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Abstract

Regulation of our water homeostasis is fine-tuned by dynamic translocation of Aquaporin-2

(AQP2)-bearing vesicles to and from the plasma membrane of renal principal cells. Whe-

reas binding of vasopressin to its type-2 receptor initiates a cAMP-protein kinase A cascade

and AQP2 translocation to the apical membrane, this is counteracted by protein kinase

C-activating hormones, resulting in ubiquitination-dependent internalization of AQP2. The

proteins targeting AQP2 for ubiquitin-mediated degradation are unknown. In collecting duct

mpkCCD cells, siRNA knockdown of NEDD4 and NEDD4L E3 ligases yielded increased

AQP2 abundance, but they did not bind AQP2. Membrane Yeast Two-Hybrid assays using

full-length AQP2 as bait, identified NEDD4 family interacting protein 2 (NDFIP2) to bind

AQP2. NDFIP2 and its homologue NDFIP1 have PY motifs by which they bind NEDD4 fam-

ily members and bring them close to target proteins. In HEK293 cells, NDFIP1 and NDFIP2

bound AQP2 and were essential for NEDD4/NEDD4L-mediated ubiquitination and degrada-

tion of AQP2, an effect not observed with PY-lacking NDFIP1/2 proteins. In mpkCCD cells,

downregulation of NDFIP1, NEDD4 and NEDD4L, but not NDFIP2, increased AQP2 abun-

dance. In mouse kidney, Ndfip1 and Ndfip2 mRNA distribution was similar and high in proxi-

mal tubules and collecting ducts, which was also found for NDFIP1 proteins. Our results

reveal that NEDD4/NEDD4L mediate ubiquitination and degradation of AQP2, but that

NDFIP proteins are needed to connect NEDD4/NEDD4L to AQP2. As NDFIP1/2 bind many

NEDD4 family E3 ligases, which are implicated in several cellular processes, NDFIP1/2

may be the missing link for AQP2 ubiquitination and degradation from different subcellular

locations.

Introduction

Hypernatremia or hypovolemia lead to an increased releases of vasopressin (AVP) from the

pituitary. Released AVP binds to and activates its type-2 receptor (AVPR2) in the basolateral

membrane of collecting duct principal cells and triggers a cyclic AMP (cAMP) signalling
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cascade leading to a changed phosphorylation of Aquaporin-2 (AQP2) water channels. Conse-

quently, AQP2-containing intracellular vesicles are redistributed from the cytosol to the apical

membrane. Driven by an osmotic gradient, water then enters the cells through AQP2 and exits

the cell via AQP3 and AQP4, which corrects blood tonicity and volume and results in concen-

trated urine [1].

These corrected osmo and volume balances normalize blood AVP levels, which subsequently

induces the internalization of AQP2 to storage vesicles and its lysosomal degradation, coincid-

ing with a reduced water reabsorption. The fact that excessive renal water reabsorption and

hyponatremia in SIADH, congestive heart failure, liver cirrhosis and preeclampsia coincide

with elevated plasma membrane abundance of AQP2, whereas dehydration and hypernatremia

in congenital and acquired forms of nephrogenic diabetes insipidus are due to insufficient

plasma membrane abundance of AQP2 underscore the importance of a proper regulation of

plasma membrane abundance of AQP2 [2].

In contrast to the well-studied regulatory system involved in AQP2 phosphorylation [3],

very little is known about the players in AQP2 internalization. Earlier, we found that, following

activation of protein kinase C (PKC), AQP2 was ubiquitinated and internalized [4]. However,

ubiquitin ligases directly involved in this process are unknown. Ubiquitination is a posttransla-

tional modification in which ubiquitin, a protein of 76 amino acids, is covalently coupled to a

lysine of cellular protein, a process catalysed by an E3-ubiquitin protein ligase [5]. Lee et al.

discovered a change in abundance of the BRE1B, CUL5 and NEDD4 in dDAVP-stimulated rat

kidneys, and suggested a role for these E3 ligases in the regulation of water homeostasis [6].

However, AQP2 binding and functional evidence of involvement of any of these E3 ligases in

AQP2 ubiquitination and degradation has not been reported.

Here, we provide evidence that NEDD4 and NEDD4L, also known as Nedd4-1 and Nedd4-

2 respectively, can ubiquitinate AQP2, but not through direct binding of AQP2. Instead, using

a Membrane Yeast Two-Hybrid (MYTH) assay to identify proteins interacting with full-length

AQP2, we found that NEDD4 family interacting protein (NDFIP) 1 and 2 specifically interact

with AQP2, are expressed in renal collecting ducts, and are essential for ubiquitination and

degradation of AQP2 by NEDD4 and NEDD4L.

Results

NEDD4 and NEDD4L downregulate AQP2 expression, but not through

direct interaction

In the rat kidney inner medulla, withdrawal of dDAVP increased the abundance of the

NEDD4 E3-ligase, while lithium-induced nephrogenic diabetes insipidus coincides with

reduced NEDD4 abundance [6]. Furthermore, NEDD4 and NEDD4L regulate the plasma

membrane abundance of the epithelial sodium channel ENaC in principal cells [7, 8], which

also express AQP2. Mouse cortical collecting duct (mpkCCD) cells mimic renal principal cells,

as they endogenously express and translocate AQP2 to the apical membrane in response to

dDAVP[9]. Therefore, to test the potential role of these E3 ligases in AQP2 ubiquitination,

internalization and degradation regulation, we transfected Nedd4/Nedd4L siRNAs into

dDAVP-stimulated mpkCCD cells to test their effects on AQP2 abundance. Immunoblotting

lysates for NEDD4 or NEDD4L expression showed the specificity of the siRNAs used, as

NEDD4 abundance was significantly reduced with Nedd4, but not Nedd4L or non-targeting

siRNAs and vice versa (Fig 1A). Subsequent immunoblotting for AQP2 revealed significantly-

increased AQP2 abundances in cells transfected with Nedd4 or Nedd4L siRNAs as compared

to cells transfected with non-targeting siRNA (Fig 1B). These data demonstrate a role for

AQP2 regulation by NDFIP, NEDD4 and NEDD4L
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NEDD4 and NEDD4L in regulating AQP2 abundance in mpkCCD cells, possibly by affecting

its ubiquitination-dependent degradation.

NEDD4 E3 ligases contain WW-domains, which bind to PY motifs in the PPxY amino acid

stretch of target proteins [10], but AQP2 does not contain a PY motif. However, NEDD4 WW

domains have also been reported to interact with phosphorylated S/T residues followed by a

proline residue [11] and AQP2 is phosphorylated at the P262-flanking S261 upon internaliza-

tion. Therefore, NEDD4/4L could downregulate AQP2 abundance by direct interaction with

the water channel. As NEDD4 and NEDD4L expression in mpkCCD cells is rather low, AQP2

and NEDD4 or NEDD4L were co-expressed in HEK293 cells and subjected to an AQP2 co-

immunoprecipitation assay. Immunoblotting for NEDD4 or NEDD4L on the AQP2 precipi-

tate did not reveal any band, despite abundant expression of NEDD4/NEDD4L in the HEK293

Fig 1. NEDD4 and NEDD4L downregulation increases AQP2 abundance. (A,B) NEDD4/4L downregulation increases AQP2 abundance.

MpkCCD cells were transfected with non-targeting siRNAs (nt) or siRNAs against NEDD4 or NEDD4L, grown on filter for 4 days, treated with

dDAVP for the last 72 hours, lysed, and subjected to immunoblotting for (A) NEDD4 and NEDD4L or (B) AQP2. (B) Semi-quantification of the

signals (n = 6 from 3 independent experiments with duplicate samples) revealed significant and specific downregulation of NEDD4 and NEDD4L,

leading to significantly-increased AQP2 abundances for NEDD4 and NEDD4L (*p<0.05 vs. nt-siRNA treatment). (C) Lack of evidence that NEDD4/

4L directly interact with AQP2. HEK cells were transiently-transfected with expression constructs encoding AQP2 with or without constructs coding

for NEDD4 or NEDD4L, grown for 2 days, lysed, and subjected to AQP2-immunoprecipitation (IP: α-AQP2). The IP-fractions and total lysate

(indicated) were then immunoblotted for NEDD4 or NEDD4L (IB: α-NEDD4/NEDD4L) or AQP2 (IB: α-AQP2). Despite clear AQP2 and NEDD4/

NEDD4L expression (lysates), NEDD4 nor NEDD4L was detected in the immunoprecipitates. Immunoglobulins used for immunoprecipitation

({IgG}) are indicated. Coomassie staining of the blots confirmed loading of protein equivalents. Molecular masses of marker proteins are indicated

on the left (in kDa).

https://doi.org/10.1371/journal.pone.0183774.g001
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lysates (Fig 1C). Altogether, we did not find any evidence that there is a direct interaction

between NEDD4/NEDD4L and AQP2.

NDFIP1 and NDFIP2 interact with AQP2

To potentially identify an E3 ligase or intermediate protein binding to AQP2, we used a Mem-

brane Yeast Two-Hybrid (MYTH) assay to screen a human kidney cDNA library for interac-

tion partners of full-length integral membrane AQP2. Following confirmation of interaction

with re-transformation (Fig 2A), sequence analysis and an NCBI similarity BLAST search, we

identified NEDD4 family interacting protein 2 (NDFIP2) as a binding partner of AQP2 (Fig

2A). NDFIP2 (NP_061953.2) is a predicted integral membrane protein of 336 amino acids

with a cytosolic N-terminus and luminal/extracelllar C-terminus [12]. Its N-terminus contains

three PY-motifs, which interact with WW-domains of NEDD4 and NEDD4L [13, 14]. The

NDFIP2 clone from the MYTH screening spanned amino acids 203–336 (Fig 2B and 2C), indi-

cating that the N-terminus and PY motifs of NDFIP2 are not involved in binding to AQP2.

NDFIP2 could thus link NEDD4/NEDD4L to AQP2. Other proteins that gave positive results

in our AQP2 MYTH, but were not confirmed, are given in S1 Table)

As the independent cDNAs of the library were ‘only’ screened one time for AQP2 interact-

ing partners with our MYTH screening, related AQP2-interacting proteins were likely missing.

Therefore, we performed a similarity BLAST search for NDFIP2. This revealed the existence of

NDFIP1, which has a 68% amino acid identity and 86% similarity with NDFIP2 in the region

binding AQP2 (Fig 2C). NDFIP1 also contains 3 PY-motifs and has been suggested to internal-

ize membrane proteins, as it promoted the degradation of the divalent metal transporter

(DMT1) membrane protein [15]. To analyse whether NDFIP1 and NDFIP2 interact with

AQP2, myc-tagged NDFIP1 and NDFIP2 were co-expressed with AQP2 in HEK293. Myc-

immunoblotting of AQP2-co-immunoprecipitated proteins revealed a clear band for NDFIP2

and a much weaker signal for NDFIP1, which correlates with the reduced expression of

NDIP1 in the HEK293 lysates (Fig 2D).

NDFIP1 and NDFIP2 confer NEDD4/NEDD4L-mediated AQP2

ubiquitination and degradation

To investigate whether NDFIP1 or 2 could link NEDD4 or NEDD4L to AQP2, we transiently

expressed AQP2 and NEDD4 or NEDD4L in HEK293 cells with or without myc-NDFIP1 or

myc-NDFIP2. Besides, also the PY-mutants of the NDFIP proteins [14] were co-expressed,

which lack all three PY motifs due to specific amino acid changes of the PY motifs (PXY

changed into PAG [NDFIP1] or PXF [NDFIP2][14]). Following transfection and culturing of

the HEK293 cells for 2 days, the cells were lysed and used for immunoblotting or subjected to

AQP2 co-immunoprecipitation assays. Upon co-expression of NEDD4 or NEDD4L with wt-

NDFIP1 or wt-NDFIP2, NEDD4 or NEDD4L clearly co-precipitated with AQP2 (Fig 3A,

upper panels). Co-expression without NDFIP or the NDFIP PY-mutants prevented any

NEDD4/NEDD4L co-precipitation or led to a strongly reduced interaction. Of importance,

despite transfection of identical amounts of related constructs, the abundances of NEDD4/4L

and NDFIP1/2 proteins were reduced in the lanes of the wt-NDFIP proteins as compared to

their PY-mutated counterparts or, for the NEDD4/4L proteins, the control lanes (Fig 3A,

lower panels). These data are in line with those of others that NEDD4 interaction affects the

abundance of NDFIP1 [16] and, vice versa, that NDFIP1 and NDFIP2 interaction with

NEDD4/4L reduces the abundance of the latter [14]. Although the E3 ligases and their adap-

tors mutually reduced their abundances, co-expression of NEDD4 or NEDD4L with NDFIP1

or NDFIP2, but not their non-interacting PY-mutated counterparts, decreased AQP2

AQP2 regulation by NDFIP, NEDD4 and NEDD4L
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abundance (Fig 3A). These results revealed that linking of NEDD4 or NEDD4L to AQP2 by

NDFIP1 or NDFIP2 leads to degradation of AQP2.

To assess whether the reduced abundance of AQP2 upon interaction with NDFIP1/2 and

NEDD4/4L coincided with increased ubiquitination of AQP2, AQP2 was co-expressed with

NEDD4 or NEDD4L with and without NDFIP1, NDFIP2 or their PY-mutants and subse-

quently immunoprecipitated from HEK293 cell lysates. Again, on immunoblot wt-NDFIP1

was nearly invisible when co-trasnfected with NEDD4 or NEDD4L, despite transfection of

Fig 2. NDFIP2, a NEDD4 family interacting protein, binds to AQP2 in a MYTH assay. (A) Specific interaction of NDFIP2 with AQP2. Colony

growth on interaction-selection media of yeast cells expressing NubG-NDFIP2 together with AQP2 indicates interaction (left two panels). No

colony growth is detected with the artificial bait (CD4-Cub) a human integral membrane protein (right two panels). NubG-OST and NubI-OST serve

as negative and positive controls for interaction in the ER-membrane, respectively, whereas NubG-FUR4 and NubI-FUR4 serve as negative and

positive controls for interaction in the plasma membrane, respectively. These data confirm expression of AQP2 in the ER and plasma membrane of

yeast cells and reveal the absence of self-activation. (B) Topology and interaction elements of NDFIP2. The part of NDFIP2 found to interact with

AQP2 (amino acid 203–336, indicated with grey marking) covers part of the N-tail, the transmembrane domains (indicated with dashed line) and a

part of the luminal/extracellular C-terminus. The PY elements which interact with the NEDD4/4L ww domains are indicated with a closed line. (C)

Alignment of the sequences of human NDFIP2 and NDFIP1. Of the sequence of NDFIP2 (isoform 1; NP_061953.2) found to interact with AQP2 in

the MYTH assay (aa 203–336, grey), 68% is identical (*) and 86% is similar (. or:) to that of NDFIP1 (NP_085048.1). The PPY-motifs (black

rectangle) known to bind to NEDD4 and NEDD4L are not, but the transmembrane domains (dashed rectangle) are within the AQP2 binding region.

(D) NDFIP1 and NDFIP2 interact with AQP2. HEK cells were transiently-transfected with an empty construct (-), or constructs encoding myc-

tagged NDFIP1, NDFIP2 or AQP2 separately or combined (indicated on top), grown for 2 days, lysed and subjected to AQP2-immunoprecipitation

(IP: α-AQP2). The IP-fractions (upper panel) and total lysates (indicated) were immunoblotted for NDFIP1 or -2 (IB: α-myc), or AQP2 (IB: α-AQP2).

Only when co-expressed with AQP2, NDFIP1 and NDFIP2 were detected in the immunoprecipitate. Coomassie staining of the blots confirmed

loading of protein equivalents. Molecular masses of proteins are indicated on the left (in kDa).

https://doi.org/10.1371/journal.pone.0183774.g002
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Fig 3. Linking of NEDD4 or NEDD4L to AQP2 by NDFIP1 or NDFIP2 mediates AQP2 ubiquitination. (A)

NDFIP1/2 link binding of NEDD4/NEDD4L to AQP2. HEK293 cells transiently-expressing AQP2 and NEDD4

or AQP2 and NEDD4L with or without wildtype-NDFIP1/NDFIP2 (1, 2) or their PY-mutants (1-PY*, 2-PY*)

were lysed and subjected to AQP2-immunoprecipitation (IP: α-AQP2). The AQP2 IP-fractions (upper panel)

and lysates (lysate) were subjected to immunoblotting for NEDD4 or NEDD4L (IB: α-NEDD4/NEDD4L),

NDFIP1/2/1-PY*/2-PY* (IB: α-myc), and AQP2 (IB: α-AQP2). Only upon co-expression with AQP2 and wild

type NDFIP1/NDFIP2, NEDD4 or NEDD4L were detected in the immunoprecipitate. (B/C) NEDD4/NEDD4L

binding to NDFIP1-2 is needed for AQP2 ubiquitination and degradation. HEK293 cells transiently expressed

AQP2 and NEDD4 (B) or NEDD4L (C) with or without NDFIP1/NDFIP2 (1, 2) or their PY-mutants (1-PY*,

2-PY*). AQP2 was immunoprecipitated (IP: α-AQP2) and subjected to immunoblotting for ubiquitin (IB: α-Ub),

revealing AQP2 coupled to one (AQP2-Ub1), two (AQP2-Ub2) or three (AQP2-Ub3) ubiquitin molecules.

Semi-quantification of the ubiquitinated AQP2 signals is given (control is set to 100%). Co-transfection of

AQP2 with NEDD4/NEDD4L and NDFIP1/NDFIP2 increased AQP2 ubiquitination, whereas with NDFIP1/

AQP2 regulation by NDFIP, NEDD4 and NEDD4L
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equal amounts of construct, suggesting that co-expression of NDFIP and NEDD4/NEDD4L

strongly reduces its expression, as discussed earlier. NEDD4 or NEDD4L alone did not lead to

a remarkable change in ubiquitinated AQP2 (Fig 3B and 3C). However, when co-expressed

with NDFIP1 or NDFIP2, but not their PY-mutants, a profound increase of ubiquitinated

AQP2 was observed, despite a reduced total AQP2 abundance. These results revealed that

NDFIP1/2-coupled NEDD4/NEDD4L complexes bind to and reduce AQP2 abundance by

increasing its ubiquitination.

NDFIP1 regulates AQP2 more strongly than NDFIP2 in mpkCCD cells

Transcriptome analyses revealed that both NDFIP1 and NDFIP2 are expressed in mpkCCD cells

[17]. Therefore, to test a role of NDFIP1 or 2 in AQP2 regulation in a more physiological cell

model, mpkCCD cells were incubated with dDAVP to induce AQP2 expression and treated with

Ndfip1/2 siRNAs and non-targeting controls. Treatment with Ndfip1 siRNAs increased AQP2

abundance 40-fold compared to control siRNAs, whereas Ndfip2 siRNAs did not affect AQP2

abundance (Fig 4A). As we were not able to detect endogenous NDFIP1 or NDFIP2 in mpkCCD

cells using different commercial antibodies (data not shown), we assessed their specific knock-

down by RT-qPCR. Indeed, both siRNA pools showed similar levels of specific Ndfip1 or 2

mRNA downregulation (Fig 4B). To confirm effective knockdown of the NDFIP proteins by

their specific siRNAs, we transiently-transfected HEK293 cells with myc-NDFIP1 or myc-

NDFIP2 expression constructs in combination with non-targeting siRNA or either NDFIP

siRNA. Subsequent immunoblot analysis revealed the specificity of the respective siRNAs, as only

the NDFIP-expressing cells transfected with their corresponding siRNAs showed a significant

reduction of NDFIP abundance (Fig 4C). Together, these data reveal that in the physiological col-

lecting duct mpkCCD cell model, NDFIP1 reduces AQP2 abundance, in contrast to NDFIP2.

To further establish a role for NDFIP1 and/or NDFIP2 in AQP2 regulation in vivo, we

determined their mRNA and protein expression along the nephron. RT-qPCR analysis of

mRNA isolated from different mouse nephron segments[18] and normalization against

mRNA of the housekeeping Rpl26 gene revealed that Ndfip1 and Ndfip2 mRNAs were

expressed in all segments tested, with highest expression of both in PCT, PST, DCT, CNT and

CCD (Fig 5A). A similar mRNA distribution was found for Nedd4 and Nedd4L, except that

expression of the latter was weak in PCT and PST (Fig 5A). To determine whether either

NDFIP protein was co-expressed with AQP2 in principal cells, cryo-sections of kidneys of

C57BL/6 mice were stained for NDFIP1 or NDFIP2, AQP2, and the nuclear marker DAPI.

Especially in the cortex and inner medulla, NDFIP1 showed a dispersed staining in AQP2-po-

sitive collecting duct cells, whereas in the AQP2-negative intercalated cells of the collecting

ducts, NDFIP1 localized in or near the apical membrane (Fig 5B). Moreover, NDFIP1 expres-

sion was also found in tubules negative for AQP2. In contrast, NDFIP2 showed a non-tubular

staining in the inner medulla and outer medulla and did not co-localize with AQP2. In the cor-

tex, NDFIP2 was also expressed in tubules, but did not co-localize with AQP2 (Fig 5B).

Co-localization studies with marker proteins of other tubular segments revealed a broad

expression of NDFIP1 as it also co-stained with Aquaporin-1 (AQP1) in proximal tubules, but

not descending loop of Henle, and Calbindin-28K in the DCT/CNT, whereas the expression of

NDFIP2 was restricted to proximal tubules (co-staining with AQP1; S2 Fig). NDFIP1 and

2-PY mutants no increase was detected. Co-transfection of AQP2 with NEDD4 or NEDD4L alone does not

increase the abundance of ubiquitinated AQP2. Immuno-precipitating IgGs ({IgG}) are indicated. Coomassie

staining of the blots confirmed loading of protein equivalents. Molecular masses of proteins are indicated on

the left (in kDa).

https://doi.org/10.1371/journal.pone.0183774.g003
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NDFIP2 were not detected in the thick ascending loop of Henle, indicated by the lack of co-

staining with Tamm-Horsfall-Protein (THP).

Discussion

NDFIP1/2 are essential for NEDD4/NEDD4L to bind, ubiquitinate and

degrade AQP2

Earlier, we showed that AQP2 ubiquitination is needed for its internalization from the plasma

membrane and targeting for degradation [4]. Here, we provide compelling evidence that

Fig 4. Downregulation of NDFIP1, but not NDFIP2, increases AQP2 abundance in mpkCCD cells. (A) MpkCCD cells were

transfected with non-targeting siRNA (nt) siRNA against NDFIP1 and NDFIP2, grown for 4 days with dDAVP stimulation for the last 72h,

and lysed. Subsequent immunoblotting for AQP2 and semi-quantification of the signals (n = 10 from 5 independent experiments)

revealed that siRNAs against NDFIP1, but not NDFIP2, significantly increased the abundance of AQP2. (B/C) NDFIP1 and NDFIP2

siRNAs specifically downregulate their mRNA and protein counterparts. (B) RT-qPCR of mRNA isolated from transfected mpkCCD cells

and normalized against GAPDH mRNA showed the NDFIP1 and NDFIP2 siRNAs conferred a significant and specific downregulation of

their corresponding mRNAs (n = 3). mRNA amounts of cells transfected with siRNAs of the other NDFIP were used as controls and set to

100%. Asterisks indicate p<0.05 as compared to these controls. (C) To check for specific downregulation by the NDFIP siRNAs on

protein level, HEK293 cells were left untransfected (HEK-nt) or transiently-transfected with expression constructs encoding NDFIP1

(HEK-NDFIP1) or NDFIP2 (HEK-NDFIP2). After 2 days of culture, the cells were transfected with non-targeting (nt), NDFIP1 or NDFIP2

siRNA, cultured for 2 days more, lysed, and subjected to NDFIP immunoblotting (IB: α-myc). The NDFIP signals were semi-quantified

and compared to those of NDFIP-transfected cells treated with nt siRNAs, which was set to 100%. The NDFIP1 or NDFIP2 protein

abundances were only and significantly reduced in HEK cells transfected with their respective siRNAs. Coomassie staining of the blots

confirmed loading of protein equivalents. Molecular masses of proteins are indicated on the left (in kDa).

https://doi.org/10.1371/journal.pone.0183774.g004
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NEDD4/NEDD4L ubiquitin ligases ubiquitinate AQP2 and thereby induce its degradation.

First, specific siRNA knockdown of NEDD4 and NEDD4L increased AQP2 abundance in

polarized mpkCCD cells, a physiologically-relevant cell model of collecting duct principal cells

(Fig 1). Also, in combination with NDFIP1/2, NEDD4 or NEDD4L were essential to increase

AQP2 ubiquitination and degradation (Fig 3B and 3C). Consistent with our data, Lee at al.

Fig 5. Expression of NDFIP1, NDFIP2, NEDD4 and NEDD4L in the mouse kidney. (A) Ndfip1, Ndfip2, Nedd4 and Nedd4L

mRNA expression along the nephron. mRNA was isolated from different mouse nephron segments, and subjected to RT-qPCR to

determine Ndfip1, Ndfip2, Nedd4 and Nedd4L mRNA levels. The determined mRNA levels were normalized to that of the

housekeeping gene Rpl26 and presented as fraction of the segment with the highest level of expression, which was set to 1.

Values are means ± SE from 6 mice. Segments indicated are proximal convoluted (S1) and straight (S3) tubule (PCT, PST),

medullary (mTAL) and cortical (cTAL) thick ascending limb of Henle’s loop, distal convoluted tubule (DCT), connecting tubule

(CNT), and the cortical (CCD) and outer medullary (OMCD) collecting duct. (B) NDFIP1, but not NDFIP2, co-localizes with AQP2.

Cryo-sections of mouse kidneys were subjected to immunohistochemistry for NDFIP1 or NDFIP2 (green), AQP2 (red), and the

nuclear dye DAPI (blue). Especially in the cortex and inner medulla, NDFIP1 colocalized with AQP2 in collecting duct principal

cells. For NDFIP2, co-localization with AQP2 was never observed. Scale bars represent 25 μm.

https://doi.org/10.1371/journal.pone.0183774.g005
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recently reported increased abundance of AQP2 in mpkCCD cells treated with NEDD4 siRNA

[6].

However, while we could not detect direct binding of NEDD4 and NEDD4L with AQP2

(Fig 1C), our data indicate that either E3-ligase likely regulates AQP2 ubiquitination through

NDFIP1 and/or NDFIP2. Indeed, we found that NDFIP1 and NDFIP2 directly interact with

AQP2 and these NDFIP proteins are needed as adaptor proteins to link NEDD4/NEDD4L to

AQP2 and to allow NEDD4/NEDD4L to ubiquitinate AQP2 (Figs 2 and 3). These NEDD4

family-interacting proteins (NDFIP) are integral membrane proteins (Fig 2B and 2C) that are

potent activators of NEDD4 family members through multiple interactions of their PY ele-

ments with the NEDD4 WW domains. With this, they do not only sequester the E3s to endo-

somes, but also directly to their substrates, as shown for DMT1 and for several substrates of

the yeast NDFIP ortholog Bsd2 [19]. The essential involvement of both NEDD4/NEDD4L and

NDFIP1/2 in the ubiquitination and consequent degradation of AQP2 is further supported by

our data that these effects on AQP2 were absent with NDFIP1/2 proteins lacking the PY ele-

ments (Fig 3) and that treatment of mpkCCD cells with NDFIP1 siRNA increased AQP2

abundance (Fig 4).

At present, however, it is unclear whether NDFIP1 and/or NDFIP2 is of relevance in the in
vivo NEDD4/4L regulation of AQP2 ubiquitination and degradation. While our HEK293 co-

immunoprecipitation studies, showing more AQP2 pulldown with NDFIP2 (Figs 2D and 3A),

could suggest that NDFIP2 interacts better with AQP2, the reduced abundance of pulled down

NDFIP1 may be a reflection of its reduced total abundance (lysate IB a-myc lanes). Besides,

there is no reason to assume that a physiological relevant interacting protein should bind

stronger. Our mpkCCD cells siRNA experiments clearly reveal that NDFIP1 was expressed

endogenously and that its specific knockdown resulted in increased AQP2 abundance (Fig 4),

underscoring the relevance of NDFIP1 in AQP2 regulation in a generally-accepted physiologi-

cal principal cell model. Despite the earlier detection of NDFIP1 and NDFIP2 mRNA in

mpkCCD cells [17] and the proof that the used NDFIP2 siRNA effectively and specifically

knocked down NDFIP2 mRNA, the absence of an effect of NDFIP2 siRNA knockdown on

AQP2 stability could be explained by an absence or low level of expression of NDFIP2 in

mpkCCD cells. Our segment mRNA profiling and immunohistochemistry are suggestive of a

role of NDFIP1, rather than of NDFIP2, in regulating AQP2 in principal cells. Immunohis-

tochemistry revealed clear NDFIP1, but not NDFIP2, staining in principal cells of the entire

collecting duct (Fig 5B). The observed ‘cytosolic’ localization of NDFIP1, rather than plasma

membrane or nuclear localization, is consistent with its reported main localization in the trans

Golgi Network [16, 20]. Moreover and consistent with our mRNA profiling, NDFIP1 staining

was observed in proximal tubules and absent in mTAL and cTAL. Although protein abun-

dance does not necessarily reflect mRNA expression, NDFIP1 staining was not observed in the

DCT and CNT, which have relatively high NDFIP1 mRNA expression levels. Our NDFIP2

immunostaining was only partially consistent with our mRNA profiling, as our antibodies

only stained the proximal tubules. As these segments show the relative highest mRNA expres-

sion of NDFIP2 (Fig 5A), our NDFIP2 antibodies may only stain the segments with the highest

expression. The presence of NDIP2 in other segments is supported by data of Konstas et al.,

whose antibodies detected abundant NDFIP2 in DCT, CNT, CCD, OMCD and IMCD [13].

Furthermore, the expression of NDFIP2 in these segments, which also express its interacting

partner ENaC, is consistent with the identification that a single nucleotide polymorphism in

NDFIP2 correlates with hypertension [21]. The staining of Konstas et al. is in line with our

mRNA profiling, except that they did not detect NDFIP2 in proximal tubules, which show the

highest NDFIP2 expression in our mRNA profiling. While omission of our primary antibodies

did not reveal any immunohistochemical staining, our NDFIP antibodies were unable to
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detect their respective NDFIP proteins by immunoblotting and, therefore, the segment-spe-

cific renal localization of NDFIP1/2 awaits development of improved NDFIP1/2 antibodies.

Based on our mRNA profiling and data of others, NEDD4 and NEDD4L may be involved

in NDFIP-mediated ubiquitination of AQP2 in vivo, as both are expressed in renal principal

cells [22, 23]. NEDD4L has been demonstrated to be the critical regulator of the principal cell

epithelial sodium channel ENaC and blood pressure [24, 25]. Moreover, NEDD4, but not

NEDD4L, was found in AQP2-containing vesicles isolated from rat inner medulla’s, and, con-

sistent with a role in AQP2 ubiquitination and degradation, its expression was increased with

a 6 hrs withdrawal of dDAVP [6].

Possible roles of NDFIP1/2 in targeting AQP2 for degradation

Earlier, we have shown that K63-linked ‘mono’-ubiquitination of AQP2 is needed for an

enhanced internalization of AQP2 from the plasma membrane and its targeting for lysosomal

degradation [26]. Considering the role of NEDD4/4L in the regulation of the plasma mem-

brane expression of the epithelial sodium channel ENaC, which is also expressed in principal

cells [27], it is tempting to assume that NEDD4/4L and NDFIP1/2 ubiquitinate AQP2 and

thereby directly regulate the plasma membrane abundance of AQP2. This, however, may not

be necessarily the case. It has been shown that in the endocytic sorting pathway, monoubiquiti-

nated cargo proteins are clustered by the endosomal sorting complexes required for transport

(ESCRT) and delivered to vesicles that invaginate into the lumen of multivesicular bodies

(MVBs), eventually resulting in lysosomal degradation [28, 29]. Non- or deubiquitinated pro-

teins might exit this pathway in an early stage or will remain in the MVB limiting membrane,

from where they may recycle. Moreover, it becomes more evident that membrane proteins can

targeted for degradation following their ubiquitination at intracellular organelles. In non-acti-

vated dendritic cells, for example, peptide-loaded Major Histocompatibility Complex (MHC)

II is ubiquitinated at endosomes and consequently sorted by the ESCRT machinery to intra-

luminal vesicles of multivesicular bodies, ultimately leading to its lysosomal degradation [30].

More specifically and consistent with the ‘intracellular’ localization of at least NDFIP1 in prin-

cipal cells (Fig 5B), NDFIP1 and NDFIP2 have mainly been localized to the Golgi apparatus,

late endosomes and MVBs, and have been shown to regulate the plasma membrane expression

of the divalent ion metal transporter DMT1 by ubiquitinating DMT1 at the Golgi followed by

lysosomal targeting [16, 20, 31–33]. As such, it remains to be established whether ubiquitina-

tion of AQP2 and its targeted degradation by NDFIP1/2-NEDD4/4L interaction occurs at the

plasma membrane or an intracellular organelle. Moreover, as NEDD4-mediated ubiquitina-

tion has been shown to also affect transcription of genes [34], we cannot exclude that NDFIP1/

2-NEDD4/4L may also have affected (endogenous) AQP2 gene transcription in mpkCCD.

This is less likely for our transfected HEK293 cell experiments, as there AQP2 transcription is

regulated by a standard cytomegalovirus promoter.

In conclusion, we demonstrated here that the E3-ligases NEDD4 and NEDD4L can regulate

AQP2 ubiquitination and degradation, but only when they are recruited to AQP2 via adaptor

proteins NDFIP1 or NDFIP2. As NDFIP1 and NDFIP2 bind many NEDD4 family of HECT

domain E3 ligases, which are implicated in a wide variety of cellular processes, such as differ-

entiation (ITCH) and signalling (SMURF1/2 and ITCH) [32], NDFIP1/2 interacting with

AQP2 may attenuate AQP2 expression and abundance at many levels, depending on the E3

ligase interacting with NDFIP1/2. Moreover, our data may open a new view on the differential

regulation of water and sodium reabsorption in collecting ducts, since our data suggests that,

besides ENaC, also AQP2 may be regulated by NEDD4L in principal cells. The binding of

NDFIP1/2 to NEDD4L, which can be modulated by phosphorylation upon hormonal
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stimulation, could determine the availability of NEDD4L to either regulate sodium transport

via ENaC or water transport via AQP2.

Methods

Membrane yeast two- hybrid (MYTH) assay

Full-length human AQP2 and kidney cDNA library were used in membrane yeast two hybrid

assays as described [35]. The assay and construct generation was performed as described [35].

Template cDNA of human AQP2 was amplified by PCR [36]. Subsequently the cDNA was

digested with Xbal and BspH1, and ligated in the Xbal and Ncol sites of pTMBV, resulting in a

C-terminal Cub-tagged AQP2 construct. The triple S. cerevisiae reporter strain (HIS3/ADE2/

LacZ) NMY51 (Dualsystems Biotech, Schlieren, Switzerland) was transformed with pTMBV-

hAQP2-Cub. Proper localization in the yeast’s plasma membrane was confirmed by expression

of pTMBV-hAQP2-Cub with YFP cloned in-frame to the N-terminal end of hAQP2. For this,

the YFPcDNA was amplified from the pCYT-L3 plasmid [37] by PCR (Fwd5’ ctaagaggtggtatg-

cacagatcagcttgcggccgcagtaaaggagaagaacttttcactg 3’, Rev 5’ gatcaaacacctcttgttgcctggccgttaacgctt

tcatgcggccgcctttgtatagttc 3’). pTMBV-hAQP2-Cub was digested with NotI. Both the PCR pro-

duct and the digested bait plasmid were co-transformed into the NMY51 strain and allowed

to homologously recombine to generate the hAQP2-Cub-YFP construct. Plasma membrane

expression of AQP2-YFP was confirmed by fluorescence microscopy using a Leica DMI 6000

B Inverted Confocal Microscope with YFP and differential interference contrast (DIC) filter

sets (S1A Fig). For image acquisition and processing, the Volocity software package was used

(PerkinElmer).

The absence of self-activation was assessed by transformation of the bait strains with inter-

acting (NubI, positive control) or non-interacting (NubG, negative control) control proteins,

being the membrane proteins oligosaccharyltransferase 1 (OST1) and uracil permease-4

(FUR4), which localize to the endoplasmatic reticulum and plasma membrane, respectively. A

bait must grow on selective medium in the presence of the positive control, but not in the pres-

ence of the negative control, to be suitable for MYTH. The pTMBV-hAQP2-Cub fulfils these

criteria (S1B Fig). For screening, a NubG-tagged human kidney cDNA library (Dualsystems

Biotech, Schlieren, Switzerland) was transformed in the bait yeast strain and cells were grown

on transformation selective media plates (SD-WL, lacking tryptophan [W] and leucine [L])

and interaction selective media plates (SD-WLAH, lacking tryptophan, leucine, adenine and

histidine) containing X-Gal. Of robustly growing blue colonies, DNA was isolated and seq-

uenced. From these clones, genuine interaction was confirmed by back transformation with

the original pTMBV-hAQP2-Cub construct, or, as a negative control, the sequence of the

transmembrane domain of CD4 coupled to Cub (referred to as the ‘artificial bait’).

Cell culture and transfection

HEK293 cells were grown in DMEM (Lonza, Verviers, Belgium) supplemented with 5% FCS, 2

mM glutamine and non-essential amino acids (PAA Laboratories, Linz, Austria). For transfection,

cells were seeded at 1.5�106 cells/well in 6-well culture plates (Corning Costar, Cambridge, USA)

and allowed to attach for 4 hours prior to transfection. Transient transfection was performed with

2 μg DNA for 1.5�106 cells and 12 μl PEI (Polysciences, Warrington, PA, USA) as transfection

reagent. Before harvesting after 48 hours, the transfected cells were treated with 10 nM TPA

(Sigma, St. Louis, MO, USA) for 15 min to induce AQP2 ubiquitination as described [4].

MpkCCD cells (clone 11) were cultured as described [38]. Cells were seeded with a density

of 1.5�105 cells/cm2 on 24-well (0.33 cm2) semi-permeable filters (Costar Corning Transwell1,

0.4 μm pore size) and grown for 4 days. For the last 72 hours, 1 nM dDAVP (Sigma, St. Louis,
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MO, USA) was added to the medium at the basolateral side to stimulate expression of endoge-

nous AQP2.

For (transient) siRNA knockdown in mpkCCD cells, siGENOME SMARTpool (Thermo

Fisher Scientific, Lafayette, CO, USA) siRNAs were obtained against mouse NDFIP1

(NM_022996), NDFIP2 (NM_029561), NEDD4 (NM_010890), NEDD4L (NM_001114386)

and a scrambled non-targeting siRNA as a control (for siRNA sequences, see S2 Table).

0.5�105 mpkCCD cells were seeded per 24 well filters and transfected with 20 pmol siRNA,

combined with 1 μl Metafectene Pro (Biontex, Martinsried, Germany) at day 1. After 4 days,

cells were harvested and prepared for immunoblotting.

Human AQP2 was expressed from a pCB6-dBamHI-AQP2 construct as described [39].

psDeasy-human-NEDD4 and -mouse-NEDD4L (gift from Prof. Staub, Switzerland) are

described [40]. For expression in mammalian cells, hNEDD4 and mNEDD4L cDNAs were cut

from the psDeasy constructs with XhoI/MscI and EcoRI/SacII, respectively, and cloned into

pLV-CMV digested with SmaI, XhoI/NheI and EcoRI/SacII, respectively. PcDNA3.1 expression

constructs encoding wildtype (wt) mouse NDFIP1, NDFIP2 or their PY-motif mutants are as

described [14] and were provided by Prof. Pelham (UK).

Reverse transcription-quantitative PCR (RT-qPCR)

Total RNA from siRNA-transfected mpkCCD cells was isolated using TRIzol1 (Gibco Life

Technologies, Rockville, MD, USA) and 1.5 μg of RNA was reverse transcribed with an Molo-

ney murine leukemia virus (M-MLV) reverse transcriptase kit (Promega, Madison, WI, USA),

both according to the suppliers’ protocol. Following a 10-fold dilution, mRNA expression lev-

els of NDFIP1 and NDFIP2 were determined by RT-qPCR using SYBR-green (Applied Biosys-

tems, Foster City, CA, USA) and were normalized to the housekeeping gene GAPDH. Primer

sequences were as listed in S3 Table.

Immunoprecipitation and co-immunoprecipitation

For AQP2 immunoprecipitation, HEK293 cells of one 6-well, transiently-transfected for 48

hours, were lysed in 500 μl lysis buffer (125 mM NaCl, 25 mM HEPES, 1% Triton, pH 7.5),

supplemented with the following proteinase, phosphatase and deubiquitination inhibitors: 20

mM N-ethylmaleimide, 10 mM NaF, 1 mM PMSF, 0.5 mM Na3VO4 (all Sigma, St. Louis, MO,

USA), and 10 μg/ml aprotinin, 10 μg/ml leupeptin, 2 μg/ml pepstatin (all MP Biomedicals Ill-

kirch, France). For co-immunoprecipitation experiments, cells were lysed in 500 μl co-IP lysis

buffer (100 mM NaCl, 25 mM Tris-HCl, 1 mM EDTA, 1 mM MgCl2, 1 mM CaCl2, 0.3%

NP40, pH 7.5) supplemented with the inhibitors above.

Before immunoprecipitation, cell debris was removed by centrifugation at 16100 g for 10

min. 25 μl Protein A/G-Agarose beads (Santa Cruz Biotechnology, Santa Cruz, CA, USA) were

washed three times in the appropriate lysis buffer followed by incubation with 10 μl rabbit-

anti-AQP2 antibody directed against the pre-C tail [41] for 4 hours at room temperature and

washed again three times with inhibitor-supplemented lysis buffer. Lysate of one 6-well was

added to the beads and incubated overnight at 4˚C, followed by three washing steps with lysis

buffer. Immunoprecipitated protein was eluted from beads in 60 μl inhibitor-supplemented

laemmli buffer with 100 mM DTT (MP Biomedicals, Illkirch, France) by incubation at 37˚ C

for 30 min after which samples were subjected to immunoblot analyses.

Analysis of mRNA expression along the mouse nephron

The different nephron segments were dissected from collagenase-treated kidneys of male

C57Bl6/J mice as previously described [42]. Total RNAs were extracted using RNeasy micro
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kit (Qiagen, Hilden, Germany) from pools of ~50 nephron segments of which the total length

was determined by image analysis (Visilog, Noesis, France). RNAs were reverse transcribed

using a first strand cDNA synthesis kit for RT-PCR (Roche Diagnostics), according to the

manufacturers’ protocols. Real-time PCR was performed using a cDNA quantity correspond-

ing to 0.1 mm of nephron segments with LightCycler 480 SYBR Green I Master qPCR kit

(Roche Diagnostics) according to the manufacturer’s protocol. Specific primers (S3 Table)

were designed using ProbeDesign (Roche Diagnostics). In each experiment, a standardization

curve was made using serial dilutions of a standard cDNA stock solution made from whole

kidney RNA. The amount of PCR product was calculated as percent of the standard DNA and

gene expression was normalized as a function of that of the housekeeping gene Rpl26. Results

are means ± SE from 6 mice.

Immunoblotting and immunohistochemistry

Immunoblotting and immunohistochemistry was done as described [4, 43]. For immunoblot-

ting, rabbit anti-AQP2 [44], mouse-anti-myc and anti-ubiquitin (Sigma, St. Louis, MO, USA),

rabbit anti-NEDD4 [22], rabbit anti-NEDD4L [45] and rabbit-anti-NDFIP1 (Abcam, Cam-

bridge, UK)) antibodies were used. For immunohistochemistry, kidneys from 12-weeks old

C157BL/6 mice were used and stained with rabbit anti-NDFIP1 or NDFIP2 (Abcam, Cam-

bridge, UK) together with guinea-pig anti-AQP2 (1:300) [44], sheep anti-Tamm-Horsfall Pro-

tein (Biotrend, Cologne, Germany), mouse-anti-Calbindin 28K (Sigma) or mouse anti-AQP1

[46] antibodies. Immunoblots were densitrometrically analysed using Bio-Rad quantification

equipment (Bio-Rad 690c Densitometer; Chemidoc XRS) and software (QuantityOne; Bio-

Rad). Signals were normalized to loading control (Coomassie staining).

Study approval

All animal studies were approved by the Animal Ethical Committee of the Radboud University

Medical Center.

Supporting information

S1 Fig. Localization and self-dependency test of bait pTMBV-hAQP2 in yeast cells. (A) The

membrane localization of the bait used in the MYTH-assay (pTMBV-hAQP2) was confirmed

by inclusion of YFP in the AQP2 construct and fluorescence microscopy. Arrows indicated

membrane localization in pTMBV-YFP-hAQP2 transformed yeast cells. No fluorescence was

detected in yeast cells transformed with empty pTMBV. (B) The level of self-activation was

assessed by transformation of the bait strains with an interacting (NubI) or non-interacting

(NubG) control, namely the endoplasmatic reticulum membrane protein oligosaccharyltrans-

ferase (OST1) and the uracil permease FUR4, localized to the plasma membrane. No self-acti-

vation was detected, indicated by the lack of colony growth with OST1-NubG or FUR4-NubG

on interaction selective media.

(TIFF)

S2 Fig. Expression of NDFIP1 and NDFIP2 in mouse kidney. Cryosections of C57/BL6

mouse kidney were stained for NDFIP1 and NDFIP2 and co-stained with marker proteins for

different kidney sections. (A) NDFIP1 was detected in proximal tubules (co-staining with

AQP1), and the distal convoluted tubule (co-staining with Calbindin 28K). (B) NDFIP2 was

only detected in the proximal tubules where it showed co-staining with AQP1. Scale bars rep-

resent 25 μm.

(PDF)
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