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Plastic yield criterion and hardening
of porous single crystals

J. Paux, R. Brenner∗, D. Kondo
Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190,

Institut Jean le Rond d’Alembert, F-75005, Paris, France

Abstract

This article presents an assessment of the yield criterion for porous plastic single crystal, proposed by
Paux et al. (2015), for face-centred cubic and hexagonal close-packed crystalline structures. Comparisons
with reference FFT full-field computations on single voided cubic unit cells, presenting different crystal
orientations, show an overall agreement for the different plastic anisotropies considered at low and high
triaxiality. An extension of the criterion to hardenable crystals, which takes into account the spatial
heterogeneity of the approximate plastic strain field, is further proposed and compared with FE results
from the literature for body-centred cubic crystals.

Keywords: plasticity, single crystal, porosity, micromechanics

1. Introduction

The porosity evolution during the plastic deformation of metallic materials is known to play a
dominating role in the fracture process. Voids are often initially present in the material due to the
manufacturing process (infinitesimal porosity) or they can be created during the deformation due to
the decohesion between precipitates and matrix phase. In any case, the description of void growth
process requires to develop constitutive laws for the plastic response of porous crystalline materials
with a special attention to the plastic anisotropy.

Although the importance of the crystalline anisotropy to describe the local stress field in the vicinity
of intragranular voids has been clearly evidenced (Crépin et al., 1996; Gan et al., 2006; Schacht et al.,
2003; Yerra et al., 2010; Srivastava and Needleman, 2013), relatively few works on the constitutive
response of 3D plastic single crystals containing voids have been undertaken until recently. Based
on the variational homogenization method of de Botton and Ponte Castañeda (1995) and guided by
limit-analysis results, Han et al. (2013) have first proposed a yield function for 3D porous FCC single
crystals containing spherical voids. Afterwards, we have proposed a model based on limit analysis which
makes use of a regularized form of the Schmid law. It shares similarities with Han’s model despite being
derived with a different approach (Paux et al., 2015). Besides, by using on a “modified” variational
method proposed by Danas and Aravas (2012), Mbiakop et al. (2015a) have developed a model for
viscoplastic single crystals with ellipsoidal voids. Interestingly, the authors have also shown that these
three models deliver very close estimates for rate-independent porous plasticity in the case of low plastic
anisotropy (namely, face-centered cubic crystals) and spherical voids. Concerning the microstructural
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evolutions (void growth and strain hardening), it is worth mentioning the elastoviscoplastic model at
finite strains proposed by Ling et al. (2016) based on the yield criterion of Han et al. (2013).

Following the study of Paux et al. (2015), the objective of the present article is threefold: firstly, the
criterion is somewhat generalized to consider crystals with arbitrary symmetry and plastic anisotropy;
secondly, the proposed criterion is assessed by comparison with several full-field computations performed
on periodic microstructures by using a FFT-based numerical scheme (i.e. unit-cell computations) and,
lastly, the extension of the proposed criterion to hardenable crystals, based on an approach of Leblond
et al. (1995) for isotropic materials, is studied.

2. Yield criterion for the porous single crystal

2.1. Plastic yield criterion: Schmid law
We consider dislocation mediated plasticity of crystalline materials: plastic deformation occurs

by dislocation glide on a set of K crystalline slip systems which depends on the specific crystalline
structure. A slip system k is characterized by the unit normal to the slip plane nk and the unit slip
direction mk (mk.nk = 0) which define the Schmid tensor µk

µk =
1

2
(nk ⊗mk + mk ⊗ nk). (2.1)

According to the Schmid law, a slip system k can be activated if the absolute value of the resolved
shear stress τk = σ : µk reaches a critical value τ ck . Because of this, the yield function of the single
crystal is defined by a multi-criterion which reads

f(σ) = sup
k=1,...,K

|σ : µk| − τ ck = sup
k=1,...,K

fk(σ) (2.2)

As each criterion fk(σ) = 0 defines a plane in the space of deviatoric stress, the (pressure-insensitive)
Schmid yield surface is a polyhedral surface whose shape depends on the geometry of the slip systems
(Bishop and Hill, 1951; Kocks et al., 1983; Tomé and Kocks, 1985). The Schmid plastic domain is thus
described as the convex hull of the polyhedron vertices.

For practical purpose, it can be advantageous to approximate this multi-criterion yield function by
a single yield function as proposed, among others, by Arminjon (1991) and Gambin (1992),

f (n)
reg (σ) =

(
K∑
k=1

( |σ : µk|
τ ck

)n) 1
n

− 1 (2.3)

where n is an exponent ≥ 2. As n → +∞, the regularized function f (n)
reg tends to the Schmid yield

function f .

2.2. Approximate yield criterion using regularized Schmid law
An approximate yield criterion for porous crystals, previously derived in Paux et al. (2015), is briefly

recalled and somewhat generalized with a view to extending it to hardenable materials (see Section 4).
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2.2.1. Macroscopic yield surface of a hollow sphere
We aim to derive an approximation of the yield surface of rigid-perfectly plastic single crystals

containing spherical voids by taking advantage of the regularized Schmid yield function (2.3). To this
end, it is proposed to follow a kinematical limit-analysis approach for a single crystal sphere of radius
b containing a confocal spherical void of radius a. The porosity p is defined as the ratio of the void
volume ω over the sphere volume Ω

p =
ω

Ω
=
a3

b3
. (2.4)

It is assumed that the sphere is subjected on its outer boundary ∂Ω to homogeneous strain rate
conditions

v = D.x, ∀x ∈ ∂Ω, (2.5)

with v the velocity field and D the macroscopic strain rate tensor. Besides, the single crystal presents
a convex plastic strength domain C(n) defined by

C(n) = {σ such that f (n)
reg (σ) ≤ 0}. (2.6)

According to the principle of maximum plastic work (Hill, 1950), the local plastic dissipation π reads

π(d(x)) =

 0 if x ∈ ω,
sup

σ∗∈C(n)

σ∗ : d if x ∈ Ω− ω. (2.7)

with d the strain rate field (symmetric part of the gradient of the velocity field v). In mathematics, π
is called the support function of the convex domain C(n). For the porous material, the effective plastic
dissipation function reads

Π(D) = inf
v∈K(D)

〈π〉Ω = (1− p) inf
v∈K(D)

〈π〉Ω−ω . (2.8)

The notation 〈.〉V indicates a volume average over V and K is the set of kinematically admissible
velocity fields

K(D) = {v such that v(x) = D.x, ∀x ∈ ∂Ω, and tr(d(x)) = 0,∀x ∈ Ω− ω}. (2.9)

The effective strength domain C̃ of the porous single crystal is defined as

C̃ = {Σ such that Σ : D ≤ Π(D), ∀D} (2.10)

with Σ the macroscopic stress tensor. The corresponding macroscopic yield surface, defined as the
boundary of the convex strength domain C̃, is thus given by

Σ =
∂Π

∂D
(D). (2.11)

Its derivation thus requires the determination of the support function π(d) and to minimize its
average over the sphere volume with respect to the velocity field. In general, the exact solution of the
minimization problem is out of reach and a kinematically admissible velocity test field vt is used. Since

Π(D) = inf
v∈K(D)

〈π〉Ω ≤ 〈π(dt)〉Ω , dt = sym(∇vt), (2.12)
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for any velocity test field vt ∈ K(D), relation (2.11) delivers an upper-bound for the yield surface. In
the present study, we have chosen to use the test field initially proposed by Rice and Tracey (1969)
which is the sum of an homogeneous deviatoric field and a field corresponding to the isotropic expansion
of the hollow sphere. The velocity field, at point x = r er, then reads

vt(D) = D′.x +
b3Dm

r2
er (2.13)

with D′ the deviatoric part of the macroscopic strain rate tensor and Dm = (1/3)tr (D) its hydrostatic
part (D = D′ +Dmi). The corresponding strain rate field is

dt(D) = D′ +
b3Dm

r3
dm (2.14)

with dm = −2er ⊗ er + eϕ ⊗ eϕ + eθ ⊗ eθ in spherical coordinates.

2.2.2. Approximate yield criterion
By using a quadratic regularized Schmid law (relation (2.3) with n = 2), the yield function can be

put in the following form

f (2)
reg(σ) =

√
σ : M : σ − 1 with M =

K∑
k=1

µk ⊗ µk
(τ ck)2

. (2.15)

For crystals with at least orthotropic symmetry, the quadratic regularized criterion (f (2)
reg(σ) = 0)

corresponds to the Hill plastic criterion (Hill, 1948). Consequently, direct use can be made of previous
results from the limit-analysis of a hollow sphere made of an anisotropic Hill matrix (Benzerga and
Besson, 2001; Monchiet et al., 2008). The following quadratic criterion is thus obtained for single
crystals containing spherical voids

Σ : M : Σ + 2 p cosh (κΣm)− 1− p2 = 0 (2.16)

where κ is an anisotropy factor depending on M1. As pointed out in Paux et al. (2015), in the case of
face-centred cubic (FCC) crystals, this criterion leads to poor estimates for an arbitrary orientation of
the crystal. A phenomenological improvement of this criterion has been proposed based on two specific
loadings:
• Case of a deviatoric macroscopic strain rate
In the special case where D = D′, the computation of the overall plastic dissipation Π(D) reads

Π(D) =
1

Ω

∫
Ω−ω

sup
σ∗∈C

σ∗ : D′ dV (2.17)

with C the space of plastically admissible stresses according to the Schmid law (i.e. C = C(+∞)). As
mentioned above, C is a polyhedron and as such can be defined as the convex envelope of its vertices.
The set of the vertices of C is noted A. It depends on the geometry of the slip systems as well as

1The definitions of M and κ have been slightly modified here with respect to Paux et al. (2015) to account for slip
systems with different CRSS. In the case of crystals with uniform CRSS (τ ck = τ c), there is a factor τ c for κ and (τ c)2 for
M between the two definitions.
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their CRSS. Owing to the homogeneity of the strain rate field (D′ is constant), relation (2.17) may be
written as

Π(D) =
Ω− ω

Ω
max
σ∗∈A

σ∗ : D′ = (1− p) max
σ∗∈A

σ∗ : D′ (2.18)

and the macroscopic yield stress is given by

Σ =
∂Π

∂D
(D) = (1− p) argmaxσ∗∈A(σ∗ : D′) (2.19)

Since D′ is any deviatoric strain rate tensor, it follows that the macroscopic yield surface is the convex
hull of (1 − p)A = {(1 − p)σ, σ ∈ A}. Thereby, the plastic yield function of a porous crystal, for
deviatoric macroscopic stresses (Σm = 0), takes the form

F(Σ) = sup
k=1,...,K

|Σ : µk|
τ ck

− (1− p). (2.20)

Besides, it is noted that a regularized local plastic strength domain C(n) (2.6) leads to the following
macroscopic yield function

F (n)
reg (Σ) =

(
K∑
k=1

( |Σ : µk|
τ ck

)n) 1
n

− (1− p) (2.21)

which conspicuously coincides with F(Σ) as n→∞.
• Case of a hydrostatic macroscopic strain rate
In the special case where D = Dmi, the overall plastic dissipation reads

Π(D) =
b3|Dm|

Ω

∫
Ω−ω

1

r3
max
σ∗∈A

σ∗ : dm dV

=
3|Dm|

4π

∫ b

a

dr
r

∫ π

ϕ=0

∫ 2π

θ=0
max
σ∗∈A

σ∗ : dm sinϕ dϕ dθ︸ ︷︷ ︸
IΠ

= −IΠ|Dm| ln p
4π

(2.22)

The double integral IΠ is evaluated numerically by using Gauss-Legendre quadrature. For each angular
position (ϕ, θ), it involves the computation of the maximum value of σ∗ : dm on the finite set A
corresponding to the stress vertices of the polyhedral yield surface. The limit-analysis numerical
estimate of the macroscopic mean yield stress is thus

Σm =
1

3

∂Π

∂Dm
(D) = −IΠ ln p

12π
sgn(Dm) (2.23)

On the other hand, the form of the criterion (2.16) gives Σm = − ln p/κ so that the κ parameter reads
κ = 12π/IΠ.

Based on the results for purely deviatoric and hydrostatic loadings, the following criterion is proposed,
as a phenomenological extension of the quadratic criterion (2.16),

F(Σ) =

(
sup

k=1,...,K

|Σ : µk|
τ ck

)2

+ 2p cosh(κΣm)− 1− p2. (2.24)
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Its regularized form reads

F (n)
reg (Σ) =

(∑
k

( |Σ : µk|
τ ck

)n) 2
n

+ 2p cosh(κΣm)− 1− p2. (2.25)

In view of the assessment of this criterion, obtained for a hollow sphere, for materials with a periodic
microstructure (unit-cell computations), a fitting parameter q ≥ 1 is customarily introduced (Tvergaard,
1982). It introduces a so-called enhanced porosity qp. The regularized criterion is finally expressed as

F (n)
reg (Σ) =

(∑
k

( |Σ : µk|
τ ck

)n) 2
n

+ 2qp cosh(κΣm)− 1− (qp)2. (2.26)

It is pointed out that the evaluation of κ results from a numerical limit-analysis calculation on a
single crystal hollow sphere. It thus requires the knowledge of the set of vertices A of the polyhedral
yield surface which depends on the crystalline structure and on the ratios of the CRSS on the different
slip systems. An increase of the single crystal plastic anisotropy, which especially depends on the ratios
of the critical shear stresses, leads to an increase of the IΠ integral (i.e. decrease of the κ parameter;
see the reported values for specific crystalline structures in Section 3.2.1). As a consequence, the higher
the plastic anisotropy, the higher the yield strength under hydrostatic loading. Interestingly, it has
been recently reported that “highly anisotropic” porous crystal are incompressible (Mbiakop et al.,
2015a,b). More specifically, it can be proven that low-symmetry crystals lacking five independent slip
systems exhibit this property (Appendix A). This situation corresponds to an infinite plastic anisotropy
(i.e. opened yield surface in the deviatoric space). Our criterion is consistent, by construction, with
this result since in this case κ = 0 (i.e infinite yield strength under hydrostatic loading). It is worth
noting that, in the context of polycrystalline materials with intergranular porosity, Nervi and Idiart
(2015) have recently shown that the self-consistent scheme predicts that voided polycrystals made of
constitutive crystals with only three independent slip systems are still compressible.

3. Numerical assessment of the criterion

To evaluate the accuracy of the proposed criterion (2.26), full-field numerical computations have
been performed on single crystals containing a cubic array of spherical voids. This is the purpose of
the present section. It is emphasized that the yield surface of the porous single crystal is determined
numerically by considering a fixed microstructure (no porosity evolution). The yield stress is defined as
the stationary value of the macroscopic stress in the plastic regime. The microstructure being periodic,
we can classically consider a local elastoplastic problem on a unit-cell with periodic boundary conditions.
To solve this problem, use has been made of the FFT method (Moulinec and Suquet, 1998; Eyre and
Milton, 1999; Suquet et al., 2012; Monchiet and Bonnet, 2012; Moulinec and Silva, 2014) which is an
attractive alternative to the finite-element method. The numerical code has been built upon the one
developed by Brenner et al. (2009) and Belkhabbaz et al. (2011, 2015) for rate-independent crystalline
elastoplasticity.

3.1. Full-field unit-cell computations
3.1.1. Local problem

We consider a single crystal cubic volume V , with outer boundary ∂V , containing a spherical void.
The infinite medium is described by the periodical arrangement of this unit-cell. The local problem to
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solve on the unit-cell with prescribed macroscopic strain ε(t) = 〈ε(t)〉V , t ∈ [0; tf ], reads: find u(x, t)
and σ(x, t) such that

ε(x, t) =
1

2
(∇u(x, t) + ∇uT(x, t)), ∀(x, t) ∈ V × [0; tf ]

σ̇(x, t) = C(x) : (ε̇(x, t)− ε̇p(x, t)), divσ(x, t) = 0, ∀(x, t) ∈ V × [0; tf ]

u(x, t) = ε(t).x + u′(x, t), u′ periodic on ∂V, ∀t ∈ [0; tf ].

(3.1)

Besides, according to the principle of maximum plastic work, the plastic strain rate corresponding to
the Schmid criterion is given by

ε̇p =
K∑
k=1

γ̇k
∂fk
∂σ

=
K∑
k=1

γ̇k µk sgn(τk) with γ̇k ≥ 0, γ̇kfk(σ) = 0, ∀k ∈ [1;K]. (3.2)

The heterogeneous elastoplastic problem is solved incrementally by discretizing the time interval [0; tf ].
Suppose that the problem has been solved at time ti−1. The stress and strain fields at time ti, for
a prescribed overall strain increment ∆ε, are determined by using a FFT numerical scheme for a
composite material with a nonlinear local constitutive law of the form

σi(x) = F (εi(x),x) (3.3)

which is obtained by the time-integration of the differential constitutive relation. The principle of the
FFT-based numerical algorithm is not reminded here since a wide literature exists on this topic for
composites and polycrystalline materials (see, among others, Moulinec and Suquet, 1998; Lebensohn,
2001; Brenner et al., 2009; Suquet et al., 2012; Belkhabbaz et al., 2015, and references therein). Moreover,
for voided materials, the reader is more specifically referred to the works of Michel et al. (2001); Willot
and Pellegrini (2008); Brisard and Dormieux (2010); Vincent et al. (2014).

3.1.2. Stress update algorithm
The time-integration of the local (rate-independent) constitutive relation is as follows. The unit-cell

being discretized into N ×N ×N voxels, it is assumed that the voxel-wise stress and strain tensors at
time ti−1 (σi−1, εi−1) are known, as well as a guess for the field of total strain increment ∆ε = εi−εi−1.
The problem is then to compute the local stress field σi(εi) at each voxel of the unit-cell.

Case of perfect plasticity :
The critical resolved shear stresses τ ck (∀k = 1, . . . ,K) are constant. Let σe be the stress elastic guess,
that is σe = σi−1 + C : ∆ε. Two cases must be considered in practice:

• max
k=1,...,K

fk(σ
e) < 0

The behaviour is elastic and the solution is σ = σe and ∆εp = 0.

• max
k=1,...,K

fk(σ
e) > 0

The behaviour is elastoplastic. The stress σ and the plastic strain increment ∆εp are solutions of

f(σ) = max
k=1,...,K

fk(σ) = max
k=1,...,K

|µk : σ| − τ ck = 0,

σ = σe −C : ∆εp,

∆εp =

K∑
k=1

∆γk
∂fk
∂σ

(σ), ∆γk ≥ 0, ∆γkfk = 0.

(3.4)
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By introducing the function g(σ) such that

∆εp =
∂g

∂σ
(σ) = C−1 : (σe − σ), (3.5)

σ is equivalently solution of the optimization problem
min
σ
g(σ) with max

k=1,...,K
fk(σ) = 0,

g(σ) =
1

2
(σe − σ) : C−1 : (σe − σ).

(3.6)

The corresponding Lagrangian function reads

L(σ,∆γk) = g(σ)−
K∑
k=1

∆γkfk(σ). (3.7)

Optimality with respect to the plastic slip increments ∆γk ensures that the stress is plastically
admissible whereas the optimality with respect to the stress implies (generalized normality rule)

∆εp =
∂g

∂σ
(σ) =

K∑
k=1

∆γk
∂fk
∂σ

(σ). (3.8)

Since the plastic yield function defines a polyhedron in the (deviatoric) stress space, the op-
timization problem (3.6) can be solved numerically by using the gradient projection method
(Rosen, 1960). It consists in successive projections of the gradient of g onto hyperplanes defining
the Schmid criterion (linear constraints on σ for the optimization problem). At each step, the
algorithm provides a new direction to minimize g while remaining on the yield surface.

The plastic strain increment is uniquely defined by

∆εp = C−1 : (σe − σ) (3.9)

but the corresponding set of plastic slip increments (∆γk), which is not needed to update the
stress field in the case of perfect plasticity, is not unique in general.

3.2. Evaluation of the approximate yield criterion
3.2.1. Crystalline structures

To investigate different plastic anisotropies, we have considered face-centred cubic (FCC) and
hexagonal close-packed (HCP) crystalline structures. Many common metallic alloys present one of these
two dense crystalline structures: for instance, Cu, Al, stainless steels are FCC while Ti, Mg, Zn and Zr
alloys are HCP. The other widely present structure is body-centred cubic (BCC). However, it will not
be considered since it presents slip systems and a (low) plastic anisotropy similar to the ones of the
FCC structure. The plastic anisotropy of the single crystal depends on the set of slip systems and on
the ratios between the different critical shear stresses. FCC crystals present 12 octahedral slip systems
{111} < 110 >. Since there is a single family of crystallographically equivalent slip systems, the accuracy
of the criterion is independent of the value of the CRSS. In contradistinction, HCP crystals present
different slip system families and a more pronounced plastic anisotropy. The latter critically depends
on the CRSS ratios between the different families which vary from one metal to another. To a lower
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extent, the geometry of the slip system varies with the c/a ratio of the hexagonal lattice parameters
which, in general, slightly differ from the dense-packing ideal value (

√
8/3). For the HCP crystals,

three main slip systems families exist: prismatic slip {101̄0} < 12̄10 >, basal slip {0001} < 12̄10 > and
pyramidal slip {101̄1} < 2̄113 > (Groves and Kelly, 1963; Partridge, 1967; Yoo, 1981; Tomé and Kocks,
1985). HCP metals present either the prismatic or the basal slip as easy deformation mode. These
two cases are considered in the present study with on one hand Ti crystals and on the other hand Mg
crystals. The following CRSS ratios, respectively taken from Fundenberger et al. (1997) and Agnew
et al. (2006) have been used 

HCPTi :
τ cPyr.
τ cPr.

= 8,
τ cBas.
τ cPr.

= 5

HCPMg :
τ cPyr.
τ cBas.

= 6,
τ cPr.
τ cBas.

= 5.5

(3.10)

For each crystalline structure, the κ anisotropy parameter entering the criterion (2.25) has been
evaluated. It must be noted that the value obtained for the FCC crystal (κ = 0.49), slightly differs
from the one previously reported in Paux et al. (2015) (κ = 0.506) due to a numerical error in our
previous computation of IΠ. As the anisotropy of the yield surface increases (see the study of Tomé
and Kocks (1985) for the particular case of hexagonal crystals), the numerical estimate of IΠ (and thus
the mean yield stress Σm) increases since “hard” slip systems must be activated at certain points of
the sphere to accomodate the overall prescribed rate of volume change Ω̇/Ω = 3Dm. As a result, the
anisotropy parameter decreases when the plastic anisotropy increases (Table 1). Note that in the case
of a von Mises material (i.e. Gurson criterion), the κ̄ parameter is equal to 3/2.

FCC HCPMg HCPTi
κ̄ 0.49 0.14 0.13

Table 1: Values of the normalized anisotropy parameter κ̄ = κ min τ ck for different single crystal materials.

3.2.2. Unit-cell computations
To evaluate the proposed criterion, the elastoplastic response (without hardening) of single crystals

containing a cubic periodic distribution of spherical voids has been computed for different crystal
orientations. The simulations have been performed by using the FFT numerical scheme on a unit-cell
constituted of a single crystal matrix with a spherical void. The test is strain driven but the macroscopic
stress direction is imposed (see Moulinec and Suquet, 1998, Appendix B). In the unit-cell reference
frame, the considered macroscopic stress tensor reads

Σ = ΣI

 η1 0 0
0 η2 0
0 0 1

 . (3.11)

The stress triaxiality T thus reads

T =
Σm

Σeq
=

√
2

3

1 + η1 + η2√
(1− η1)2 + (1− η2)2 + (η1 − η2)2

(3.12)
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Figure 1: Unit-cell with 1% porosity (a) and FFT macroscopic response for a FCC crystal subjected to axisymmetric
stress state with η = 0.8 (T = 13/3) along [001] (b).

and the Lode parameter L, a measure of the third stress invariant, (see, for instance, Zhang et al., 2001)

L =
2η1 − 1− η2

1− η2
(3.13)

ranges from -1 to 1. L = −1 corresponds to triaxial tension, L = 0 to shear and L = 1 to triaxial
compression. For each loading case, the yield stress is defined as the stationary value of the macroscopic
stress ΣI (Figure 1). Preliminary calculations have been performed for FCC crystals with few specific
orientations by considering a discretization of the unit cell of 128× 128× 128 voxels. The FFT results
compared well with published finite-element results (Han et al., 2013) for a porosity ranging from 1 to
10%. Then, coarser grids have been used and no significant differences have been observed down to a
discretization of 40× 40× 40. The results presented hereafter have been obtained with this latter grid.

Two types of tests have been considered:

• Axisymmetric loading tests (η1 = η2 = η) for several crystal orientations so that the loading axis
varies in the irreducible orientation space (i.e. standard spherical triangle) of each crystalline
structure. In this case, the Lode parameter is fixed (L = −1) and the stress triaxiality is
T = (1 + 2η)/3(1− η) with η ∈ [−0.5; 1] (η = −0.5 corresponds to a purely deviatoric loading
and η = 1 to a purely hydrostatic one). Four values of the porosity have been chosen (1, 2, 5 and
10%).

• Non-axisymmetric loading tests (η1 6= η2) for different crystal orientations at fixed triaxiality T
and variable Lode parameter L. Four crystal orientations have been chosen, from high to low
symmetry: [100][010][001], [100][011̄][011], [110][1̄12̄][1̄11] and [52̄1][121̄][012]. Three triaxialities
are considered: T = 0, 1/3 and 13/3. The evolution of η1 and η2 as a function of the Lode
parameter, for each triaxiality, is given in Figure 2. A porosity p = 1% has been considered.

3.2.3. Results for FCC crystals
For the axisymmetric tests, 92 FFT computations have been performed with different crystal

orientations, for each porosity value, so that the loading axis spans the whole standard spherical triangle.
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Figure 2: η1 (solid line) and η2 (dotted line) parameters (3.11) as a function of the Lode parameter for three triaxialities
(T = 0, 1/3 and 13/3).

These reference numerical results have been used to fit the unique parameter of our criterion (q).
The best overall agreement has been obtained with q = 2. It is noted that this parameter is rather
insensitive to the porosity value. Comparisons are reported, for different triaxialities, on Figure 3.
A correct description of the orientation dependence of the yield stress is obtained for η ∈ [−0.5; 1[
with a maximum relative error of 5%. Besides, the predicted hydrostatic yield stress (η = 1) is in
close agreement with the FFT numerical results. Similar results, not shown here for brevity, have
been obtained up to 10% porosity. It can be observed that the unit-cell computations exhibit a slight
orientation dependence, for an hydrostatic loading, unlike the analytical criterion derived for a hollow
sphere. This is due to the fact that the crystalline matrix is rotated with respect to the reference frame,
for the different unit-cell calculations, while the cubic array of spherical voids is not. Consequently,
the relative directions of anisotropy of the microstructure and the crystal change with the crystal
orientation. This results in different periodic materials. The hydrostatic response is mainly affected by
this microstructural change.

Following these assesments, we have considered non-axisymmetric stress loadings for four fixed
crystal orientations, from high ([100][010][001]) to low ([52̄1][121̄][012]) symmetry, and a porosity of 1%.
Moreover, the stress triaxiality is kept constant and the Lode parameter L varies. The evolution of the
normalized yield stress with L is shown in Figures 4 to 6. An overall agreement is obtained for the
different crystal orientations. It is pointed out that the abrupt changes of the yield stress evolution is
related to the activation of different slip systems. However, at high stress triaxiality, the agreement
worsens. This is likely related, at least partially, to the discrepancy between the actual plastic strain
rate field (Figure 9a) and the trial strain rate field that we used (constant deviatoric term plus an
isochoric isotropic growth).

3.2.4. Results for HCP crystals
For the two types of hexagonal crystals considered (Ti-like and Mg-like), 89 FFT computations

have been carried out to vary the orientation of the loading axis in the standard spherical triangle.
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FFT results

Criterion

Relative error

η = 0 η = 0.8 η = 1
(T = 1/3) (T = 13/3) (T = +∞)

Figure 3: Inverse pole figure representation of the normalized yield stress ΣI/τ
c of FCC crystals with 1% porosity

subjected to an axisymmetric stress state
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Figure 4: Normalized yield stress ΣI/τ
c of FCC crystals with 1% porosity for different orientations as a function of the

Lode parameter L (Stress triaxiality T = 0)

13



−1.0 −0.5 0.0 0.5 1.0

L

1.5

2.0

2.5

3.0

3.5

4.0

Σ
I
/τ

c

Criterion
FFT

(a) [100][010][001]

−1.0 −0.5 0.0 0.5 1.0

L

1.5

2.0

2.5

3.0

3.5

4.0

Σ
I
/τ

c

(b) [100][011̄][011]

−1.0 −0.5 0.0 0.5 1.0

L

1.5

2.0

2.5

3.0

3.5

4.0

Σ
I
/τ

c

(c) [110][1̄12̄][1̄11]

−1.0 −0.5 0.0 0.5 1.0

L

1.5

2.0

2.5

3.0

3.5

4.0

Σ
I
/τ

c

(d) [52̄1][121̄][012]

Figure 5: Normalized yield stress ΣI/τ
c of FCC crystals with 1% porosity for different orientations as a function of the

Lode parameter L (Stress triaxiality T = 1/3)
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Figure 6: Normalized yield stress ΣI/τ
c of FCC crystals with 1% porosity for different orientations as a function of the

Lode parameter L (Stress triaxiality T = 13/3)
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FFT results

Criterion

Relative error

η = 0 η = 0.8 η = 1
(T = 1/3) (T = 13/3) (T = +∞)

Figure 7: Inverse pole figure representation of the normalized yield stress ΣI/τ
c
Pr. of Ti-like HCP crystals with 1% porosity

subjected to an axisymmetric stress state.

For each crystalline structure, the fitting q parameter obtained is of the order of 2. Due to the strong
plastic anisotropy, the yield stress of the voided crystals presents a distinct orientation dependence
which is correctly reproduced by the criterion (Figures 7 and 8). Also, for the hydrostatic loading, the
influence of the microstructural changes (see above) on the FFT numerical results is more important.
This is consistent with the marked plastic anisotropy of the crystals. Besides, compared to the FCC
structure, a notably higher hydrostatic yield stress is predicted (Taylor factor ΣI/min(τ c) ∼ 30). This
is due to the presence of “hard” directions for the plastic flow. In the limit of deficient crystals (i.e.
lack of five independent slip systems), as evoked at the end of Section 2, the hydrostatic yield stress is
infinite (i.e. the porous crystal is incompressible).

Globally, the approximate criterion leads to a worse agreement with the numerical results in the case
of hexagonal crystals which present a marked plastic anisotropy. Such a trend was expected owing to
the choice made for the trial velocity field which, for a hydrostatic loading, is only exact for an isotropic
matrix. This point is clearly illustrated in Figure 9 which presents the FFT numerical prediction of the
equivalent plastic strain field for FCC and HCP crystals, subjected to a hydrostatic loading, for a given
macroscopic volume change 3Em. In the case of FCC crystals, the actual plastic strain field deviates
from the isotropic one but, due to the cubic symmetry, the void growth remains spherical (Eeq = 0). On
the contrary, zones with no plastic activity appear for HCP crystals due to the high plastic anisotropy.
This results in a non spherical growth of the void (Eeq 6= 0). The difference between the patterns in
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FFT results

Criterion

Relative error

η = 0 η = 0.8 η = 1
(T = 1/3) (T = 13/3) (T = +∞)

Figure 8: Inverse pole figure representation of the normalized yield stress ΣI/τ
c
Bas. of Mg-like HCP crystals with 1%

porosity subjected to an axisymmetric stress state.
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(a) FCC

(b) HCPMg (c) HCPTi

Figure 9: Equivalent plastic strain field εp
eq for a macroscopic stress hydrostatic loading with different crystal anisotropies

and a porosity of 2%. The overall mean strain is Em = 4.10−3. The plots corresponds to a planar cut at the middle of
the cubic unit-cell. For the HCP crystals, the senar c-axis is vertical.
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Figures 9b and 9c is due to the fact that the easy glide system differs (basal for the Mg-like crystal and
prismatic for the Ti-like one). It must also be noted that, in the context of limit-analysis, we have used
results from the usual approach which neglects a term of interaction between the deviatoric and the
hydrostatic part of the strain rate test field. This issue has been studied by Leblond and Morin (2014)
in the case of a von Mises matrix. However, the assumption of isotropy for the test field is expected to
be the main explanation for the discrepancies.

4. Extension to hardenable porous crystals

By considering an associated flow rule, the proposed criterion (2.25) allows to describe the response
of elastic-perfectly plastic porous crystals with fixed void shape and evolving porosity. To consider
more general and realistic situations, we investigate the effects of the hardening within the proposed
approach. More specifically, the case of isotropic hardening is considered.

4.1. General approach
It is proposed to extend the yield criterion by taking into account crystalline hardening. An approach

similar to the one used by Leblond et al. (1995), for the case of an isotropic plastic matrix, is considered:
we perform an approximate analysis of a hardenable rigid plastic crystalline hollow sphere subjected to
a macroscopic prestrain E. The macroscopic yield criterion is deduced by a kinematical limit analysis
which consists in the following steps:

S1. Determine the local plastic strain εp(E,x) and the new geometry of the hollow sphere (i.e. overall
domain Ω(E) and void domain ω(E)).

S2. Deduce the evolution of the local polyhedral plastic domain (i.e. statically admissible stress space
described by its set of vertices A(εp(E,x)) ) induced by the plastic strain field.

S3. For an arbitrary macroscopic strain rate D, calculate the global plastic dissipation

Π(E,D) =
1

Ω(E)
inf

d∈K(D,E)

∫
Ω(E)−ω(E)

sup
σ∗∈A(εp(E,x))

σ∗ : d(D,x) dV (4.1)

where K(D,E) is the set of kinematically admissible strain rate fields for the new geometry.

S4. Deduce the macroscopic yield surface with

Σ =
∂Π(E,D)

∂D
. (4.2)

To obtain an approximate solution of the limit analysis problem, which cannot be solved exactly in
general, the following assumptions are introduced:

A1. The shape change induced by E′ = dev(E) is neglected (i.e. the domain Ω(E) is a sphere).

A2. The local plastic strain field εp is estimated by the integration of the Rice-Tracey test field (2.14)
between t = 0 and t = tf with D = E/tf . At time t = tf , the plastic strain at radius R = r(tf )
thus reads (Appendix B)

εp(R) =

∫ tf

0
d (E/T, r(t), t) dt = E′ + ln

R
3
√
R3 + b3 −B3

dm (4.3)
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with b and B the initial and current outer radii of the sphere.
As a consequence of assumptions A1 and A2 , the studied cell remains a hollow sphere with
current internal and external radii A and B.

A3. Use is also made of the Rice-Tracey velocity field (2.14) to obtain an upper bound of the global
dissipation

Π(E,D) =
1

Ω(E)

∫
Ω(E)−ω(E)

sup
σ∗∈A(εp(E,x))

σ∗ : d(D,x) dV (4.4)

To avoid any confusion, it is pointed out that E (macroscopic prestrain) and D (macroscopic
strain rate) are independent variables.

A4. The regularized macroscopic plastic yield function is expressible in the form

F (n)
reg (Σ,E) =

(∑
k

( |Σ : µk|
τ̃ ck(E)

)n) 2
n

+ 2qP cosh(κ̃(E)Σm)− 1− (qP )2. (4.5)

with P the current porosity. The functions τ̃ ck(E) and κ̃(E) are determined by considering,
respectively, purely deviatoric (D = D′) and hydrostatic (D = Dmi) loadings.

4.2. Effective hardening functions τ̃ ck(E) and κ̃(E)

• Deviatoric strain rate loading: By considering a deviatoric macroscopic strain rate D = D′, the
global dissipation reads

Π(E,D) =
1

Ω(E)

∫
Ω(E)−ω(E)

max
σ∗∈A(εp(E,x))

σ∗ : D′ dV (4.6)

Thus the macroscopic yield surface is given by

Σ =
∂Π(E,D)

∂D
=

1

Ω(E)

∫
Ω(E)−ω(E)

argmax
σ∗∈A(εp(E,x)

σ∗ : D′ dV (4.7)

By contrast with the perfectly plastic case, argmax (σ∗ : D′) generally varies with position vector x
due to the heterogeneity of the hardening. By choosing D′ = µk, we have

|Σ : µk| =
1

Ω(E)

∫
Ω(E)−ω(E)

|(argmax
σ∗∈A(εp(E,x)

σ∗ : µk) : µk| dV

= (1− P ) 〈τ ck〉Ω(E)−ω(E)

(4.8)

With the proposed criterion (4.5), it follows that

τ̃ ck(E) = 〈τ ck〉Ω(E)−ω(E) . (4.9)

Note that it has been assumed that the set of active slip systems does not change during hardening.
• Hydrostatic strain rate loading: For an hydrostatic macroscopic strain rate D = Dmi, the overall

plastic dissipation reads

Π(E,D) =
3|Dm|

4π

∫
Ω(E)−ω(E)

max
σ∗∈A(εp(E,x))

σ∗ : dm
R3

dV (4.10)
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and the mean yield stress is given by

Σm(E) =
1

3

∂Π(E,D)

∂Dm
=

1

4π

∫
Ω(E)−ω(E)

max
σ∗∈A(εp(E,x))

σ∗ : dm
R3

dV sgn(Dm) (4.11)

With the expression of the criterion (4.5), we get

κ̃(E) = − lnP

Σm(E)
. (4.12)

Hence, the estimation of the effective hardening functions requires the computation of the integrals (4.9)
and (4.11) over the sphere volume. It is broached in the sequel for specific constitutive hardening laws.
It can be noted that this approach, contrary to the one proposed by Ling et al. (2016), approximates
the hardening by resorting to an estimation of the heterogeneity of the plastic strain field.

4.3. Constitutive hardening laws
We consider the evolution of the single crystal yield surface with plastic strain (i.e. increase of the

critical resolved shear stresses τ ck). Following Mandel (1965) and Hill (1966), the hardening law takes
the form

τ̇ ck =
K∑
l=1

hklγ̇l (4.13)

with [h] the hardening matrix. In the case of linear hardening, a usual form is

hij = h0(δij + ql(1− δij)) (4.14)

where δij is the kronecker symbol. h0 and ql are constant material parameters with h0 > 0 and ql ≥ 1.
h0 represents the self hardening and qlh0 the latent hardening. The classical Taylor isotropic hardening
rule corresponds to ql = 1. Besides, nonlinear hardening is usually described, at the slip system scale,
by Swift-type law (monotonic hardening) (see, for instance, Yerra et al., 2010)

τ̇ ck = nk
τ0
k

Γ0
k

(
τ ck
τ0
k

)nk−1

nk
Γ̇k (4.15)

or Voce-type law (saturating hardening) (Sarma et al., 1998; Suquet et al., 2012)

τ̇ ck = (τ∞k − τ ck)Γ̇k. (4.16)

Γ̇k are the weighted sums of plastic slip rates on all the slip systems

Γ̇k =
∑
s

aksγ̇s (4.17)

τ0
k represents the initial critical shear stress on slip system k

τ0
k = τ ck(Γk = 0) (4.18)

while τ∞k is the stationary one in the Voce-type saturating hardening model. Γ0
k, aks and nk are positive

hardening parameters (no units). Note also that a dislocation-based hardening law derived from the
physical processes of storage and annihilation of dislocations during plastic deformation has been
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proposed (Essmann and Mughrabi, 1979; Teodosiu et al., 1993; Tabourot et al., 1997). It describes a
nonlinear evolution of the critical shear stresses with a stationary regime (saturation of the hardening).
In the context of porous crystals, it has been recently used by Ling et al. (2016) for face-centred cubic
materials. Linear and nonlinear hardening are considered in the sequel and an application of the derived
model is made in the case of a Swift-type hardening law.

For a given plastic strain rate ε̇p, the non-uniqueness of the set of plastic slip rates γ̇k is a classical
issue. Different iterative numerical algorithms for the discrimination of the plastic multipliers γ̇k
have been proposed (see, for instance, Anand and Kothari, 1996; Miehe and Schröder, 2001; Schmidt-
Baldassari, 2003; Busso and Cailletaud, 2005). In the following, a pseudo-inverse method is used to
determine an admissible set of plastic multipliers.

4.4. Approximate overall yield criterion for linear hardening
The effective critical shear stresses τ̃ ck(E) entering the criterion (4.5) may be written as

τ̃ ck(E) = τ0
k +

1

Ω(E)− ω(E)

∫
Ω(E)−ω(E)

∆τ ck(εp(E,x)) dV (4.19)

with τ0
k = τ ck(E = 0). The pointwise heterogeneity of the plastic strain field εp and its dependence on

E make it difficult to derive an analytical expression for the increment of the local critical shear stresses
∆τ ck(εp(E,x)). Besides, the numerical estimate of (4.19) must be performed for each macroscopic
prestrain E. Albeit feasible, such a model is quite computationally expensive. To circumvent this issue,
the local hardening due to the plastic strain εp(E,x) is approximated by the sum of the hardenings
due to the successive plastic strains E′ and dm ln R

3√R3+b3−B3
. That is

∆τ ck(εp(E,x)) ' ∆τ ck(E′) + ∆τ ck(dm ln
R

3
√
R3 + b3 −B3

). (4.20)

By using the linearity of the constitutive hardening law (relations (4.13) and (4.14)),

∆τ ck(dm ln
R

3
√
R3 + b3 −B3

) = ln

(
R

3
√
R3 + b3 −B3

)
∆τ ck(dm) (4.21)

the effective critical shear stresses τ̃ ck(E) can be expressed as

τ̃ ck(E) = τ0
k + ∆τ ck(E′) + χ(Em)Hk (4.22)

with
Hk =

∫
R=1

∆τ ck(dm) dS (4.23)

and

χ(Em) =
1

Ω(E)− ω(E)

∫ B

A
ln

(
R

3
√
R3 + b3 −B3

)
R2 dR. (4.24)

By using the change of variables R = Bu and the relation b3 = B3e−3Em , by definition of Em, χ(Em)
takes the simpler form

χ(Em) =
3

4π(1− P )

∫ 1

P
1
3

ln
u

3
√
u3 + e−3Em − 1

u2 du. (4.25)
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Besides, the mean yield stress Σm(E) reads

Σm(E) =
1

4π

∫
Ω(E)−ω(E)

1

R3
max

σ∗∈A(εp(E,x))
σ∗ : dm dV sgn(Dm). (4.26)

By using the expression of the plastic strain rate dm,

dm =
∑
k

γ̇dm
k µk, (4.27)

it follows that
Σm(E) =

1

4π

∫
Ω(E)−ω(E)

1

R3

∑
k

γ̇dm
k τ ck(εp(E,x)) dV sgn(Dm). (4.28)

By using the approximation (4.20) and the linearity of the hardening law, the mean yield stress is
expressible in the form

Σm(E) = − lnP

12π

(∑
k

Iγk (τ0
k + ∆τ ck(E′)) + I∆ β(Em)

)
sgn(Dm) (4.29)

with
Iγk =

∫
R=1

γ̇dm
k dS, I∆ =

∑
k

∫
R=1

γ̇dm
k ∆τ ck(dm) dS (4.30)

and

β(Em) = − 3

lnP

∫ B

A
ln

(
R

3
√
R3 + b3 −B3

)
dR
R
. (4.31)

By using the change of variables R = Bu, the function β(Em) also reads

β(Em) = − 3

lnP

∫ 1

P
1
3

ln

(
u

3
√
u3 + e−3Em − 1

)
du
u
. (4.32)

In the absence of hardening, it can be checked that the non vanishing integral term in (4.29),
∑

k Iγk τ
0
k ,

corresponds to the integral IΠ (2.22) which appears in the criterion for perfect plasticity. The estimation
of the effective hardening parameters has thus been reduced to the computations of three integrals on
the unit sphere (Hk, Iγk and I∆), which do not depend on E, and two integral functions (β and χ),
purely geometrical, which only depend on the macroscopic mean strain Em.

4.5. Approximate overall yield criterion for nonlinear hardening
In the case of nonlinear hardening, it is necessary to add a supplementary approximation (i.e.

linearization of the hardening law) to make use of the previously derived semi-analytical criterion.
Hereafter, we consider the particular case of an isotropic Swift-type hardening at the slip system scale
(4.15) which also reads

τ̇ c(x) = n
τ0

Γ0

(
1 +

Γ(x)

Γ0

)n−1

Γ̇(x), Γ̇ =
∑
k

γ̇k, n ∈ [0; 1]. (4.33)

n = 0 corresponds to perfect plasticity while n = 1 describes a linear hardening. The linearized form of
(4.33) reads

τ̇ c(x) ' nτ
0

Γ0

(
1 +

Γref

Γ0

)n−1

Γ̇(x) (4.34)
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with Γref a reference cumulative plastic slip. Two definitions of Γref will be considered, namely a first
moment (average) approximation

Γref = 〈Γ〉Ω(E)−ω(E) (4.35)

and a second moment approximation

Γref =
√
〈Γ2〉Ω(E)−ω(E). (4.36)

Considering the nonlinearity of the hardening law and the heterogeneity of the cumulative plastic slip
within the hollow sphere, the latter approximation yields a better approximation of 〈τ ck〉Ω(E)−ω(E).

4.6. Assessment with respect to FE computations
4.6.1. Approximate models

Based on the approximate yield function (4.5) with hardening functions (4.9) and (4.12), a consti-
tutive macroscopic elastoplastic model has been derived by using the normality rule for the plastic flow
and the Hooke’s law of the single crystal. It is pointed out that the influence of the porosity on the
overall elastic behaviour is neglected. Thus, the elastoplastic homogenization problem is being fully
decoupled. These approximations are justified by the low initial porosity value considered. The proposed
model has been compared qualitatively to finite strain FE results for BCC single crystals (Yerra et al.,
2010). It must be noted that the FE computations have been performed with a viscoplastic flow rule.
However, the strain-rate sensitivity coefficient m being very low (m = 0.01), the local behaviour is
almost rate-independent.

Different levels of approximations are considered for the evaluation of the integrals defining the
effective hardening parameters τ̃ ck(E) (4.9) and κ̃(E) (4.12). The approximation based on the full
numerical computation with the nonlinear hardening law is called FNLH (Full Non Linear Hardening)
and the assumption of additive decomposition of the hardening (4.20) is called DNLH (Decomposed
Non Linear Hardening). Based on this decomposition, the additional use of the linearization of the
hardening law (4.34) defines two approximations DLH1 and DLH2 (Decomposed Linearized Hardening)
using respectively the average and the second moment of the cumulative plastic slip to define the
reference value Γref.

4.6.2. Results
Tests have been performed for various orientations of the loading axis with respect to the crystal

reference frame. The simulations are performed by imposing the strain rate component along the
loading axis and the overall stress triaxiality. The figure 10 shows the overall stress-strain response as
well as the porosity evolution predicted by the approximate model FNLH and the FE computations
of Yerra et al. (2010). It can be observed that the orientation dependence of the behaviour is on the
whole correctly described with a higher yield stress and void growth rate for the [110] orientation. For
high stress triaxiality (T = 3), although the comparison is somewhat less good, it must be remarked
that the crossing of the stress-strain curves of the orientations [110] and [111] after the peak stress is
still correctly described.

Finally, the predictions of the overall stress-strain response with the different approximate models
introduced has been compared to the FE results. The Figure 11 illustrates the main trends obtained.
The models using a linearization of the hardening law leads as a whole to poor estimates. Nonetheless,
it is noted that the second moment approximation of the reference cumulative plastic slip always give
better results, as expected because of the plastic strain heterogeneity.
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(a) Stress triaxiality T = 1

(b) Stress triaxiality T = 3

Figure 10: Overall stress-strain response and porosity evolution for BCC crystals with different orientations of the loading
axis with respect to the crystalline reference frame. The hardening exponent is n = 0.3 (solid lines: FE results (Yerra
et al., 2010); dashed lines: FNLH approximate model).
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(a) [100], T = 1, n = 0.1

(b) [110], T = 1, n = 0.3 (c) [110], T = 3, n = 0.1

Figure 11: Comparison of the different approximate models (dashed lines) with the FE results of Yerra et al. (2010) (solid
lines) for different crystalline orientations, stress triaxialities and hardening exponent.
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5. Conclusion

This work, based on the kinematic limit analysis of a hollow sphere and unit-cell full-field com-
putations, is a contribution to the understanding of the plastic behaviour of porous crystals . The
approximate yield criterion proposed by Paux et al. (2015) has been extended to consider an arbitrary
plastic anisotropy as well as the strain hardening at the slip system scale. Results have been reported for
FCC and HCP crystals with different families of easy-glide systems. It is observed that the accuracy of
the criterion decreases when the plastic anisotropy increases. However, a correct qualitative description
of the orientation-dependent yield stress is obtained for finite stress triaxiality. Besides, the dependence
of the hydrostatic yield stress with the plastic anisotropy (i.e. ratios of the critical shear stresses) is
well predicted. In this context, it has also been emphasized that the incompressibility of porous single
crystals, previously reported by Mbiakop et al. (2015a), is due to their deficiency of slip systems (i.e.
infinite plastic anisotropy).

An extension of the criterion to hardenable crystals has been derived by considering the approach
originally proposed by Leblond et al. (1995) for a von Mises material. It allows to consider, approximately,
the spatial heterogeneity of the strain hardening to define effective hardening parameters. Different
approximations have been proposed for linear and nonlinear (isotropic) hardening. A constitutive
model has been derived based on this criterion and it has been assessed by comparison with unit-cell
FE results on BCC crystals (Yerra et al., 2010). A good qualitative agreement, with in particular the
correct description of the dependence on the crystal orientation, is obtained. Further developments are
required to take into account the evolution of the void shape, which can be significant at low stress
triaxiality, as well as the lattice rotation of the crystal during the plastic deformation.

Appendix A. Incompressibility of deficient porous crystals

We aim to prove that a hollow sphere consituted of a single crystal lacking five independent slip
systems is incompressible when subjected to homogeneous strain rate boundary conditions. In the case
of a macroscopic volume change rate, the boundary conditions read

v = d.x = Dm x, ∀x ∈ ∂Ω (x = b er) (A.1)

As the velocity field v is known on the boundary ∂Ω, its partial derivatives in the tangent plane are
known. They define a part of the strain rate tensor d at the boundary surface. In the sequel, it is
shown that a deficient single crystal cannot accommodate this part of the strain rate.
Surface strain rate: Let Bp = (xp,yp,np) an orthonormal basis with np the unit outer normal at point
p ∈ ∂Ω. The strain rate at point p reads

d(p) =
1

2

(
∇v + ∇vT) = Dm


1 0

1

2

∂vx
∂z

0 1
1

2

∂vy
∂z

1

2

∂vx
∂z

1

2

∂vy
∂z

−2


Bp

(A.2)

with unknown gradient components ∂vx/∂z and ∂vy/∂z.
“Forbidden strain rate”: For crystals lacking five independent slip systems, there is a “forbidden” deviatoric
strain rate d0 such that, for all admissible strain rate d, d : d0 = 0 (Figure A.1). There is a basis
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Figure A.1: Schematic illustration of the yield surface of a deficient crystal in the deviatoric eigenbasis (s1, s2, s3). The
space of admissible stresses (i.e. plastic domain) is defined by the different slip systems (in pink, green and blue). As
there is not enough independent slip systems, the yield surface is not closed in the deviatoric space. d0 represents the
“forbidden” strain rate direction.

B0 = (x0,y0, z0) such that the strain rate d0 reads

d0 =

 a 0 0
0 b 0
0 0 c


B0

(A.3)

with (a, b, c) 6= (0, 0, 0) and a+ b+ c = 0 since d0 is deviatoric. Let’s consider two specific points p1

and p2 on the surface ∂Ω such that np1 = z0 and np2 = y0 (Figure A.2). The condition d(p) : d0 = 0
gives, respectively, at points p1 and p2, {

a+ b− 2c = 0,
a− 2b+ c = 0.

(A.4)

Together with the incompressibility condition (a+ b+ c = 0), the only solution for (a, b, c) is (0, 0, 0),
which is excluded. Thus, there is no solution to the problem. This implies that the single crystal cannot
accomodate a macroscopic volume change with homogeneous strain rate boundary conditions.

Two points are worth emphasizing concerning this proof:

• It can be extended to any domain with smooth boundary under the same type of boundary
conditions.

• The inner properties are not involved in the proof. The result thus holds whatever the content of
the single crystal sphere. In particular, a hollow single crystal sphere deficient in independent slip
systems remains incompressible whatever the distribution of the porosity.
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Figure A.2: Representation of the different basis B0, Bp1 and Bp2 defined on the outer surface ∂Ω of the sphere.

Appendix B. Plastic strain field and porosity evolution

For t ∈ [0; tf ], it is assumed that (i) the cell remains spherical and (ii) the strain rate at a material
point with radius r(t) is of the form (2.14)

d(r(t), t) =
1

tf
E′ +

ḃ(t) b(t)2

r(t)3
dm. (B.1)

The macroscopic strain at time tf is E = E′ + Emi with Em the macroscopic mean strain defined by

Em =

∫ tf

0

ḃ(t)

b(t)
dt. (B.2)

The plastic strain reads

εp(R) =

∫ tf

0
d(r(t), t) dt = E′ +

∫ tf

0

ḃ(t) b(t)2

r(t)3
dtdm. (B.3)

Besides, the evolution of the radius r(t) is

ṙ(t) = ḃ(t)

(
b(t)

r(t)

)2

. (B.4)

Consequently, ∫ tf

0

ḃ(t)b(t)2

r(t)3
dt =

∫ tf

0

ṙ(t)

r(t)
dt = ln

R

r0
(B.5)

with r0 and R the initial and current radii. Let b and B (a and A) the initial and current outer (inner)
radii of the sphere. Since the solid phase is incompressible

b3 −B3 = a3 −A3 = r3
0 −R3 (B.6)

and the plastic strain rate finally reads

εp(R) = E′ + ln
R

3
√
R3 + b3 −B3

dm. (B.7)
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From the definition of the macroscopic mean strain Em (B.2), it follows that B3 = b3 e3Em . By taking
into account the incompressibility of the matrix, the current porosity P (at time tf ) is thus expressible
as (Leblond et al., 1995)

P =
A3

B3
=
a3 + (e3Em − 1) b3

e3Em b3
= 1 +

1

e3Em
(p0 − 1) (B.8)

where p0 = (a3/b3) is the initial porosity.
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