P. Kong, P. Christia, and N. G. Frangogiannis, The pathogenesis of cardiac fibrosis, Cellular and Molecular Life Sciences, vol.120, issue.Suppl 3, pp.549-574, 2014.
DOI : 10.1161/CIRCULATIONAHA.108.847772

J. S. Janicki and G. L. Brower, The role of myocardial fibrillar collagen in ventricular remodeling and function, Journal of Cardiac Failure, vol.8, issue.6, pp.319-325, 2002.
DOI : 10.1054/jcaf.2002.129260

J. Davis and J. D. Molkentin, Myofibroblasts: Trust your heart and let fate decide, Journal of Molecular and Cellular Cardiology, vol.70, pp.9-18, 2014.
DOI : 10.1016/j.yjmcc.2013.10.019

K. E. Porter and N. A. Turner, Cardiac fibroblasts: At the heart of myocardial remodeling, Pharmacology & Therapeutics, vol.123, issue.2, pp.255-278, 2009.
DOI : 10.1016/j.pharmthera.2009.05.002

L. Calvier, The Impact of Galectin-3 Inhibition on??Aldosterone-Induced Cardiac and Renal??Injuries, JACC: Heart Failure, vol.3, issue.1, pp.59-67, 2015.
DOI : 10.1016/j.jchf.2014.08.002

E. Martinez-martinez, Galectin-3 Blockade Inhibits Cardiac Inflammation and Fibrosis in Experimental Hyperaldosteronism and HypertensionNovelty and Significance, Hypertension, vol.66, issue.4, pp.767-775, 2015.
DOI : 10.1161/HYPERTENSIONAHA.115.05876

N. Lopez-andres, C. Inigo, I. Gallego, J. Diez, and M. A. Fortuno, Aldosterone Induces Cardiotrophin-1 Expression in HL-1 Adult Cardiomyocytes, Endocrinology, vol.149, issue.10, pp.4970-4978, 2008.
DOI : 10.1210/en.2008-0120

J. Dumic, S. Dabelic, and M. Flogel, Galectin-3: An open-ended story, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1760, issue.4, pp.616-635, 2006.
DOI : 10.1016/j.bbagen.2005.12.020

U. C. Sharma, Galectin-3 Marks Activated Macrophages in Failure-Prone Hypertrophied Hearts and Contributes to Cardiac Dysfunction, Circulation, vol.110, issue.19, pp.3121-3128, 2004.
DOI : 10.1161/01.CIR.0000147181.65298.4D

A. Gonzalez, Biochemical markers of myocardial remodelling in hypertensive heart disease, Cardiovascular Research, vol.81, issue.3, pp.509-518, 2009.
DOI : 10.1093/cvr/cvn235

V. Drobic, Differential and combined effects of cardiotrophin-1 and TGF-beta1 on cardiac myofibroblast proliferation and contraction, AJP: Heart and Circulatory Physiology, vol.293, issue.2, pp.1053-1064, 2007.
DOI : 10.1152/ajpheart.00935.2006

B. Lopez, Association of Cardiotrophin-1 With Myocardial Fibrosis in Hypertensive Patients With Heart Failure, Hypertension, vol.63, issue.3, pp.483-489, 2014.
DOI : 10.1161/HYPERTENSIONAHA.113.02654

N. Lopez-andres, A role for cardiotrophin-1 in myocardial remodeling induced by aldosterone, AJP: Heart and Circulatory Physiology, vol.301, issue.6, pp.2372-2382, 2011.
DOI : 10.1152/ajpheart.00283.2011

A. Franceschini, STRING v9.1: protein-protein interaction networks, with increased coverage and integration, Nucleic Acids Research, vol.41, issue.D1, pp.808-815, 2013.
DOI : 10.1093/nar/gks1094

P. Dube and K. Weber, Congestive Heart Failure: Pathophysiologic Consequences of Neurohormonal Activation and the Potential for Recovery: Part II, The American Journal of the Medical Sciences, vol.342, issue.6, pp.503-506, 2011.
DOI : 10.1097/MAJ.0b013e3182327527

B. Swynghedauw, Molecular mechanisms of myocardial remodeling, Physiol Rev, vol.79, pp.215-262, 1999.

J. N. Cohn, Heart failure: future treatment approaches, American Journal of Hypertension, vol.13, issue.5, pp.74-78, 2000.
DOI : 10.1016/S0895-7061(00)00271-5

A. Tsuji, A proteomic approach reveals transient association of reticulocalbin-3, a novel member of the CREC family, with the precursor of subtilisin-like proprotein convertase, PACE4, Biochemical Journal, vol.396, issue.1, pp.51-59, 2006.
DOI : 10.1042/BJ20051524

Y. Zhang, Differential expression profiling between the relative normal and dystrophic muscle tissues from the same LGMD patient, Journal of Translational Medicine, vol.4, issue.1, p.53, 2006.
DOI : 10.1186/1479-5876-4-53

Z. Liu, M. G. Brattain, and H. Appert, Differential Display of Reticulocalbin in the Highly Invasive Cell Line, MDA-MB-435, versus the Poorly Invasive Cell Line, MCF-7, Biochemical and Biophysical Research Communications, vol.231, issue.2, pp.283-289, 1997.
DOI : 10.1006/bbrc.1997.6083

R. Grzeskowiak, Expression profiling of human idiopathic dilated cardiomyopathy, Cardiovascular Research, vol.59, issue.2, pp.400-411, 2003.
DOI : 10.1016/S0008-6363(03)00426-7

N. Lopez-andres, Vascular effects of cardiotrophin-1: a role in hypertension?, Journal of Hypertension, vol.28, pp.1261-1272, 2010.
DOI : 10.1097/HJH.0b013e328337fe42

N. Kramann, G. Hasenfuss, and T. Seidler, B-RAF and its novel negative regulator reticulocalbin 1 (RCN1) modulates cardiomyocyte hypertrophy, Cardiovascular Research, vol.102, issue.1, pp.88-96, 2014.
DOI : 10.1093/cvr/cvu024

J. Jin, Neonatal Respiratory Failure with Retarded Perinatal Lung Maturation in Mice Caused by Reticulocalbin 3 Disruption, American Journal of Respiratory Cell and Molecular Biology, vol.54, issue.3, pp.410-423, 2016.
DOI : 10.1165/rcmb.2015-0036OC

J. S. Alexander, Proteomic Analysis of Human Cerebral Endothelial Cells Activated by Multiple Sclerosis Serum and IFN??-1b, Journal of Molecular Neuroscience, vol.59, issue.3, pp.169-178, 2007.
DOI : 10.1212/WNL.59.6.802

Q. D. Zhao, NADPH Oxidase 4 Induces Cardiac Fibrosis and Hypertrophy Through Activating Akt/mTOR and NF??B Signaling Pathways, Circulation, vol.131, issue.7, pp.643-655, 2015.
DOI : 10.1161/CIRCULATIONAHA.114.011079

B. Dai, STAT1/3 and ERK1/2 Synergistically Regulate Cardiac Fibrosis Induced by High Glucose, Cellular Physiology and Biochemistry, vol.32, issue.4, pp.960-971, 2013.
DOI : 10.1159/000354499

A. Haghikia, M. Ricke-hoch, B. Stapel, I. Gorst, and D. Hilfiker-kleiner, STAT3, a key regulator of cell-to-cell communication in the heart, Cardiovascular Research, vol.102, issue.2, pp.281-289, 2014.
DOI : 10.1093/cvr/cvu034

B. A. Rose, T. Force, and Y. Wang, Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale, Physiological Reviews, vol.90, issue.4, pp.1507-1546, 2010.
DOI : 10.1152/physrev.00054.2009

E. Martinez-martinez, Differential proteomics reveals S100-A11 as a key factor in aldosterone-induced collagen expression in human cardiac fibroblasts, Journal of Proteomics, vol.166, 2017.
DOI : 10.1016/j.jprot.2017.07.011

R. D. Unwin, J. R. Griffiths, and A. Whetton, Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC???MS/MS, Nature Protocols, vol.2, issue.9, pp.1574-1582, 2010.
DOI : 10.1074/mcp.M700370-MCP200

M. V. Zelaya, Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer’s disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies, Oncotarget, vol.6, issue.37, pp.39437-39456, 2015.
DOI : 10.18632/oncotarget.6254

I. V. Shilov, The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra, Molecular & Cellular Proteomics, vol.2, issue.9, pp.1638-1655, 2007.
DOI : 10.1002/rcm.1198