J. Robben, N. Knoers, and P. Deen, Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus, AJP: Renal Physiology, vol.291, issue.2, 2006.
DOI : 10.1152/ajprenal.00491.2005

M. Boone and P. Deen, Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption, Pfl??gers Archiv - European Journal of Physiology, vol.278, issue.6, pp.1005-1029, 2008.
DOI : 10.1152/ajpcell.00064.2003

H. Moeller, E. Olesen, and R. Fenton, Regulation of the water channel aquaporin-2 by posttranslational modification, AJP: Renal Physiology, vol.300, issue.5, pp.1062-73, 2011.
DOI : 10.1152/ajprenal.00721.2010

E. Kamsteeg, G. Hendriks, M. Boone, I. Konings, V. Oorschot et al., Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel, Proceedings of the National Academy of Sciences, vol.113, issue.1, pp.18344-18353, 2006.
DOI : 10.1083/jcb.113.1.123

K. Harvey, L. Shearwin-whyatt, A. Fotia, R. Parton, and S. Kumar, N4WBP5, a potential target for ubiquitination by the Nedd4 family of proteins, is a novel Golgi-associated protein. The Journal of biological chemistry, pp.9307-9324, 2002.

L. Cheval, F. Pierrat, R. Rajerison, D. Piquemal, and A. Doucet, Of Mice and Men: Divergence of Gene Expression Patterns in Kidney, PLoS ONE, vol.7, issue.10, pp.46876-3463552, 2012.
DOI : 10.1371/journal.pone.0046876.s006

T. Mund and H. Pelham, Regulation of PTEN/Akt and MAP kinase signaling pathways by the ubiquitin ligase activators Ndfip1 and Ndfip2, Proceedings of the National Academy of Sciences, vol.276, issue.37, pp.11429-11463, 2010.
DOI : 10.1074/jbc.M102219200

Y. Kang, J. Guo, T. Yang, W. Li, and S. Zhang, Regulation of the human ether-a-go-go-related gene (hERG) potassium channel by Nedd4 family interacting proteins (Ndfips), Biochemical Journal, vol.472, issue.1, pp.71-82, 2015.
DOI : 10.1042/BJ20141282

H. Jin, K. Hong, J. Lim, S. Hwang, S. Lee et al., Genetic variations in the sodium balanceregulating genes ENaC, NEDD4L, NDFIP2 and USP2 influence blood pressure and hypertension. Kidney & blood pressure research, pp.15-23, 2010.

O. Staub, H. Yeger, P. Plant, H. Kim, S. Ernst et al., Immunolocalization of the ubiquitin-protein ligase Nedd4 in tissues expressing the epithelial Na+ channel (ENaC), Am J Physiol, vol.272, issue.6, pp.1871-80, 1997.

D. Loffing-cueni, S. Flores, D. Sauter, D. Daidie, N. Siegrist et al., Dietary Sodium Intake Regulates the Ubiquitin-Protein Ligase Nedd4-2 in the Renal Collecting System, Journal of the American Society of Nephrology, vol.17, issue.5, pp.1264-7431, 2006.
DOI : 10.1681/ASN.2005060659

D. Rotin and O. Staub, Nedd4-2 and the regulation of epithelial sodium transport. Frontiers in physiology, pp.212-3380336, 2012.

C. Ronzaud, D. Loffing-cueni, P. Hausel, A. Debonneville, S. Malsure et al., Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. The Journal of clinical investigation, pp.657-65, 2013.

E. Kamsteeg, G. Hendriks, M. Boone, I. Konings, V. Oorschot et al., Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel, Proceedings of the National Academy of Sciences, vol.113, issue.1, pp.18344-18353, 2006.
DOI : 10.1083/jcb.113.1.123

D. Pearce, R. Soundararajan, C. Trimpert, O. Kashlan, P. Deen et al., Collecting Duct Principal Cell Transport Processes and Their Regulation, Clinical Journal of the American Society of Nephrology, vol.10, issue.1, pp.135-181, 2015.
DOI : 10.2215/CJN.05760513

D. Katzmann, M. Babst, and S. Emr, Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I, Cell, vol.106, issue.2, pp.145-55, 2001.
DOI : 10.1016/S0092-8674(01)00434-2

M. Glickman and A. Ciechanover, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological reviews, pp.373-428, 2002.

T. Ten-broeke, R. Wubbolts, and W. Stoorvogel, MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harbor perspectives in biology, p.3839614, 2013.

N. Foot, Y. Leong, L. Dorstyn, H. Dalton, K. Ho et al., Ndfip1-deficient mice have impaired DMT1 regulation and iron homeostasis, Blood, vol.117, issue.2, pp.638-684, 2011.
DOI : 10.1182/blood-2010-07-295287

T. Mund and H. Pelham, Control of the activity of WW-HECT domain E3 ubiquitin ligases by NDFIP proteins, EMBO reports, vol.446, issue.5, pp.501-508, 2009.
DOI : 10.1038/23293

L. Shearwin-whyatt, D. Brown, F. Wylie, J. Stow, and S. Kumar, N4WBP5A (Ndfip2), a Nedd4-interacting protein, localizes to multivesicular bodies and the Golgi, and has a potential role in protein trafficking, Journal of Cell Science, vol.117, issue.16, pp.3679-89, 2004.
DOI : 10.1242/jcs.01212

M. Hamilton, I. Tcherepanova, J. Huibregtse, and D. Mcdonnell, Nuclear Import/Export of hRPF1/Nedd4 Regulates the Ubiquitin- dependent Degradation of Its Nuclear Substrates, Journal of Biological Chemistry, vol.70, issue.28, pp.26324-26355, 2001.
DOI : 10.1038/35023507

J. Snider, S. Kittanakom, D. Damjanovic, J. Curak, V. Wong et al., Detecting interactions with membrane proteins using a membrane two-hybrid assay in yeast, Nature Protocols, vol.25, issue.7, pp.1281-93, 2010.
DOI : 10.1128/MCB.2.8.977

P. Deen, M. Verdijk, N. Knoers, B. Wieringa, L. Monnens et al., Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine, Science, vol.264, issue.5155, pp.92-97, 1994.
DOI : 10.1126/science.8140421

C. Paumi, J. Menendez, A. A. Engels, K. Iyer, K. Thaminy et al., Mapping Protein-Protein Interactions for the Yeast ABC Transporter Ycf1p by Integrated Split-Ubiquitin Membrane Yeast Two-Hybrid Analysis, Molecular Cell, vol.26, issue.1, pp.15-25, 2007.
DOI : 10.1016/j.molcel.2007.03.011

M. Boone, M. Kortenoeven, J. Robben, and P. Deen, Effect of the cGMP pathway on AQP2 expression and translocation: potential implications for nephrogenic diabetes insipidus, Nephrology Dialysis Transplantation, vol.25, issue.1, pp.48-54, 2010.
DOI : 10.1093/ndt/gfp409

D. Mattia, F. Savelkoul, P. Bichet, D. Kamsteeg, E. Konings et al., A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L, Human Molecular Genetics, vol.13, issue.24, pp.3045-56, 2004.
DOI : 10.1093/hmg/ddh339

E. Kamynina and O. Staub, transport: Fig. 1., American Journal of Physiology - Renal Physiology, vol.283, issue.3, pp.377-87, 2002.
DOI : 10.1152/ajprenal.00143.2002

C. Trimpert, D. Van-den-berg, R. Fenton, E. Klussmann, and P. Deen, Vasopressin increases S261 phosphorylation in AQP2-P262L, a mutant in recessive nephrogenic diabetes insipidus. Nephrology, dialysis , transplantation: official publication of the European Dialysis and Transplant Association?European Renal Association. 2012, p.22778181, 2012.

L. Cheval, F. Pierrat, C. Dossat, M. Genete, M. Imbert-teboul et al., Atlas of gene expression in the mouse kidney: new features of glomerular parietal cells, Physiological Genomics, vol.43, issue.3, pp.161-73, 2011.
DOI : 10.1152/physiolgenomics.00093.2010

M. Boone, M. Kortenoeven, J. Robben, G. Tamma, and P. Deen, Counteracting vasopressin-mediated water reabsorption by ATP, dopamine, and phorbol esters: mechanisms of action, AJP: Renal Physiology, vol.300, issue.3, pp.761-71, 2011.
DOI : 10.1152/ajprenal.00247.2010

P. Deen, H. Croes, R. Van-aubel, L. Ginsel, and C. Van-os, Water channels encoded by mutant aquaporin-2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing., Journal of Clinical Investigation, vol.95, issue.5, pp.2291-2297, 1995.
DOI : 10.1172/JCI117920