Beretta, N. Dross, P. Bankhead, and M. Carl, The ventral habenulae of zebrafish develop in prosomere 2 dependent on Tcf7l2 function, Neural Development, vol.8, issue.1, p.19, 2013.
DOI : 10.1242/dev.058669

S. Bertrand, D. Aldea, S. Oulion, L. Subirana, A. De-lera et al., Evolution of the Role of RA and FGF Signals in the Control of Somitogenesis in Chordates. PLoS One, p.136587, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01273354

N. Bessodes, E. Haillot, V. Duboc, E. Röttinger, F. Lahaye et al., Reciprocal Signaling between the Ectoderm and a Mesendodermal Left-Right Organizer Directs Left-Right Determination in the Sea Urchin Embryo, PLoS Genetics, vol.74, issue.1, p.1003121, 2012.
DOI : 10.1371/journal.pgen.1003121.s007

B. Bisgrove, S. Morelli, and H. Yost, : Insights from Vertebrate Model Systems, Annual Review of Genomics and Human Genetics, vol.4, issue.1, pp.1-32, 2003.
DOI : 10.1146/annurev.genom.4.070802.110428

S. Blackshaw and S. Snyder, Parapinopsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family, J Neurosci, vol.17, pp.8083-92, 1997.

M. Blum, K. Feistel, T. Thumberger, and A. Schweickert, The evolution and conservation of left-right patterning mechanisms, Development, vol.141, issue.8, pp.1603-1616, 2014.
DOI : 10.1242/dev.100560

M. Braun, A. Etheridge, A. Bernard, C. Robertson, and H. Roelink, Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain, Development, vol.130, issue.23, pp.5579-87, 2003.
DOI : 10.1242/dev.00685

A. Butler, W. Hodos, K. Vogan, C. Tabin, I. Belmonte et al., Wiley Comparative Vertebrate Neuroanatomy: Evolution and Adaptation Mechanisms of left-right determination in vertebrates, Cell, vol.101, pp.9-21, 2000.

M. Carl, I. Bianco, B. Bajoghli, N. Aghaallaei, T. Czerny et al., Wnt/Axin1/beta-catenin signaling regulates asymmetric nodal activation, elaboration, and concordance of CNS asymmetries. Neuron, pp.393-405, 2007.

K. Carneiro, C. Donnet, T. Rejtar, B. Karger, G. Barisone et al., Histone deacetylase activity is necessary for left-right patterning during vertebrate development, BMC Developmental Biology, vol.11, issue.1, p.29, 1920.
DOI : 10.1002/(SICI)1520-6408(1998)23:3<194::AID-DVG5>3.0.CO;2-0

S. Casarosa, M. Andreazzoli, A. Simeone, and G. Barsacchi, Xrxl, a novel Xenopus homeobox gene expressed during eye and pineal gland development, Mechanisms of Development, vol.61, issue.1-2, pp.187-98, 1997.
DOI : 10.1016/S0925-4773(96)00640-5

M. Chatterjee, Q. Guo, S. Weber, S. Scholpp, and J. Li, Pax6 regulates the formation of the habenular nuclei by controlling the temporospatial expression of Shh in the diencephalon in vertebrates, BMC Biology, vol.12, issue.1, p.13, 2014.
DOI : 10.1523/JNEUROSCI.3742-10.2010

C. Mallika, Q. Guo, and J. Y. Li, Gbx2 is essential for maintaining thalamic neuron identity and repressing habenular characters in the developing thalamus, Developmental Biology, vol.407, issue.1, pp.26-39, 2015.
DOI : 10.1016/j.ydbio.2015.08.010

J. Clanton, K. Hope, and J. Gamse, Fgf signaling governs cell fate in the zebrafish pineal complex. Development, pp.323-355, 2013.

L. Cochella, B. Tursun, Y. Hsieh, S. Galindo, R. Johnston et al., Two distinct types of neuronal asymmetries are controlled by the Caenorhabditis elegans zinc finger transcription factor die-1. Genes Dev, pp.34-43, 2014.

J. Collignon, I. Varlet, and E. Robertson, Relationship between asymmetric nodal expression and the direction of embryonic turning, Nature, vol.381, issue.6578, pp.155-163, 1996.
DOI : 10.1038/381155a0

M. Concha, R. Burdine, C. Russell, A. Schier, and S. Wilson, A Nodal Signaling Pathway Regulates the Laterality of Neuroanatomical Asymmetries in the Zebrafish Forebrain, Neuron, vol.28, issue.2, pp.399-409, 2000.
DOI : 10.1016/S0896-6273(00)00120-3

M. Concha and S. Wilson, Asymmetry in the epithalamus of vertebrates, Journal of Anatomy, vol.17, issue.1, pp.63-84, 2001.
DOI : 10.1007/978-3-642-18262-4_11

M. Concha, C. Russell, J. Regan, M. Tawk, S. Sidi et al., Local Tissue Interactions across the Dorsal Midline of the Forebrain Establish CNS Laterality, Neuron, vol.39, issue.3, pp.423-461, 2003.
DOI : 10.1016/S0896-6273(03)00437-9

M. Concha, I. Signore, and A. Colombo, Mechanisms of directional asymmetry in the zebrafish epithalamus, Seminars in Cell & Developmental Biology, vol.20, issue.4, pp.498-509, 2009.
DOI : 10.1016/j.semcdb.2008.11.007

J. Coutelis, N. González-morales, C. Géminard, and S. Noselli, Diversity and convergence in the mechanisms establishing L/R asymmetry in metazoa, EMBO reports, vol.15, issue.9, pp.926-963, 2014.
DOI : 10.15252/embr.201438972

K. Oishi, I. Rigoutsos, M. Sano, A. Sasaki, Y. Sasakura et al., The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins, Science, vol.298, pp.2157-67, 2002.

Y. Derobert, B. Baratte, M. Lepage, and S. Mazan, Pax6 expression patterns in Lampetra fluviatilis and Scyliorhinus canicula embryos suggest highly conserved roles in the early regionalization of the vertebrate brain, Brain Research Bulletin, vol.57, issue.3-4, pp.277-80, 2002.
DOI : 10.1016/S0361-9230(01)00695-5

URL : https://hal.archives-ouvertes.fr/hal-00095194

V. Dinet, N. Girard-naud, P. Voisin, and M. Bernard, Melatoninergic differentiation of retinal photoreceptors: Activation of the chicken hydroxyindole-O-methyltransferase promoter requires a homeodomain-binding element that interacts with Otx2, Experimental Eye Research, vol.83, issue.2, pp.276-90, 2006.
DOI : 10.1016/j.exer.2005.12.011

E. Dreosti, V. Llopis, N. Carl, M. Yaksi, E. Wilson et al., Left-Right Asymmetry Is Required for the Habenulae to Respond to Both Visual and Olfactory Stimuli, Current Biology, vol.24, issue.4, pp.440-445, 2014.
DOI : 10.1016/j.cub.2014.01.016

V. Duboc, E. Röttinger, F. Lapraz, L. Besnardeau, and T. Lepage, Left-Right Asymmetry in the Sea Urchin Embryo Is Regulated by Nodal Signaling on the Right Side, Developmental Cell, vol.9, issue.1, pp.147-58, 2005.
DOI : 10.1016/j.devcel.2005.05.008

P. Dufourcq, S. Rastegar, U. Strähle, and P. Blader, Parapineal specific expression of gfi1 in the zebrafish epithalamus, Gene Expression Patterns, vol.4, issue.1
DOI : 10.1016/S1567-133X(03)00148-0

R. M. Eakin, The Third Eye, 1973.

P. Escalante-mead, N. Minshew, and J. Sweeney, Abnormal brain lateralization in high-functioning autism, Journal of Autism and Developmental Disorders, vol.33, issue.5, pp.539-582, 2003.
DOI : 10.1023/A:1025887713788

G. Estivill-torrús, T. Vitalis, P. Fernández-llebrez, and D. Price, The transcription factor Pax6 is required for development of the diencephalic dorsal midline secretory radial glia that form the subcommissural organ, Mechanisms of Development, vol.109, issue.2, pp.215-239, 2001.
DOI : 10.1016/S0925-4773(01)00527-5

L. Facchin, E. Duboué, and M. Halpern, Disruption of Epithalamic Left-Right Asymmetry Increases Anxiety in Zebrafish, Journal of Neuroscience, vol.35, issue.48, pp.15847-59, 2015.
DOI : 10.1523/JNEUROSCI.2593-15.2015

Z. Fejér, A. Szél, P. Röhlich, T. Görcs, M. Silva et al., Immunoreactive pinopsin in pineal and retinal photoreceptors of various vertebrates, Acta Biol Hung, vol.48, pp.463-71, 1997.

T. Fukumoto, I. Kema, and M. Levin, Serotonin Signaling Is a Very Early Step in Patterning of the Left-Right Axis in Chick and Frog Embryos, Current Biology, vol.15, issue.9, pp.794-803, 2005.
DOI : 10.1016/j.cub.2005.03.044

T. Furukawa, E. Morrow, T. Li, F. Davis, and C. Cepko, Retinopathy and attenuated circadian entrainment in Crxdeficient mice, Nature Genetics, vol.23, issue.4, pp.466-70, 1999.
DOI : 10.1038/70591

J. Gamse, Y. Shen, C. Thisse, B. Thisse, P. Raymond et al., Otx5 regulates genes that show circadian expression in the zebrafish pineal complex, Nature Genetics, vol.30, issue.1, pp.117-138, 2002.
DOI : 10.1038/ng793

J. Gamse, C. Thisse, B. Thisse, and M. Halpern, The parapineal mediates left-right asymmetry in the zebrafish diencephalon, Development, vol.130, issue.6, pp.1059-68, 2003.
DOI : 10.1242/dev.00270

J. Gamse, Y. Kuan, M. Macurak, C. Brösamle, B. Thisse et al., Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target, Development, vol.132, issue.21, pp.4869-81, 2005.
DOI : 10.1242/dev.02046

URL : https://hal.archives-ouvertes.fr/hal-00187544

W. Gehring and K. Ikeo, Pax 6: mastering eye morphogenesis and eye evolution, Trends in Genetics, vol.15, issue.9, pp.371-378, 1999.
DOI : 10.1016/S0168-9525(99)01776-X

S. Glardon, P. Callaerts, G. Halder, and W. Gehring, Conservation of Pax-6 in a lower chordate, the ascidian Phallusia mammillata, Development, vol.124, pp.817-842, 1997.

S. Glardon, L. Holland, W. Gehring, and N. Holland, Isolation and developmental expression of the amphioxus Pax- 6 gene (AmphiPax-6): insights into eye and photoreceptor evolution, Development, vol.125, pp.2701-2711, 1998.

C. Grande and N. Patel, Nodal signalling is involved in left???right asymmetry in snails, Nature, vol.20, issue.7232, pp.1007-1018, 2009.
DOI : 10.1038/nature07603

C. Grande, J. Martín-durán, N. Kenny, M. Truchado-garcía, and A. Hejnol, Evolution, divergence and loss of the Nodal signalling pathway: new data and a synthesis across the Bilateria, The International Journal of Developmental Biology, vol.58, issue.6-7-8, pp.521-553, 2014.
DOI : 10.1387/ijdb.140133cg

J. Gros, K. Feistel, C. Viebahn, M. Blum, and C. Tabin, Cell Movements at Hensen's Node Establish Left/Right Asymmetric Gene Expression in the Chick, Science, vol.292, issue.1, pp.941-945, 2009.
DOI : 10.1016/S0092-8674(02)00939-X

M. Halpern, J. Liang, and J. Gamse, Leaning to the left: laterality in the zebrafish forebrain. Trends Neurosci, pp.308-321, 2003.

M. Halpern, O. Hobert, and C. Wright, Left-right asymmetry: Advances and enigmas, genesis, vol.30, issue.1, pp.451-455, 2014.
DOI : 10.1016/j.tig.2013.09.001

H. Hashimoto, M. Aritaki, K. Uozumi, S. Uji, T. Kurokawa et al., Embryogenesis and expression profiles of charon and nodal-pathway genes in sinistral (Paralichthys olivaceus) and dextral (Verasper variegatus) flounders. Zoolog Sci, pp.137-183, 2007.

J. Heymer, M. Kuehn, and U. Rüther, The expression pattern of nodal and lefty in the mouse mutant Ft suggests a function in the establishment of handedness, Mechanisms of Development, vol.66, issue.1-2, pp.5-11, 1997.
DOI : 10.1016/S0925-4773(97)00084-1

O. Hikosaka, The habenula: from stress evasion to value-based decision-making, Nature Reviews Neuroscience, vol.27, issue.7, pp.503-516, 2010.
DOI : 10.1017/S1092852900001954

C. Hudson and P. Lemaire, Induction of anterior neural fates in the ascidian Ciona intestinalis, Mechanisms of Development, vol.100, issue.2, pp.189-203, 2001.
DOI : 10.1016/S0925-4773(00)00528-1

URL : https://hal.archives-ouvertes.fr/hal-01441402

U. Hüsken, H. Stickney, G. Gestri, I. Bianco, A. Faro et al., Tcf7l2 Is Required for Left-Right Asymmetric Differentiation of Habenular Neurons, Current Biology, vol.24, issue.19, pp.2217-2244, 2014.
DOI : 10.1016/j.cub.2014.08.006

Y. Ishikawa, K. Inohaya, N. Yamamoto, K. Maruyama, M. Yoshimoto et al., The Parapineal Is Incorporated into the Habenula during Ontogenesis in the Medaka Fish, Brain, Behavior and Evolution, vol.85, issue.4, pp.257-70, 2015.
DOI : 10.1159/000431249

J. Jansen, The brain of myxine glutinosa, The Journal of Comparative Neurology, vol.49, issue.3, pp.359-507, 1930.
DOI : 10.1007/BF02979946

J. Kaaro, T. Partonen, P. Naik, and N. Hadjikhani, Is migraine a lateralization defect? Neuroreport, pp.1351-1354, 2008.

E. Kawano-yamashita, A. Terakita, M. Koyanagi, Y. Shichida, T. Oishi et al., Immunohistochemical characterization of a parapinopsin-containing photoreceptor cell involved in the ultraviolet/green discrimination in the pineal organ of the river lamprey Lethenteron japonicum, Journal of Experimental Biology, vol.210, issue.21, pp.3821-3830, 2007.
DOI : 10.1242/jeb.007161

D. Kennedy, O. Craven, K. Ticho, B. Goldstein, A. Makris et al., Structural and functional brain asymmetries in human situs inversus totalis, Neurology, vol.53, issue.6, pp.1260-1265, 1999.
DOI : 10.1212/WNL.53.6.1260

K. Kitamura, H. Miura, S. Miyagawa-tomita, M. Yanazawa, Y. Katoh-fukui et al., Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra-and periocular mesoderm and right pulmonary isomerism. Development, pp.5749-58, 1999.

D. Klein, Evolution of The Vertebrate Pineal Gland: The Aanat Hypothesis, Chronobiology International, vol.66, issue.1, pp.5-20, 2006.
DOI : 10.1083/jcb.66.1.60

T. Knaus, H. Tager-flusberg, J. Mock, R. Dauterive, and A. Foundas, Prefrontal and Occipital Asymmetry and Volume in Boys with Autism Spectrum Disorder, Cognitive And Behavioral Neurology, vol.25, issue.4, pp.186-94, 2012.
DOI : 10.1097/WNN.0b013e318280e154

M. Koyanagi, E. Kawano, Y. Kinugawa, T. Oishi, Y. Shichida et al., Bistable UV pigment in the lamprey pineal, Proceedings of the National Academy of Sciences, vol.1, issue.5, pp.6687-91, 2004.
DOI : 10.1038/1570

Y. Kuan, S. Roberson, C. Akitake, L. Fortuno, J. Gamse et al., Distinct requirements for Wntless in habenular development, Developmental Biology, vol.406, issue.2, pp.117-145, 2015.
DOI : 10.1016/j.ydbio.2015.06.006

R. Kuroda, B. Endo, M. Abe, and M. Shimizu, Chiral blastomere arrangement dictates zygotic left???right asymmetry pathway in snails, Nature, vol.287, issue.7274, pp.790-794, 2009.
DOI : 10.1038/nature08597

T. Lacalli, N. Holland, and J. West, Landmarks in the Anterior Central Nervous System of Amphioxus Larvae, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.344, issue.1308, 1994.
DOI : 10.1098/rstb.1994.0059

T. Lacalli, Sensory Systems in Amphioxus: A Window on the Ancestral Chordate Condition, Brain, Behavior and Evolution, vol.64, issue.3, pp.148-62, 2004.
DOI : 10.1159/000079744

T. Lacalli, Basic features of the ancestral chordate brain: A protochordate perspective, Brain Research Bulletin, vol.75, issue.2-4, pp.319-342, 2008.
DOI : 10.1016/j.brainresbull.2007.10.038

I. Moldes, H. Mayeur, Q. Rougemont, S. Mazan, and A. Boutet, The ancestral role of nodal signaling in breaking L/R symmetry in the vertebrate forebrain, Nat Commun, vol.6, p.20156686

M. Levin, R. Johnson, C. Stern, M. Kuehn, and C. Tabin, A molecular pathway determining left-right asymmetry in chick embryogenesis, Cell, vol.82, issue.5, pp.803-817, 1995.
DOI : 10.1016/0092-8674(95)90477-8

Y. Lim and J. Golden, Expression pattern of cLhx2b, cZic1 and cZic3 in the developing chick diencephalon, Mechanisms of Development, vol.115, issue.1-2, pp.147-50, 2002.
DOI : 10.1016/S0925-4773(02)00091-6

Y. Lim and J. Golden, Patterning the developing diencephalon, Brain Research Reviews, vol.53, issue.1, pp.17-26, 2007.
DOI : 10.1016/j.brainresrev.2006.06.004

C. Lin, C. Kioussi, O. Connell, S. Briata, P. Szeto et al., Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis, Nature, vol.401, pp.279-82, 1999.

Z. Liu, S. Liu, J. Yao, L. Bao, J. Zhang et al., The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts, Nature Communications, vol.39, p.11757, 2016.
DOI : 10.1111/j.1745-7270.2007.00283.x

S. Long, N. Ahmad, and M. Rebagliati, The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development, pp.2303-2319, 2003.

L. Lowe, D. Supp, K. Sampath, T. Yokoyama, C. Wright et al., Conserved left???right asymmetry of nodal expression and alterations in murine situs inversus, Nature, vol.381, issue.6578, pp.158-61, 1996.
DOI : 10.1038/381158a0

K. Lustig, K. Kroll, E. Sun, R. Ramos, H. Elmendorf et al., A Xenopus nodal-related gene that acts in synergy with noggin to induce complete secondary axis and notochord formation. Development, pp.3275-82, 1996.

A. Martinez-ferre and S. Martinez, The Development of the Thalamic Motor Learning Area Is Regulated by Fgf8 Expression, Journal of Neuroscience, vol.29, issue.42, pp.13389-400, 2009.
DOI : 10.1523/JNEUROSCI.2625-09.2009

P. Mathers, A. Grinberg, K. Mahon, and M. Jamrich, The Rx homeobox gene is essential for vertebrate eye development, Nature, vol.116, issue.6633, pp.603-610, 1997.
DOI : 10.1016/S0091-679X(08)60307-6

M. Max, P. Mckinnon, K. Seidenman, R. Barrett, M. Applebury et al., Pineal opsin: a nonvisual opsin expressed in chick pineal, Science, vol.62, issue.5, pp.1502-1508, 1995.
DOI : 10.1046/j.1471-4159.1994.62052001.x

F. Mazet, J. Hutt, J. Millard, and S. Shimeld, Pax gene expression in the developing central nervous system of Ciona intestinalis, Gene Expression Patterns, vol.3, issue.6, pp.743-748, 2003.
DOI : 10.1016/S1567-133X(03)00137-6

C. Meno, A. Shimono, Y. Saijoh, K. Yashiro, K. Mochida et al., lefty-1 Is Required for Left-Right Determination as a Regulator of lefty-2 and nodal, Cell, vol.94, issue.3, pp.287-97, 1998.
DOI : 10.1016/S0092-8674(00)81472-5

E. Meyers and G. Martin, Differences in Left-Right Axis Pathways in Mouse and Chick: Functions of FGF8 and SHH, Science, vol.285, issue.5426, pp.403-409, 1999.
DOI : 10.1126/science.285.5426.403

J. Morokuma, M. Ueno, H. Kawanishi, H. Saiga, and H. Nishida, HrNodal , the ascidian nodal -related gene, is expressed in the left side of the epidermis, and lies upstream of HrPitx, Development Genes and Evolution, vol.212, issue.9, pp.439-485, 2002.
DOI : 10.1007/s00427-002-0242-3

D. Nicol and I. Meinertzhagen, Cell counts and maps in the larval central nervous system of the ascidianciona intestinalis (L.), The Journal of Comparative Neurology, vol.11, issue.4, pp.415-444, 1991.
DOI : 10.1080/11250005909439275

R. Nieuwenhuys, H. J. Donkelaar, . Ten, and C. Nicholson, The Central Nervous System of Vertebrates, 1998.
DOI : 10.1007/978-3-642-18262-4

A. Nishida, A. Furukawa, C. Koike, Y. Tano, S. Aizawa et al., Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development, Nature Neuroscience, vol.6, issue.12, pp.1255-63, 2003.
DOI : 10.1038/nn1155

S. Nonaka, Y. Tanaka, Y. Okada, S. Takeda, A. Harada et al., Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell, pp.829-866, 1998.

V. Oertel-knöchel and D. Linden, Cerebral Asymmetry in Schizophrenia, The Neuroscientist, vol.7, issue.1, pp.456-67, 2011.
DOI : 10.1016/0028-3932(91)90046-B

S. Oh and E. Li, The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse., Genes & Development, vol.11, issue.14, pp.1812-1838, 1997.
DOI : 10.1101/gad.11.14.1812

T. Okano, T. Yoshizawa, and Y. Fukada, Pinopsin is a chicken pineal photoreceptive molecule, Nature, vol.372, issue.6501, pp.94-101, 1994.
DOI : 10.1038/372094a0

K. Oonuma, D. Hirose, N. Takatori, and H. Saiga, Analysis of the Transcription Regulatory Mechanism of Otx During the Development of the Sensory Vesicle in Ciona intestinalis. Zoolog Sci, pp.565-72, 2014.

J. Pavlicek, S. Sauzet, L. Besseau, S. Coon, J. Weller et al., Evolution of AANAT: expansion of the gene family in the cephalochordate amphioxus, BMC Evolutionary Biology, vol.10, issue.1, p.154, 2010.
DOI : 10.1186/1471-2148-10-154

J. Plouhinec, T. Sauka-spengler, A. Germot, L. Mentec, C. Cabana et al., The Mammalian Crx Genes Are Highly Divergent Representatives of the Otx5 Gene Family, a Gnathostome Orthology Class of Orthodenticle-Related Homeogenes Involved in the Differentiation of Retinal Photoreceptors and Circadian Entrainment, Molecular Biology and Evolution, vol.20, issue.4, pp.513-534, 2003.
DOI : 10.1093/molbev/msg085

URL : https://hal.archives-ouvertes.fr/hal-01211830

M. Rath, K. Rohde, D. Klein, and M. Møller, Homeobox Genes in the Rodent Pineal Gland: Roles in Development and Phenotype Maintenance, Neurochemical Research, vol.8, issue.4, pp.1100-1112, 2013.
DOI : 10.1128/MCB.8.4.1570

J. Regan, M. Concha, M. Roussigne, C. Russell, and S. Wilson, An Fgf8-Dependent Bistable Cell Migratory Event Establishes CNS Asymmetry, Neuron, vol.61, issue.1, pp.27-34, 2009.
DOI : 10.1016/j.neuron.2008.11.030

J. Roth, W. Gern, E. Roth, C. Ralph, and E. Jacobson, Nonpineal melatonin in the alligator (Alligator mississippiensis), Science, vol.210, issue.4469, pp.548-50, 1980.
DOI : 10.1126/science.7423204

A. Roure, P. Lemaire, and S. Darras, An Otx/Nodal Regulatory Signature for Posterior Neural Development in Ascidians, PLoS Genetics, vol.217, issue.8, p.1004548, 2014.
DOI : 10.1371/journal.pgen.1004548.s015

URL : https://hal.archives-ouvertes.fr/hal-01342669

M. Roussigné, I. Bianco, S. Wilson, and P. Blader, Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei, Development, vol.136, issue.9, pp.1549-57, 2009.
DOI : 10.1242/dev.034793

M. Roussigne, P. Blader, and S. Wilson, Breaking symmetry: The zebrafish as a model for understanding left-right asymmetry in the developing brain, Developmental Neurobiology, vol.17, issue.3, pp.269-81, 2012.
DOI : 10.1016/j.neuroscience.2009.09.043

D. Sapède and E. Cau, The Pineal Gland from Development to Function, Curr Top Dev Biol, vol.106, pp.171-215, 2013.
DOI : 10.1016/B978-0-12-416021-7.00005-5

Y. Shibazaki, M. Shimizu, and R. Kuroda, Body Handedness Is Directed by Genetically Determined Cytoskeletal Dynamics in the Early Embryo, Current Biology, vol.14, issue.16, pp.1462-1469, 2004.
DOI : 10.1016/j.cub.2004.08.018

I. Signore, N. Guerrero, F. Loosli, A. Colombo, A. Villalón et al., Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.3, issue.2, pp.991-1003, 2009.
DOI : 10.1007/BF00213223

C. Snelson, K. Santhakumar, M. Halpern, and J. Gamse, Tbx2b is required for the development of the parapineal organ, Development, vol.135, issue.9, pp.1693-702, 2008.
DOI : 10.1242/dev.016576

V. Soukup, L. Yong, T. Lu, S. Huang, Z. Kozmik et al., The Nodal signaling pathway controls left-right asymmetric development in amphioxus, EvoDevo, vol.6, issue.1, p.5, 2015.
DOI : 10.1016/j.tig.2013.09.001

P. Spéder, G. Adám, and S. Noselli, Type ID unconventional myosin controls left???right asymmetry in Drosophila, Nature, vol.13, issue.7085, pp.803-810, 2006.
DOI : 10.1016/S0171-9335(99)80053-3

M. Stokes and H. , Ciliary Hovering in Larval Lancelets (=Amphioxus), The Biological Bulletin, vol.188, issue.3, pp.231-233, 1995.
DOI : 10.2307/1542300

C. Su, D. Luo, A. Terakita, Y. Shichida, H. Liao et al., Parietal-Eye Phototransduction Components and Their Potential Evolutionary Implications, Science, vol.311, issue.5767, pp.1617-1638, 2006.
DOI : 10.1126/science.1123802

T. Suzuki, Y. Washio, M. Aritaki, Y. Fujinami, D. Shimizu et al., Metamorphic pitx2 expression in the left habenula correlated with lateralization of eye-sidedness in flounder. Dev Growth Differ, pp.797-808, 2009.

Y. Taniguchi, O. Hisatomi, M. Yoshida, and F. Tokunaga, Pinopsin expressed in the retinal photoreceptors of a diurnal gecko, FEBS Letters, vol.38, issue.2-3, pp.69-74, 2001.
DOI : 10.1016/S0042-6989(97)00160-0

A. Tosches-maria, Development and function of brain photoreceptors in the annelid Platynereis dumerilii. Doctoral dissertation, 2012.

M. Tosches and D. Arendt, The bilaterian forebrain: an evolutionary chimaera, Current Opinion in Neurobiology, vol.23, issue.6, pp.1080-1089, 2013.
DOI : 10.1016/j.conb.2013.09.005

M. Tosches, D. Bucher, P. Vopalensky, and D. Arendt, Melatonin Signaling Controls Circadian Swimming Behavior in Marine Zooplankton, Cell, vol.159, issue.1, pp.46-57, 2014.
DOI : 10.1016/j.cell.2014.07.042

L. Vandenberg and M. Levin, A unified model for left???right asymmetry? Comparison and synthesis of molecular models of embryonic laterality, Developmental Biology, vol.379, issue.1, pp.1-15, 2013.
DOI : 10.1016/j.ydbio.2013.03.021

R. Vignali, S. Colombetti, G. Lupo, W. Zhang, S. Stachel et al., Xotx5b, a new member of the Otx gene family, may be involved in anterior and eye development in Xenopus laevis, Mechanisms of Development, vol.96, issue.1, pp.3-13, 2000.
DOI : 10.1016/S0925-4773(00)00367-1

L. Vollrath, Comparative morphology of the vertebrate pineal complex In The Pineal Gland of Vertebrates Including Man, Progress in Brain Research, vol.52, 1979.

P. Vopalensky, J. Pergner, M. Liegertova, E. Benito-gutierrez, D. Arendt et al., Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye, Proceedings of the National Academy of Sciences, vol.133, issue.6, pp.15383-15391, 2012.
DOI : 10.1007/s00418-010-0703-0

R. Vuilleumier, G. Boeuf, M. Fuentes, W. Gehring, and J. Falcón, Cloning and early expression pattern of two melatonin biosynthesis enzymes in the turbot (Scophthalmus maximus), European Journal of Neuroscience, vol.903, issue.10, pp.3047-57, 2007.
DOI : 10.1042/bj2820571

S. Wada, Y. Katsuyama, Y. Sato, C. Itoh, and H. Saiga, Hroth, an orthodenticle-related homeobox gene of the ascidian, Halocynthia roretzi: its expression and putative roles in the axis formation during embryogenesis, Mechanisms of Development, vol.60, issue.1, pp.59-71, 1996.
DOI : 10.1016/S0925-4773(96)00600-4

S. Wada, E. Kawano-yamashita, M. Koyanagi, and A. Terakita, Expression of UV-Sensitive Parapinopsin in the Iguana Parietal Eyes and Its Implication in UV-Sensitivity in Vertebrate Pineal-Related Organs, PLoS ONE, vol.6, issue.6, p.39003, 2012.
DOI : 10.1371/journal.pone.0039003.s004

H. Watanabe, H. Schmidt, A. Kuhn, S. Höger, Y. Kocagöz et al., Nodal signalling determines biradial asymmetry in Hydra, Nature, vol.140, issue.7525, pp.112-117, 2014.
DOI : 10.1242/dev.094490

M. Wlizla, Evolution of Nodal signaling in deuterostomes: insights from Saccogloccus Kovalevskii. Doctoral dissertation, p.3487671, 2011.

J. Yáñez, H. Meissl, and R. Anadón, Central projections of the parapineal organ of the adult rainbow trout (Oncorhynchus mykiss) Cell Tissue Res, pp.69-74, 1996.

K. Yoshida and H. Saiga, Repression of Rx gene on the left side of the sensory vesicle by Nodal signaling is crucial for right-sided formation of the ocellus photoreceptor in the development of Ciona intestinalis, Developmental Biology, vol.354, issue.1, pp.144-50, 2011.
DOI : 10.1016/j.ydbio.2011.03.006

J. Yu, L. Holland, and N. Holland, An amphioxus nodal gene (AmphiNodal ) with early symmetrical expression in the organizer and mesoderm and later asymmetrical expression associated with left-right axis formation, Evolution and Development, vol.127, issue.6, pp.418-443, 2002.
DOI : 10.1038/361543a0

B. Zilberman-peled, L. Appelbaum, D. Vallone, N. Foulkes, S. Anava et al., Transcriptional Regulation of Arylalkylamine-N-Acetyltransferase-2 Gene in the Pineal Gland of the Gilthead Seabream, Journal of Neuroendocrinology, vol.68, issue.1, pp.46-53, 2007.
DOI : 10.1016/S0006-8993(03)02297-2