
HAL Id: hal-01613332
https://hal.sorbonne-universite.fr/hal-01613332v1

Submitted on 11 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resonant thickening of self-gravitating discs: imposed or
self-induced orbital diffusion in the tightly wound limit

Jean-Baptiste Fouvry, Christophe Pichon, Pierre-Henri Chavanis, Laura Monk

To cite this version:
Jean-Baptiste Fouvry, Christophe Pichon, Pierre-Henri Chavanis, Laura Monk. Resonant thickening
of self-gravitating discs: imposed or self-induced orbital diffusion in the tightly wound limit. Monthly
Notices of the Royal Astronomical Society, 2017, 471 (3), pp.2642 - 2673. �10.1093/mnras/stx1625�.
�hal-01613332�

https://hal.sorbonne-universite.fr/hal-01613332v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

60
5.

03
37

9v
2 

 [
as

tr
o-

ph
.G

A
] 

 2
2 

A
ug

 2
01

7
Mon. Not. R. Astron. Soc. 000, 1–31 (0000) Printed 11 November 2018 (MN LATEX style file v2.2)

Resonant thickening of self-gravitating discs:

imposed or self-induced orbital diffusion in the tightly wound limit

Jean-Baptiste Fouvry1,2⋆, Christophe Pichon1,3,4, Pierre-Henri Chavanis5, and Laura Monk1

1 Institut d’Astrophysique de Paris, and UPMC Univ. Paris 06, (UMR7095), 98 bis Boulevard Arago, 75014, Paris, France
2 Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
3 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, United Kingdom
4 Korea Institute for Advanced Study (KIAS) 85 Hoegiro, Dongdaemun-gu, Seoul, 02455, Republic of Korea
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ABSTRACT

The secular thickening of a self-gravitating stellar galactic disc is investigated using the
dressed collisionless Fokker-Planck equation and the inhomogeneous multi-component
Balescu-Lenard equation. The thick WKB limits for the diffusion fluxes are found using the
epicyclic approximation, while assuming that only radially tightly wound transient spirals are
sustained by the disc. This yields simple quadratures for the drift and diffusion coefficients,
providing a clear understanding of the positions of maximum vertical orbital diffusion within
the disc, induced by fluctuations either external or due to the finite number of particles. These
thick limits also offer a consistent derivation of a thick disc Toomre parameter, which is shown
to be exponentially boosted by the ratio of the vertical to radial scale heights.

Dressed potential fluctuations within the disc statistically induce a vertical bending of a
subset of resonant orbits, triggering the corresponding increase in vertical velocity dispersion.
When applied to a tepid stable tapered disc perturbed by shot noise, these two frameworks
reproduce qualitatively the formation of ridges of resonant orbits towards larger vertical ac-
tions, as found in direct numerical simulations, but over-estimates the timescale involved in
their appearance. Swing amplification is likely needed to resolve this discrepancy, as demon-
strated in the case of razor-thin discs. Other sources of thickening are also investigated, such
as fading sequences of slowing bars, or the joint evolution of a population of giant molecular
clouds within the disc.

Key words: Galaxies: evolution - Galaxies: kinematics and dynamics - Galaxies: spiral -
Diffusion - Gravitation

1 INTRODUCTION

The problem of explaining the origin of thick discs in our Galaxy

and in external galaxies has been with us for some time (e.g.,

Gilmore & Reid 1983; Freeman 1987). Its interest has been

revived recently in the context of galactic archeology as probed

by the upcoming result of the GAIA mission. Star formation

typically occurs on circular orbits within such disc, so that young

stars should form a very thin disc (Wielen 1977). On the other

hand, chemo-kinematic observations of old stars within our Milky

Way (Gilmore & Reid 1983; Jurić et al. 2008; Ivezić et al. 2008;

Bovy et al. 2012), or in other galactic discs (Yoachim & Dalcanton

2006) have shown that thick components are very common.

The formation of thickened stellar discs yet remains a puzzle

for galactic formation theory. Various physical processes, either

internal or external, have been proposed as possible drivers

⋆ Hubble Fellow.

of this observed thickening, but their respective impacts are

still unclear. Violent major events could be at the origin of

the extended distribution of stars in disc galaxies. These could

be due to the accretion of galaxy satellites (Meza et al. 2005;

Abadi et al. 2003), major mergers of gas-rich systems (Brook et al.

2004), or gravitational instabilities in gas-rich turbulent clumpy

discs (Noguchi 1998; Bournaud et al. 2009). While mergers do

have a strong impact on galactic structures, these extreme events

may not be required to create a thickened stellar disc, which

could originate from the continuous heating of a preexisting thin

disc. Numerous smooth evolution mechanisms have then been

investigated. Galactic discs could be thickened as a result of

galactic infall of cosmic origin leading to multiple minor merg-

ers (Toth & Ostriker 1992; Quinn et al. 1993; Villalobos & Helmi

2008; Di Matteo et al. 2011), and evidence for such events has

been found in the phase-space structure of the Milky Way (e.g.,

Purcell et al. 2011). Spiral density waves (Sellwood & Carlberg

1984; Minchev & Quillen 2006; Monari et al. 2016) are also
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possible candidates for increasing the velocity dispersion

within the disc, which can then be converted into vertical

motion through the deflection from giant molecular clouds

(GMCs) (Spitzer & Schwarzschild 1953; Hänninen & Flynn

2002). Radial migration (Lynden-Bell & Kalnajs 1972;

Sellwood & Binney 2002), the change of angular momentum

of a star with no increase in its radial energy, is also believed

to be an important mechanism for the secular evolution of

galactic discs. This migration may be induced by spiral-bar

coupling (Minchev & Famaey 2010), transient spiral struc-

tures (Barbanis & Woltjer 1967; Carlberg & Sellwood 1985;

Sellwood & Binney 2002; Solway et al. 2012), or even pertur-

bations by minor mergers (Quillen et al. 2009; Bird et al. 2012).

Schönrich & Binney (2009a,b) used an analytical model of radial

migration to investigate in detail the impact of radial migration

on the vertical heating of the disc and recovered the main charac-

teristics of the Milky Way thick and thin discs. Recent N−body

simulations also focused on the role played by radial migra-

tion (e.g., Haywood 2008; Loebman et al. 2011; Minchev et al.

2014), but the efficiency of this thickening mechanism was

recently shown as limited (Minchev et al. 2012). Finally, large

numerical simulations are now in a position to investigate such

processes consistently in a cosmological context (Minchev et al.

2015; Grand et al. 2016), and the developments of these global

approaches are expected to offer new clues on the interplay be-

tween these various competing thickening mechanisms. All these

investigations can be broadly categorised as relying on either an

internal (nature), or external (nurture) origin to trigger the orbital

restructuration of the disc. Defining the frameworks in which to

address either processes is the purpose of the present paper.

The seminal paper of Binney & Lacey (1988) addressed the

origin of the thick disc using an orbit-averaged Fokker-Planck for-

malism in angle-action. Yet, it fell short of accounting for the self-

gravity of the disc, which was shown recently (Fouvry et al. 2015c)

to play a very significant role in boosting the amplitude of the dif-

fusion coefficient for razor-thin discs via successive sequences of

spiral waves. It is therefore of interest to try and estimate which

orbits are involved in that regime, whether the boost remains sig-

nificant for thickened discs and if the corresponding secular orbital

distortion can account for the observed vertical heating.

Indeed, in such discs made of a finite number of stars and gi-

ant molecular clouds (GMCs), fluctuations in the potential alone

induced by discrete (possibly distant) encounters may be strongly

amplified. Resonances will tend to confine and localise the dissi-

pation of these fluctuations, which can then lead to a spontaneous

thickening of discs. Quantifying the relative importance of this in-

trinsically driven evolution w.r.t. that driven by the environment is

timely, as the cosmological environment of self-gravitating discs

is now firmly established in the context of the ΛCDM paradigm.

While N−body simulations offer a flexible and powerful frame-

work in which to Monte-Carlo these processes (e.g., Minchev et al.

2013), the effect of the disc’s intrinsic fluctuations and susceptibil-

ity can also be addressed in the context of kinetic theory, which

captures discrete resonant interactions over secular timescales.

The kinetic theory of stellar systems was initiated by Jeans

(1929) and Chandrasekhar (1942) for elliptical galaxies and glob-

ular clusters. In these works, spatial inhomogeneity was taken into

account in the advection term (Vlasov) but the collisional term

was calculated by making a local approximation as if the system

were homogeneous. Furthermore, collective effects were neglected.

In plasma physics, where the system is homogeneous, Balescu

(1960) and Lenard (1960) developed a rigorous kinetic theory, tak-

ing collective effects into account, and obtained a kinetic equa-

tion which accounts for the system’s susceptibility and for De-

bye shielding. More recently, in the context of stellar dynam-

ics, Heyvaerts (2010); Chavanis (2012) derived the inhomogeneous

Balescu-Lenard equation, a kinetic equation written in angle-action

variables that describes spatially inhomogeneous multi-periodic

systems and takes collective effects into account. This Balescu-

Lenard equation accounts for the self-driven orbital diffusion of

a self-gravitating system induced by its intrinsic shot noise due to

discreteness and the corresponding long-range correlations. The in-

homogeneous Balescu-Lenard equation has recently been imple-

mented by Fouvry et al. (2015b,c) in 2D for razor-thin discs.

In this paper we intend to account for the system’s self-gravity

while writing down two diffusion equations in the context of tepid

galactic discs of finite thickness. The first one considers the system

as collisionless and focuses on a forcing induced by external per-

turbations, while the second one assumes the system to be isolated

and collisional and focuses on the role played by the system’s in-

trinsic discreteness. Both diffusion processes should be considered

since it is not known a priori which is most effective at restructuring

the orbital distribution of galaxies, i.e. what are the respective roles

of nurture (cosmic environment) vs. nature (system’s internal prop-

erties) in the secular establishment of the observed properties of

these systems. Following Fouvry et al. (2015d) (hereafter FPP15)

and Fouvry et al. (2015b) (hereafter FPC15), and relying on the

epicyclic approximation, we will for simplicity seek the thick WKB

limit of these two diffusion equations while assuming that only

radially tightly wound transient spirals are sustained by the disc.

We will aim for simple double quadratures for the associated dif-

fusion fluxes, in order to provide a straightforward understanding

of the positions of maximum diffusion within the disc. In this cool

regime, the self-gravity of the disc can be tracked down radially

via a local WKB-like response, while the vertical degree of mo-

tion can be partially decoupled. This, in turn, allows us to simplify

the a priori 3D formalism to an effective (non-degenerate) 1D for-

malism. Illustrations of these formalisms will be presented in the

context of a shot noise perturbed tepid Toomre-stable tapered thick

disc. We will underline how they recover the formation of verti-

cal ridges of resonant orbits towards larger vertical actions, hence

larger heights and vertical velocity dispersions. Such diffusion pro-

cesses may capture either the environmentally driven thickening of

galactic discs on secular timescales, or the thickening induced by

the system’s intrinsic graininess. Our qualitative predictions will be

compared to the numerical experiments from Solway et al. (2012)

and the intrinsic limitations of the WKB assumptions will be dis-

cussed in details.

The paper is organised as follows. Section 2 briefly presents

two diffusion equations: the secular collisionless diffusion equation

and the collisional Balescu-Lenard equation. Section 3 focuses on

thick axisymmetric galactic discs within the WKB approximation.

Section 4 applies these formalisms to the formation of vertical res-

onant ridges first in an isolated thick self-gravitating Mestel disc

driven by its own discreteness, and then in such a disc subject to

recurrent decelerating bars or to the joint secular evolution of a

population of GMCs. Section 5 wraps up.

2 SECULAR DIFFUSION

There are two main channels through which a secular evolution

of a stable quasi-stationary self-gravitating system can be induced.

The system may either be perturbed by its stochastic environment

c© 0000 RAS, MNRAS 000, 1–31
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or by its own intrinsic graininess. The first scenario is captured

by the secular collisionless diffusion equation and is presented in

section 2.1, while the second is captured by the inhomogeneous

Balescu-Lenard equation and is presented in section 2.2. Such a di-

chotomy is essential to capture the respective roles of nature and

nurture in the secular evolution of these systems. We will now

briefly describe these two diffusion formalisms.

2.1 Secular collisionless forcing

Let us consider a collisionless self-gravitating system. Let us

further assume that the gravitational background ψ0, associ-

ated with the Hamiltonian H0, is stationary and integrable1, so

that one may always remap the physical coordinates (x,v) to

the angle-action coordinates (θ,J) (Goldstein 1950; Born 1960;

Binney & Tremaine 2008). Along the unperturbed motions, the ac-

tions J are conserved, while the angles θ are 2π−periodic. One

can then introduce the intrinsic frequencies of the system Ω as

Ω = θ̇ =
∂H0

∂J
. (1)

Since the collisionless system is assumed to be in a quasi-

stationary state, it can be described by a distribution function (DF)

F (J , t), which depends only on the actions, with the normali-

sation convention
∫
dxdvF =Mtot, where Mtot is the total ac-

tive mass of the system. When perturbed by an external stochas-

tic source of perturbations, such a system may diffuse on secular

timescales (Weinberg 2001; Pichon & Aubert 2006; Fouvry et al.

2015d) via an anisotropic diffusion equation of the form

∂F

∂t
=

∂

∂J
·
[∑

m

mDm(J)m· ∂F
∂J

]
, (2)

where the index m∈Z
d corresponds to the Fourier coefficients as-

sociated with the Fourier transform w.r.t. the angles θ. See FPP15

for a derivation of the secular collisionless diffusion equation (2).

Here d is the dimension of the physical space, i.e. d=3 for a thick

disc. In equation (2), the diffusion coefficients Dm(J) are given

by

Dm(J) =
1

2

∑

p,q

ψ(p)
m ψ(q)∗

m

[
[I−M̂]−1·Ĉ·[I−M̂]−1

]

pq

. (3)

In equation (3), the response matrix M̂ and the cross-power spec-

tra of the external perturbations Ĉ are functions of ω which should

be evaluated at the resonant frequency m·Ω. Here I stands for

the identity matrix. Equation (3) for the diffusion coefficients in-

volves potential basis elements ψ(p), which are introduced follow-

ing Kalnajs matrix method (Kalnajs 1976). Indeed, to solve the

non-local Poisson’s equation, one introduces a biorthonormal ba-

sis of potentials and densities ψ(p)(x) and ρ(p)(x) such that

∆ψ(p) = 4πGρ(p) ;

∫
dx [ψ(p)(x)]∗ ρ(q)(x) = −δqp . (4)

In order to account for the system’s self-gravity, i.e. its ability to

amplify perturbations, equation (3) involves the system’s response

matrix M̂, which reads

M̂pq(ω) = (2π)d
∑

m

∫
dJ

m·∂F/∂J
ω−m·Ω [ψ(p)

m (J)]∗ψ(q)
m (J) , (5)

1 We note that in the thickened geometry, integrability is not warranted by

symmetry anymore, so that we are effectively assuming that the disc is thin

enough so that it can be approximated to be integrable; see Weinberg (2015)

for a discussion.

where one should note the specific role played by the pole at the in-

trinsic frequency ω=m·Ω. In the expressions (3) and (5), ψ
(p)
m (J)

corresponds to the Fourier transform in angles of the basis elements

ψ(p)(x), defined as

ψ(p)
m (J) =

1

(2π)d

∫
dθψ(p)(x(θ,J)) e−im·θ . (6)

It then finally remains to specify how one should compute Ĉ, the

autocorrelation of the external perturbations. We assume that the

system is stochastically perturbed by an external potential ψe(x, t).
Using the basis elements ψ(p), it may be decomposed as

ψe(x, t) =
∑

p

bp(t)ψ
(p)(x) . (7)

If we assume that the ensemble average (〈 · 〉) of these perturbations

is stationary in time, one can define their temporal autocorrelation

matrix C as

Cpq(t1−t2) =
〈
bp(t1) b

∗
q(t2)

〉
. (8)

In frequency space, using the convention f̂(ω)=
∫
dt f(t) eiωt, it

can equivalently be written as

〈
b̂p(ω) b̂

∗
q(ω

′)
〉
= 2π δD(ω−ω′) Ĉpq(ω) , (9)

where one recovers the autocorrelation matrix Ĉ which enters in

the expression (3) of the diffusion coefficients. To emphasise the

conservation of the total number of stars, one may finally introduce

the total collisionless flux density F tot as

F tot =
∑

m

mDm(J)m· ∂F
∂J

, (10)

so that equation (2) takes the shortened form2

∂F

∂t
= div(F tot) . (11)

While formally simple, equations (2) and (3) capture a wealth of

non-linear physical processes: the secular radial and vertical distor-

tion of resonant orbits induced by a spectrum of dressed perturba-

tions (i.e. accounting for gravitational polarisation) corresponding

to uncorrelated swing amplified spiral waves. We will show in sec-

tion 3 how one may use this collisionless diffusion formalism to

describe the induced secular evolution of axisymmetric thick discs.

2.2 The inhomogeneous Balescu-Lenard equation

If the system is now assumed to be isolated but discrete (i.e. made

of a finite number of particles), its long-term evolution is described

by the inhomogeneous Balescu-Lenard equation (Heyvaerts 2010;

Chavanis 2012). This equation aims at describing the evolution on

secular timescales of this isolated DF under the effects of discrete

resonant “encounters” between stars (finite−N effects). It reads,

using the shortened notation Ωi=Ω(Ji),

∂F

∂t
=π(2π)dµ

∂

∂J1
·
[ ∑

m1,m2

m1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)

|Dm1,m2(J1,J2,m1 ·Ω1)|2

×
(
m1 · ∂

∂J1
−m2 · ∂

∂J2

)
F (J1, t)F (J2, t)

]
, (12)

2 With this convention, −Ftot corresponds to the direction of diffusion of

individual particles in action space.

c© 0000 RAS, MNRAS 000, 1–31
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where µ=Mtot/N is the mass of the individual particles,

1/Dm1 ,m2(J1,J2, ω) are the dressed susceptibility coefficients

which quantify the polarisation cloud around each particle

which triggers sequences of transient swing amplified spi-

rals (Julian & Toomre 1966; Toomre 1981), which in the secu-

lar timeframe are assumed instantaneous. See FPC15 for a brief

derivation of the Balescu-Lenard equation. When collective effects

are neglected, equation (12) becomes the inhomogeneous Landau

equation (Polyachenko & Shukhman 1982; Chavanis 2013), see

Appendix B in FPC15. The r.h.s. of equation (12) is written as

the divergence of a flux, so as to ensure the conservation of the

number of stars. One should also note that this r.h.s. involves a res-

onance condition through the Dirac delta δD(m1 ·Ω1−m2 ·Ω2),
where m1,m2∈Z

d are integer vectors. This condition is the driver

of the collisional evolution. Notice also the antisymmetric oper-

ator, ms
1 ·∂/∂Js

1−m
s
2 ·∂/∂Js

2 in equation (12), which “weighs”

the relative number of pairwise resonant orbits caught in this reso-

nant configuration. Relying on Kalnajs matrix method, the dressed

susceptibility coefficients appearing in equation (12) are given by

1

Dm1,m2(J1,J2, ω)
=
∑

p,q

ψ(p)
m1

(J1) [I−M̂(ω)]−1
pq [ψ(q)

m2
(J2)]

∗ ,

(13)

where the system’s response matrix M̂ was introduced in equa-

tion (5). Finally, one may also benefit from rewriting the Balescu-

Lenard equation (12) under the form of an anisotropic diffusion

equation, by introducing the associated drift and diffusion coeffi-

cients. Indeed, equation (12) may be put under the form

∂F

∂t
=
∑

m1

∂

∂J1
·
[
m1

(
Am1(J1)F (J1)+Dm1(J1)m1 · ∂F

∂J1

)]
,

(14)

whereAm1(J1) andDm1(J1) are respectively the collisional drift

and diffusion coefficients associated with a given resonance m1. To

simplify the notations, we did not write their secular dependence

with F . The drift coefficients Am1(J1) are given by

Am1(J1)=−π(2π)dµ
∑

m2

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)

|Dm1,m2(J1,J2,m1·Ω1)|2
m2·∂F

∂J2
,

(15)

while the diffusion coefficients Dm1(J1) are given by

Dm1(J1)=π(2π)
dµ
∑

m2

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)

|Dm1,m2(J1,J2,m1·Ω1)|2
F (J2) .

(16)

Finally, let us introduce the total collisional diffusion flux F tot as

F tot =
∑

m

m

(
Am(J)F (J)+Dm(J)m· ∂F

∂J

)
, (17)

so as to rewrite the Balescu-Lenard equation (12) and (14) as

∂F

∂t
= div (F tot) . (18)

We will now illustrate how the two previous diffusion formalisms

may be used in the context of axisymmetric thick discs.

3 THICK WKB LIMIT RESPONSE

In order to compute the collisionless and collisional diffusion fluxes

from equations (10) and (17), two main difficulties have to be over-

come. The first one is to explicitly determine the mapping from the

physical phase-space coordinates (x,v) to the angle-action ones

(θ,J) for a thick axisymmetric disc. If one assumes the disc to be

sufficiently tepid, i.e. assumes that the stars orbits are close from

circular orbits, one can rely on the epicyclic approximation to ob-

tain such a mapping, as described in section 3.1. The second dif-

ficulty arises from the computation of the response matrix from

equation (5), which requires the introduction of a biorthogonal ba-

sis of potentials and densities. In order to ease the subsequent inver-

sion of I−M̂, one may follow the WKB approximation (Liouville

1837; Toomre 1964; Kalnajs 1965; Lin & Shu 1966; Palmer et al.

1989; Fouvry et al. 2015d), which amounts to considering only the

diffusion of the system sustained by radially tightly wound spi-

rals. Poisson’s equation is then transformed into a local equation,

which leads to a diagonal response matrix. Such an application

of the WKB formalism in the context of secular dynamics was

successfully implemented in the context of razor-thin tepid galac-

tic discs (Fouvry & Pichon 2015; Fouvry et al. 2015a,b). While it

failed short in predicting the exact amplitude of the response of the

disc, as shown in Fouvry et al. (2015c) where a full treatment was

presented, it captured in that context the physical process of the

resonant diffusion, and in particular the loci of the orbital response.

It is therefore interesting to investigate if this formalism can also

capture the formation of resonants ridges in the vertical direction,

beyond the radial diffusion. The generalisation of the WKB formal-

ism to thick discs will be detailed in section 3.2.

3.1 Epicyclic approximation

If a thick disc is sufficiently cold, i.e. if the radial and vertical excur-

sions of the star are small, one may use the epicyclic approximation

to build up a mapping (x,v) 7→ (θ,J), as we now detail. While it is

well known that the vertical motion tends to be anharmonic, we will

neglect such complication in the framework of this paper. We intro-

duce the cylindrical coordinates (R,φ, z) to describe our thick ax-

isymmetric disc, along with their associated momenta (pR, pφ, pz),
and we assume that the axisymmetric potential ψ0(R, z) is sym-

metric w.r.t. the equatorial plane z=0. The stationary Hamiltonian

H0 of the system then reads

H0 =
1

2

[
p2R+

L2
z

R2
+p2z

]
+ ψ0(R, z)

=
1

2

[
p2R+p

2
z

]
+ψeff(R, z) , (19)

where we noted as Lz the conserved angular momentum of the

star and introduced the effective potential ψeff =ψ0+L
2
z/(2R

2).
The first action of the system is then straightforwardly the angular

momentum Jφ given by

Jφ =
1

2π

∮
dφ pφ = Lz = R2φ̇ . (20)

As we are considering a tepid disc, we may place ourselves in the

vicinity of circular orbits. We define the guiding radius of an orbit

through the implicit relation

∂ψeff

∂R

∣∣∣∣
(Rg,0)

= 0 . (21)

Here Rg(Jφ) corresponds therefore to the radius for which stars

with an angular momentum Jφ are on exactly circular orbits. The

mapping betweenRg and Jφ is unambiguous (up to the sign of Jφ).

In addition, this circular orbit is described at the angular frequency

Ωφ given by

Ω2
φ(Rg) =

1

Rg

∂ψ0

∂R

∣∣∣∣
(Rg,0)

. (22)

c© 0000 RAS, MNRAS 000, 1–31



Resonant thickening of self-gravitating discs 5

In the neighbourhood of circular orbits, one may expand the Hamil-

tonian from equation (19) as

H0 =
1

2
[p2R+p

2
z]+ψeff(Rg, 0)+

κ2

2
(R−Rg)

2+
ν2

2
z2 , (23)

where we used the symmetry of the potential w.r.t. the plane z=0
and introduced the epicyclic frequencies κ and ν as

κ2(Rg) =
∂2ψeff

∂R2

∣∣∣∣
(Rg,0)

; ν2(Rg)=
∂2ψeff

∂z2

∣∣∣∣
(Rg,0)

. (24)

At the level of approximation of the Taylor expansion in

equation (23), the radial and vertical motions are decoupled,

and correspond to harmonic librations. Therefore, up to ini-

tial phases, there exists two amplitudes AR and Az such that

R(t)=Rg+AR cos(κt) and z(t)=Az cos(νt). The two associ-

ated actions Jr and Jz are then immediately given by

Jr =
1

2
κA2

R ; Jz =
1

2
νA2

z . (25)

For (Jr, Jz)=(0, 0), the orbit of the star is circular. When one

increases Jr (resp. Jz), the amplitude of the radial (resp. ver-

tical) oscillations increases, so that the orbit gets hotter. One

should also note that within the epicyclic approximation, the

intrinsic frequencies Ω=(Ωφ, κ, ν) only depend on the vari-

able Rg. Such a dynamical degeneracy may impact the sys-

tem’s secular properties. Finally, one can explicitly construct the

mapping between the physical coordinates (R,φ, z, pR, pφ, pz)
and (θR, θφ, θz, Jr, Jz, Jφ) (Lynden-Bell & Kalnajs 1972; Palmer

1994; Binney & Tremaine 2008), which at first order takes the form






R = Rg+AR cos(θR) ,

φ = θφ−
2Ωφ
κ

AR
Rg

sin(θR) ,

z = Az cos(θz) .

(26)

These relations and equations (20) and (25), provide an explicit

mapping between the physical phase-space coordinates and the

angle-action ones.

Finally, throughout the calculations, it will be assumed that

the quasi-stationary DF of the system will initially take the form of

a quasi-isothermal DF (Binney & McMillan 2011) defined as

F (Rg, Jr, Jz) =
ΩφΣ

πκσ2
r

exp

[
− κJr

σ2
r

]
ν

2πσ2
z

exp

[
− νJz

σ2
z

]
, (27)

where the functions Σ, Ωφ, κ, ν, σr and σz have to be evaluated

at Rg. Here, Σ is the projected surface density associated with the

system’s density ρ so that Σ(R)=
∫
dz ρ(R, z), while σr (resp. σz)

represents the radial (resp. vertical) velocity dispersion of the stars

at a given radius, and only depends on the position in the disc.

Such a DF becomes the Schwarzschild DF in the epicycle limit (see

equation (4.153) in Binney & Tremaine 2008).

3.2 Thick WKB basis elements

In the context of razor-thin discs, FPP15 presented in details how

to construct a biorthonormal basis of tightly wound potentials and

densities corresponding to a WKB solution of Poisson’s equation.

This construction of local basis elements led to a diagonal response

matrix. One may now generalise this approach to discs of non-

zero thickness by accordingly modifying the vertical components

of these elements. The detail of some of the upcoming convolved

in-plane calculations will not be presented, as they can be found

in FPP15. We will focus here on the specifics of the extra vertical

R

ψ

Rp0

σ

1/kpr

Rq0

σ

1/kqr

Figure 1. Reproduced from FPC15. Illustration of the radial dependence of

two WKB basis elements. Each Gaussian BR0
is centred around a radius

R0, is modulated at the frequency kr , and extends on a region of size given

by the decoupling scale σ.

degree of freedom. Using the cylindrical coordinates (R,φ, z), let

us introduce the basis elements

ψ[kφ,kr ,R0,n](R,φ, z) = Aψ
[kφ,kr,R0]
r (R,φ)ψ[kr,n]

z (z) , (28)

where A is an amplitude which will be tuned later on to

ensure the correct normalisation of the basis elements. Here

ψ
[kφ,kr,R0]
r (R,φ) corresponds to the same in-plane dependence as

the one introduced in FPP15 for the infinitely thin WKB basis ele-

ments and reads

ψ
[kφ,kr,R0]
r (R,φ) = ei(kφφ+krR) BR0(R) , (29)

where the radial window function BR0(R) is defined as

BR0(R) =
1

(πσ2)1/4
exp

[
− (R−R0)

2

2σ2

]
. (30)

The basis elements from equation (28) are indexed by four num-

bers: kφ is an azimuthal number which characterises the angular

component of the basis elements,R0 is the radius in the disc around

which the Gaussian window BR0 is centred, kr corresponds to the

radial frequency of the basis elements, and finally n≥1 is an inte-

ger index, specific to the thick disc case, which numbers the consid-

ered vertical dependences, as detailed later on. In equation (30), we

also introduced a decoupling scale σ, which ensures the biorthog-

onality of the basis elements. Figure 1 illustrates the radial de-

pendence of these basis elements, while figure 2 focuses on their

dependence in the (R,φ, z=0)−plane. One should note that the

decomposition introduced in equation (28) amounts to multiplying

the in-plane thin WKB basis elements by a vertical function ψ
[kr,n]
z

which should now be specified.

Starting from the ansatz of equation (28), one now has to solve

Poisson’s equation (4) to determine the associated density basis el-

ements. Given the assumption of tight-winding (mainly krR≫1,

see FPP15), it takes the form

− k2rAψrψz+Aψr
d2ψz
dz2

= 4πGρ , (31)

where the superscripts [kφ, kr, R0, n] have not been written out to

shorten the notations. Let us now assume that the density elements

satisfy the ansatz of separability

ρ(R,φ, z) =
λρ
4πG

Aψr(R,φ)ψz(z)w(z) , (32)

where λρ=λ
[kr,n]
ρ is a proportionality constant, while w(z) is a
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R
p
0

R
q
0

σ

σ

Figure 2. Reproduced from FPC15. Illustration of the dependence of two

WKB basis elements in the (R, φ, z=0)−plane. Each basis element is lo-

cated around a central radius R0, on a region of size σ. The winding of

the spirals is governed by the radial frequency kr , while the number of az-

imuthal patterns is given by the index kφ, e.g., kφ=1 for the interior dark

grey element, and kφ=2 for the exterior light grey one.

cavity function independent of the basis elements’ indices. Such a

decomposition allows us to rewrite equation (31) as

d2ψz
dz2

−k2rψz = λρ w(z)ψz . (33)

Notice that equation (33) takes the form of a Sturm-Liouville equa-

tion (Courant & Hilbert 1953), for which one has to determine

the eigenfunctions ψ
[kr,n]
z along with their associated eigenval-

ues λ
[kr,n]
ρ . Under sufficient assumptions of regularity the Sturm-

Liouville theory states that there exists a discrete spectrum of

real eigenvalues λ1<λ2<...<λn→+∞, with their associated

eigenfunctions ψ1
z , ψ2

z , ..., ψnz . Moreover, when correctly nor-

malised, the eigenfunctions form a biorthogonal basis such that∫
dz w(z)ψpz (z)ψ

q
z(z)=δ

q
p.

In order to obtain an explicit expression for our thick basis ele-

ments, one now has to specify the considered cavity function w(z).
Let us assume that the density basis elements are zero for |z|>h,

so that they vanish out of a sharp cavity. This amounts to choosing

w(z) such that

w(z) = Θ(z/h) , (34)

where Θ(x) is a door function, equal to 1 for x∈ [−1; 1] and 0
elsewhere (see Griv & Gedalin 2012, for a similar ansatz). Since

the WKB basis is a local basis, one can adapt the height h=h(R0)
as a function of the position within the disc, so as to better mimic

the mean density profile of the disc. Because h(R0) is an ad hoc

parameter, one still has to detail how this quantity should be spec-

ified as a function of the disc’s parameters. The main idea be-

hind equation (34) is to approximate the physical cavity of the

mean density profile by an approximate sharp cavity of height

h. To do so, as illustrated in figure 3, h is chosen to match

the volume of the physical and sharp cavities, i.e. one imposes∫
dz ρtot(R0, z)=2h(R0) ρtot(R0, 0). When assuming the mean

density profile to be a Spitzer profile, as defined later on in equa-

tion (109), one can immediately relate h to z0 as h(R0)=2 z0(R0).
Therefore, the cavity scale h from equation (34) should not be seen

z

ρ(z)

h

Figure 3. Construction of the sharp cavity (solid lines) consistent with the

underlying physical vertical density (dotted-dashed lines). We impose the

matching of the total volume of the physical and approximate vertical den-

sity profiles. The mean density profile corresponds to a Spitzer profile, as

introduced in equation (109).

as a free parameter of our model, but as imposed by the physical

mean density profile of the considered disc.

Given the cavity function from equation (34), one may then

solve Poisson’s equation (33) – which takes the simple form of a

wave equation – to obtain an explicit expression for the thick WKB

basis elements. It is therefore assumed that ψz follows the ansatz

ψz(z) =






Ae−krz, if z > h ,

Beikzz+Ce−ikzz, if |z| ≤ h ,

Dekrz, if z < −h ,
(35)

where the frequency kz remains to be determined. One immedi-

ately obtains λρ=−(k2r+k
2
z). In the decomposition from equa-

tion (35), one must also ensure that both ψz and dψz/dz are con-

tinuous at z=±h. At this stage, we will now restrict ourselves to

symmetric perturbations, so that ψz(−z)=ψz(z). The very similar

antisymmetric case is detailed in Appendix A. For even perturba-

tions, one immediately obtains from equation (35) that A=D and

B=C. The continuity conditions on ψz and dψz/dz then take the

form
{
Ae−krh = 2B cos(kzh) ,

krAe
−krh = 2kzB sin(kzh) .

(36)

In order to have a non trivial solution, this requires for kz to satisfy

the relation

tan(kzh) =
kr
kz
. (37)

Equation (37) plays the role of a quantisation relation, which con-

strains the allowed values for kz, once kr and h have been speci-

fied. As in the definition of the basis elements from equation (28),

we introduce the index n≥1 such that knz is the n−th solution of

equation (37), so that one has

k1z<k
2
z<...<k

n
z <... and tan(knz h) =

kr
knz

. (38)

In addition, if one assumes that the disc is sufficiently thin so that

k1zh and krh.1, one can obtain in this limit a simple estimation of

the first quantised even k1z which reads

k1z≃
√
kr
h
. (39)

The symmetric quantisation relation (37) along with its anti-

symmetric analog from equation (A2) are illustrated in figure 4.

Two important properties of these quantisation relations should be

noted. First of all, the fundamental symmetric frequency k1z appears
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x
xs1 xs2

xa1 xa2

tan(x)

x0/x

−x/x0

Figure 4. Illustration of the quantisation relations for the vertical frequency

kz induced by the sharp cavity of height h. In order to use dimensionless

quantities, we introduced x=kzh and x0=krh. The top dotted-dashed

curve corresponds to the symmetric case from equation (37) leading to the

quantised dimensionless frequencies xs1, xs2,... The bottom dashed curve

corresponds to the antisymmetric case obtained in equation (A2) associated

with xa1, xa2,... One can note the specific role played by the fundamental

symmetric frequency xs1, which is the only dimensionless frequency infe-

rior to π/2.

as the only quantised frequency such that k1zh<π/2. Given equa-

tion (39), in the infinitely thin limit where h→0, one has k1zh→0,

while all the other frequencies are such that kzh remains larger

than π/2. Such a property already underlines how this fundamen-

tal symmetric mode k1z will play a particular role in the razor-thin

limit. Moreover, because of the π−periodicity of the “tan” func-

tion, in the limit of a sufficiently thick disc for which krh&π, one

may assume that for both symmetric and antisymmetric cases, one

has

∆kz = kn+1
z −knz ≃ π

h
. (40)

After some simple algebra, one can finally give a complete defini-

tion of the symmetric potential elements as

ψ[kφ,kr ,R0,n] (R,φ, z) = Aψ
[kφ,kr,R0]
r (R,φ)

×
{
cos(knz z) if |z| ≤ h ,

ekrhcos(knz h) e
−kr|z| if |z| ≥ h .

(41)

Similarly, the associated density elements are given by

ρ[kφ,kr,R0,n] (R,φ, z) = − k2r+(knz )
2

4πG

× ψ[kφ,kr,R0,n](R,φ, z)Θ

[
z

h

]
. (42)

The associated antisymmetric basis elements are given in equa-

tions (A3) and (A4). Figure 5 illustrates the shape of the

vertical component of the first basis elements. As imposed

by the definition from equation (4), one must then ensure

that the basis is biorthogonal. As demonstrated in FPP15, we

know that for (kpφ, k
p
r , R

p
0) 6=(kqφ, k

q
r , R

q
0), the orthogonality prop-

erty is satisfied, under the WKB scale-decoupling assumptions

∆R0≫σ≫1/∆kr, where ∆R0 and ∆kr stand for the step dis-

tances between two successive basis elements, and σ is of the width

of the radial Gaussian in equation (30) (see Fouvry et al. (2015b)

ψs
1

ψs
2

ψs
3

ψa
1

ψa
2

−h h

Figure 5. Illustration of the vertical dependence of the WKB potential basis

elements. Here ψs stands for the symmetric elements from equation (41),

and ψa for the antisymmetric elements from equation (A3). As expected

from the Sturm-Liouville theory, the basis elements can be ordered via their

number of nodes within the cavity.

for details). Moreover, as underlined after equation (33), the Sturm-

Liouville theory naturally enforces the orthogonality w.r.t. the np
and nq indices, so that the basis elements from equations (41)

and (42) are indeed orthogonal. To finalise the construction of the

basis elements, it only remains to correctly normalise them, by de-

termining the value of the amplitude A. One immediately obtains

A =

√
G

R0h(k2r+(knz )2)
αn , (43)

where 1.αn.1.6 is a numerical prefactor given by

αn =

√
2

1+sin(2knz h)/(2knz h)
. (44)

Using the angle-action mapping from equation (26), one may now

compute the Fourier transform of the symmetric basis elements as

defined in equation (6). We recall the sum decomposition formula

of the Bessel functions of the first kind Jℓ which reads

eiz cos(θ) =
∑

ℓ

iℓJℓ(z) eiℓθ ; eiz sin(θ) =
∑

ℓ

Jℓ(z) eiℓθ , (45)

along with the property Jℓ(−x)=(−1)ℓJℓ(x). Assuming that the

vertical excursions of the stars are smaller than h, one obtains

ψ
[kφ,kr,R0,n]
m (J) = δ

kφ
mφ δ

even
mz

A eikrRg imz−mrBR0(Rg)

× Jmr

[√
2Jr
κ
kr

]
Jmz

[√
2Jz
ν
knz

]
, (46)

while the antisymmetric analog is given in equation (A7). Given

ψ
(p)
m (J), one may now proceed to the evaluation of the response

matrix from equation (5).

3.3 Amplification eigenvalues

A key result of FPP15 was to show that in the infinitely thin limit,

the response matrix could be assumed to be diagonal, when com-

puted with WKB basis elements along with the scale-decoupling
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hypothesis ∆R0≫σ≫∆kr. This was a central result allowing

for the analytical derivation of the diffusion coefficients. Here, the

thick basis elements will have the same radial dependence as in

FPP15, but their vertical components might interact and therefore

lead to a more complex response matrix. In Appendix B, we show

that for a thick disc with our thick WKB basis elements, one may

still assume the response matrix to be diagonal so as to have

M̂[k
p
φ
,k

p
r,R

p
0
,np],[k

q
φ
,k

q
r,R

q
0
,nq ]

=δ
k
q
φ

k
p
φ
δ
kqr
k
p
r
δ
R

q
0

R
p
0

δ
nq
npλ[k

p
φ
,k

p
r,R

p
0
,np ]

. (47)

This is a crucial result of the present section.

Let us now estimate the diagonal elements of the response ma-

trix. Compared to FPP15, an additional difficulty in the thick con-

text is to compute the additional integral on Jz . This can be made

using formula 6.615 from Gradshteyn & Ryzhik (2007), which

reads
∫ +∞

0

dJz e
−aJzJmz

[
bp
√
Jz

]
Jmz

[
bq
√
Jz

]

=
1

a
Imz

[
bpbq
2a

]
exp

[
− b2p+b

2
q

4a

]
, (48)

where bp/q=k
p/q
z

√
2/ν and a=ν/σ2

z . As the disc is supposed to

be tepid, in equation (5), the contributions from ∂F/∂Jφ may be

neglected w.r.t. ∂F/∂Jr and ∂F/∂Jz . Following the same method

as in Appendix B of FPP15, and after some algebra, one finally

obtains the expression of the symmetric amplification eigenvalues

as

λsym
[kφ,kr ,R0,n]

=
2πGΣα2

n

hκ2(1+(kz/kr)2)

∑

ℓz even

e−χzIℓz [χz]
(1−s2ℓz )

×
{
F(sℓz , χr)−ℓz

ν

σ2
z

σ2
r

κ
G(sℓz , χr)

}
. (49)

In equation (49), the dimensionless quantities χr and χz were de-

fined as

χr =
σ2
rk

2
r

κ2
; χz =

σ2
zk

2
z

ν2
, (50)

and the shifted dimensionless frequency sℓz as

sℓz =
ω−kφΩφ−ℓzν

κ
. (51)

Finally, in equation (49), the (reduction) functions F and G were

also introduced as




F(s, χ)=2(1−s2) e
−χ

χ

+∞∑

ℓ=1

Iℓ[χ]
1−[s/ℓ]2

,

G(s, χ)=2(1−s2) e
−χ

χ

[
1

2

I0[χ]

s
+
1

s

+∞∑

ℓ=1

Iℓ[χ]
1−[ℓ/s]2

]
,

(52)

where F is the usual reduction function from the seminal works

of Kalnajs (1965); Lin & Shu (1966). When considering antisym-

metric contributions, thanks to the results from Appendix A, one

obtains the amplification eigenvalues given by

λanti
[kφ,kr ,R0,n] =

2πGΣβ2
n

hκ2(1+(kz/kr)2)

∑

ℓz odd

e−χzIℓz [χz]
(1−s2ℓz )

×
{
F(sℓz , χr)−ℓz

ν

σ2
z

σ2
r

κ
G(sℓz , χr)

}
, (53)

where the prefactor βn has been defined in equation (A6).

Equations (49) and (53) are also important results of this pa-

per, since they allow us to easily assess the strength of the self-

gravitating amplification for a thick disc. When effectively com-

puting the thick amplification eigenvalues from equations (49)

and (53), in order to obtain physically relevant amplification eigen-

values (i.e. satisyfing 0<λ<1 in their definition domain), one has

to enforce two additional restrictions. These amount to neglecting

the contributions from the vertical action gradients w.r.t. the radial

ones, and restricting the sum on resonance vectors only to closed

orbits on resonance. Let us now motivate these two restrictions.

The general expression of the response matrix from equa-

tion (5) involves the gradient of the DF w.r.t. to the actions ∂F/∂J .

As the disc is supposed to be tepid, one may neglect the contribu-

tions from ∂F/∂Jφ w.r.t. ∂F/∂Jr and ∂F/∂Jz (as was assumed

in Fouvry et al. (2015d) in the razor-thin case). In addition, we also

neglect the contributions from the vertical action gradients w.r.t. the

radial ones, as the radial ones are the only ones which remain in the

razor-thin limit. In equations (49) and (53), this amounts to neglect-

ing any contributions from the reduction function G and only con-

serving contributions from the reduction function F . Let us note

that in the razor-thin case, the DF’s vertical gradient ∂F/∂Jz be-

comes infinite and yet does not appear in the razor-thin amplifi-

cation eigenvalues (see equation (60)). Our first restriction in the

computation of the amplification eigenvalues (i.e. neglecting the

∂F/∂Jz gradients) amounts to propagating this razor-thin property

to the thickened case.

Moreover, attention should be paid to the fact that in order

to compute the collisionless diffusion coefficients Dm(J) from

equation (3) as well as the collisional drift and diffusion coeffi-

cients Am(J) and Dm(J) from equations (15) and (16), one has

to evaluate the amplification eigenvalues at the resonant frequency

ω=m·Ω. Therefore, as noted in equation (B4), the shifted dimen-

sionless frequency smℓz from equation (51), associated with a reso-

nance m, takes the form

smℓz = mr+(mz−ℓz)
ν

κ
+iη , (54)

where a small imaginary part η was added. Since the potential is

assumed to be non-degenerate, i.e. ν/κ is not a rational number

of low order, smℓz , when evaluated for a resonance m, is an in-

teger only for ℓz=mz. Here, having an integer smℓz implies that

there exists a rotating frame in which the orbit is closed, i.e. in

which the considered stars are exactly on resonance. In the razor-

thin 2D case, such a rotating frame always exists (see the razor-

thin expression (58)), while in the thickened 3D case this is not

always possible. As illustrated in figure B1, the reduction functions

s 7→F(s, χ),G(s, χ) diverge in the neighbourhood of integers, but

are well defined when evaluated for exactly integer values, pro-

vided that one adds a small imaginary part η as in equation (54).

In order to never probe the diverging branches of these reductions

functions, one should always evaluate these functions for exactly

integer values of s. Consequently, because smℓz is an integer only

for ℓz=mz, in the general expressions (49) and (53) of the ampli-

fication eigenvalues, we restrict the sum on ℓz solely to this case.

Let us note that in the razor-thin case, the dimensionless frequency

s=(ω−kφΩφ)/κ, when evaluated at resonance, is always an inte-

ger. Our second restriction in the computation of the amplification

eigenvalues (i.e. considering only the term ℓz=mz) amounts to

propagating this razor-thin property to the thickened case.

To conclude, given to the two previous critical approxima-

tions, the expressions of the amplification eigenvalues from equa-

tions (49) and (53), when computed for a resonance m, generically

becomes

λm(Jφ,kr,kz)=
2πGΣγ2

m

hκ2(1+(kz/kr)2)

e−χzImz[χz]

(1−m2
r)

F(mr,χr) , (55)
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where we introduced the numerical prefactor γm as

γm(Jφ, kr, kz) =

{
α(Jφ, kr, kz) if mz even ,

β(Jφ, kr, kz) if mz odd .
(56)

The general rewriting from equation (55) applies in the same man-

ner to both symmetric and antisymmetric vertical resonances. No-

tice that the approximated amplification eigenvalues from equa-

tion (55) remain fully compatible with the discussion from Ap-

pendix B, where we justified that the system’s response matrix can

be assumed to be diagonal. Finally, let us note that these restrictions

on the computation of the amplification eigenvalues were used in

all the numerical applications presented in section 4.

3.4 A thickened Q factor

Before evaluating the collisionless and collisional diffusion fluxes,

let us now illustrate how the previous amplification eigenvalues al-

low us to recover the razor-thin WKB amplification eigenvalues

obtained in FPP15 and the known WKB dispersion relations for

stellar discs (Kalnajs 1965; Lin & Shu 1966). As a second step, we

will emphasise how equation (55) allows for a generalisation of

Toomre’s Q parameter (Toomre 1964) to thick discs.

In the infinitely thin limit, one can only consider resonances

associated with mz=0, so that only the symmetric basis ele-

ments may play a role. Thanks to the quantisation relation illus-

trated in figure 4, notice that except for the fundamental sym-

metric mode k1z,s, one always has knz,s>π/(2h). In the infinitely

thin limit, for which h→0, only the fundamental symmetric mode

will be relevant for the amplification eigenvalue. In this thin

limit, in equation (49), one can get rid of the degree of freedom

w.r.t. knz and evaluate the symmetric amplification eigenvalue in

(kr, k
1
z,s(kr, h))≃ (kr,

√
kr/h), thanks to equation (39). Equa-

tion (55) then reads

λ(ω, kφ, kr, h) =
2πGα2

1Σkr
κ2(1+krh)

e−χzI0[χz]

(1−s2) F(s, χr) , (57)

where the prefactor α1 was introduced in equation (44) and is a

function of k1z,sh=
√
krh, so that limthin α1=1. In equation (57),

we also introduced the dimensionless frequency s as

s =
ω−kφΩφ

κ
. (58)

Finally, χz, defined in equation (50), is only a function of kr and

h, and reads χz=(σ2
zkr)/(ν

2h). When studying the infinitely thin

limit, remember that the physical height σz/ν and the cavity size

h are directly related. Indeed, as detailed in equation (113), given

Jeans equation, one has

σz
ν

= c2 h , (59)

where c2 is a dimensionless constant. For the mean Spitzer

density profile introduced in equation (109), one immedi-

ately has c2=1/
√
2. One can write χz=c

2
2krh, and has

limthin χz=0. Starting from equation (57), since limthin α1=1
and limthin χz=0, one immediately recovers in the limit of an in-

finitely thin disc the known amplification eigenvalues of razor-thin

discs (see FPP15) as

lim
thin

λsym =
2πGΣ|kr|
κ2(1−s2)F(s, χr) . (60)

This result demonstrates how the thick WKB basis introduced in

equation (28) is fully consistent with the known razor-thin results.

Figure 6. Illustration of the effect of the disc thickness on the amplification

eigenvalues. The disc is the thickened Mestel disc introduced in section 4.1,

for the resonance m=mCOR at the location Jφ=2. The different curves

correspond to different values of the scale thickness z0 from equation (109).

For z0 6=0, we computed λ(kr , kmin
z (kr)) thanks to equation (55), while

for z=0, i.e for the razor-thin case, we computed λthin(kr) following

equation (60). As expected, one recovers that the thickening of the disc

tends to reduce its gravitational susceptibility.

Using the numerical values from the thickened Mestel disc intro-

duced in section 4.1, this property is illustrated in figure 6.

Equation (57) can now be used to study how Toomre’s Q fac-

tor (Toomre 1964) gets modified by the thickening of the disc, i.e.

by a non-zero value of h. Let us recall that Q is a parameter such

that Q>1 ensures the stability of the disc w.r.t. local axisymmetric

tightly wound perturbations. As only stability w.r.t. tightly wound

axisymmetric modes is considered, we may first impose kφ=0.

Here, we place ourselves at the stability limit given by ω=0, so

that s=0, and seek a criterion on the disc’s parameters such that

there exists no kr>0 for which λ(kr, h)=1, i.e. such that the disc

is stable. In this context, equation (57) immediately takes the form

λ(kr, h) =
2πGΣkr
κ2

F(0, χr)

{
α2
1

1+krh
e−χzI0[χz]

}

=
2πGΣkr
κ2

F(0, χr)

{
1−

[
2

3
+c22

]
krh

}

=
2πGΣ

κσr
K(χr, γ) , (61)

where the second line of the previous equation has been obtained

using a series development at first order w.r.t. krh≪1, by express-

ing α1 and χz as function of krh. As expected, one recovers that

adding a finite thickness to the disc tends to reduce the amplifi-

cation eigenvalues. In equation (61), to shorten the notations, we

introduced the parameter γ=[ 2
3
+c22](h/κ)/σr , and defined the

structure function K(χr, γ) as

K(χr, γ) =
1√
χr

[
1−e−χrI0[χr]

][
1−γ√χr

]
. (62)

The shape of the function χr 7→K(χr, γ) is illustrated in figure 7.

In order to obtain a simple asymptotic expression of a thick stabil-

ity parameter, one must then study Kmax(γ), the maximum of the

function χr 7→K(χr, γ) as a function of γ. For γ=0, i.e. for the

razor-thin case, K0
max≃0.534 reached for χ0

max≃0.948. A first

order expansion in γ yields

Kmax(γ) ≃ K0
max

[
1−γ

√
χ0
max

]

≃ K0
max e

−γ
√
χ0
max = Kapprox.

max (γ) , (63)

which is found to approximate well Kmax(γ) for γ.2. Given the
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10 J.-B. Fouvry, C. Pichon, P.-H Chavanis & L. Monk

Figure 7. Behaviour of the structure function χr 7→K(χr, γ) from equa-

tion (62) for various values of γ, as defined in equation (62). The razor-thin

case corresponds to γ=0.

maximum Kapprox.
max (γ), the expression of the thickened Qthick pa-

rameter follows from equation (61) and reads

Qthick = Qthin e
−γ

√
χ0
max = Qthin exp

[
1.61

σz/ν

σr/κ

]
. (64)

where the relation (59) was used to rewrite h as a function of σz/ν,

given the value c2=1/
√
2. Equation (64) involves the razor-thin

stability parameter Qthin (Toomre 1964) reading

Qthin =
σrκ

3.36GΣ
. (65)

As expected, increasing the thickness of the disc leads to larger

Q values, and therefore to more stable discs, via an exponential

boost in the ratio of the vertical to radial scale heights. Note that

expression (64) which was obtained through the computation of

the response matrix eigenvalues using thick WKB basis elements

is fairly general and is not specific to the Spitzer mean density pro-

file from equation (109). When considering a different mean den-

sity profile, one only has to change accordingly the value of the

constant c2 from equation (59), which relates the size of the mean

density profile to the sharp cavity introduced in equation (34). Let

us now discuss how this relates to previous results. A few authors

have tackled the question of characterising the stability of thick-

ened stellar discs (see Romeo (1992) and references therein). The

most reliable and self-consistent analysis is the one of Vandervoort

(1970), which investigates density waves in thickened stellar discs.

This approach is based on the collisionless Boltzmann equation

limited to even vertical perturbations, and relies on the assump-

tion of the existence of an adiabatic invariant Jz , which allows for

the description of the vertical motion of the stars. Written with our

current notations, Vandervoort (1970, his equation 77) obtains am-

plification eigenvalues of the form

λV =
2πGΣ|kr |
κ2(1−s2)F(s, χr)Q

−1
V (krh) , (66)

where figure 3 was used to relate h and z0. In equation (66),

QV(krh) is a non trivial function, which may be computed via

variational principles. Similarly, in our present formalism, starting

from equation (57), equation (66) takes the form

λF =
2πGΣ|kr|
κ2(1−s2)F(s, χr)Q

−1
F (krh) , (67)

where the function QF(krh) is defined as

QF(krh) =
1+krh

α2
1 e

−χz I0[χz]
, (68)

where one should pay attention to the fact that QF only depends on

the value of krh. Let us note that he expression of the correction

function QF is explicit and was obtained here by directly estimat-

ing the eigenvalues of the response matrix from equation (5) using

the thickened WKB basis elements from equation (28). Thanks to

the values from Table 1 in Vandervoort (1970), which provides ap-

proximate values for the function x 7→QV(x), the behaviours of the

functions QV and QF can straightforwardly be compared. These

functions are found to agree well on the range 0≤krh≤5.

3.5 Collisionless orbital diffusion

Thanks to the estimation of the system’s amplification eigenvalues,

one may now estimate the collisionless diffusion coefficients from

equation (3). In order to shorten the notations, the WKB basis ele-

ments from equation (28) will be written as

ψ(p) = ψ[k
p
φ
,kpr ,R

p
0
,np] . (69)

Assuming, as in equation (47), that the response matrix is diago-

nal, we may rewrite it under the form M̂pq=λpδ
q
p. The diffusion

coefficients from equation (3) are then given by

Dm(J)=
1

2

∑

p,q

ψ(p)
m (J)ψ(q)∗

m (J)
1

1−λp
1

1−λq
Ĉpq(m·Ω) , (70)

where Ĉpq , as defined in equation (9), corresponds to the cross-

correlation between the basis coefficients b̂p and b̂q. One should

note that the Fourier transformed basis elements from equation (46)

involve a δevenmz
(resp. δoddmz

) for the symmetric (resp. antisymmet-

ric) elements. Therefore, in equation (70), since ψ
(p)
m and ψ

(q)
m are

evaluated for the same resonant vector m, the diffusion coefficients

do not couple the symmetric and antisymmetric basis elements. To

estimate Dm, depending on whether mz is even (resp. odd), one

only has to consider the symmetric (resp. antisymmetric) basis el-

ements. As was done in section 3.2, let us now restrict ourselves

to the symmetric case, while the very similar antisymmetric case is

detailed in Appendix C. Following the same approach as in FPP15,

one may first express the basis coefficients b̂p as a function of the

external perturbation ψe. After some calculation, one obtains

b̂p(ω) =
(kpr )

2+(kpz)
2

4πG

ApR
p
0

(πσ)1/4
(2π)2ψ̂e

mφ,k
p
r ,k

p
z
[Rp0 , ω] , (71)

where we used the shortening notation kpz=k
np
z . In equation (71),

the external potential ψ̂e has undergone three transformations: (i)

an azimuthal Fourier transform of indice mφ, (ii) a local radial

Fourier transform centred around Rp0 at the frequency kpr , and (iii)

an even-restricted vertical Fourier transform on the scale h at the

frequency kpz . These three transforms are defined as

(i) : fmφ =
1

2π

∫
dφ f [φ] e−imφφ ,

(ii) : fkr [R0]=
1

2π

∫
dR e−ikr(R−R0) exp

[
− (R−R0)

2

2σ2

]
f [R] ,

(iii) : fkz =

∫ +h

−h

dz cos(kzz) f [z] . (72)

By disentangling the sums on p and q in equation (70), one may

rewrite the diffusion coefficients as

Dsym
m (J) = δevenmz

〈
1

2π

∫
dω′ g(m·Ω) g∗(ω′)

〉
, (73)
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where the function g(ω) is defined as

g(ω)=
2π

2h

∑

k
p
r ,R

p
0
,np

gs(k
p
r , R

p
0, k

p
z , ω) e

ikpr (Rg−R
p
0
)Gr(Rg−Rp0) . (74)

In equation (74), one should note that the sum on kpφ has been ex-

ecuted thanks to the Kronecker delta from equation (46). In equa-

tion (74), Gr(R)=1/
√
2πσ2e−R

2/(2σ2) is a normalised Gaussian

of width σ, and gs encompasses all the slow dependences of the

diffusion coefficients w.r.t. the radial position so that

gs(k
p
r , R

p
0 , k

p
z , ω) =Jmr

[√
2Jr
κ
kpr

]
Jmz

[√
2Jz
ν
kpz

]

× α2
p

1−λp
ψ̂e
mφ,k

p
r ,k

p
z
[Rp0 , ω] . (75)

One can note that in the discrete sums from equation (74), the ba-

sis elements are separated by step distances ∆kr and ∆R0, so that

∆kr=nk∆kr and Rp0=Rg+nr∆R0. As in FPP15, in order to

cancel out the rapidly evolving complex exponential from equa-

tion (74), one can straightforwardly show that the basis elements

must satisfy a critical sampling condition (Gabor 1946; Daubechies

1990) of the form

∆R0∆kr = 2π . (76)

Given these step distances, and using Riemann sum formula,

equation (74) may be rewritten with continuous integrals w.r.t.

the Rp0 and kpr variables. As the Gaussian Gr(Rg−Rp0) is suf-

ficiently peaked and correctly normalised, it may be replaced by

δD(Rg−Rp0). Therefore, equation (74) becomes

g(ω) =
1

2h

∑

np

∫
dkpr gs(k

p
r , Rg, k

p
z , ω) , (77)

where one must note that there remains a sum on the index np.

At this stage, there are two strategies. On the one hand, one can

either assume the disc to be sufficiently thick so as to replace the

sum on np in equation (77) by a continuous integral over kz . On

the other hand, in the limit of a thin disc, one should keep the dis-

crete sum from equation (77). In the upcoming calculations, we will

follow the first approach. Appendix D details how one should pro-

ceed with the second approach, shows that these two approaches

are fully consistent one with another, and also fully recovers the

razor-thin limit from FPP15. As noted in equation (40), for a suffi-

ciently thick disc, one may assume the distance between successive

quantised kz frequencies to be of the order ∆kz≃π/h. Provided

that ∆kz is small compared to the typical scale of variation of the

function kz 7→gs(kz), one may use once again Riemann sum for-

mula, to rewrite equation (77) as

g(ω) =
1

2π

∫
dkprdk

p
z gs(k

p
r , Rg, k

p
z , ω) . (78)

Let us now define the autocorrelation Ĉψe of the external perturba-

tions as

Ĉψe [mφ, ω,Rg, k
p
r , k

q
r , k

p
z , k

q
z ] =

1

2π

∫
dω′

〈
ψ̂e
mφ,k

p
r ,k

p
z
[Rg, ω] ψ̂e

∗

mφ,k
q
r ,k

q
z
[Rg, ω

′]
〉
. (79)

One can then rewrite the general expression of the symmetric dif-

fusion coefficients from equation (70) as

Dsym
m (J) = δevenmz

1

(2π)2

×
∫
dkprdk

p
z Jmr

[√
2Jr
κ
kpr

]
Jmz

[√
2Jz
ν
kpz

]
α2
p

1−λp

×
∫
dkqrdk

q
zJmr

[√
2Jr
κ
kqr

]
Jmz

[√
2Jz
ν
kqz

]
α2
q

1−λq
× Ĉψe [mφ,m·Ω, Rg, k

p
r , k

q
r , k

p
z , k

q
z ] . (80)

The antisymmetric equivalent of equation (80) is derived in equa-

tion (C1). Assuming some stationarity properties on the stochas-

ticity of the external perturbations, one may then further simplify

equation (80). As in FPP15, we suppose that the external perturba-

tions are also spatially quasi-stationary so that
〈
ψe
mφ

[R1, z1, t1]ψ
e∗
mφ

[R2, z2, t2]
〉
=

C[mφ, t1−t2, (R1+R2)/2, R1−R2, z1+z2, z1−z2] , (81)

where the dependences w.r.t. (R1+R2)/2 and z1+z2 are supposed

to be slow. As demonstrated in Appendix E, one can then show that
〈
ψ̂e
mφ,k

1
r,k

1
z
[Rg, ω1] ψ̂e

∗

mφ,k
2
r,k

2
z
[Rg, ω2]

〉
= 2π2δD(ω1−ω2)

× δD(k
1
r−k2r) δD(k1z−k2z) Ĉ[mφ, ω1, Rg, k

1
r , k

1
z ] . (82)

Thanks to this autocorrelation diagonalised both in ω, kr and kz ,

the expression of the symmetric diffusion coefficients from equa-

tion (80) becomes

Dsym
m (J) = δevenmz

π

(2π)2

∫
dkprdk

p
z J 2

mr

[√
2Jr
κ
kpr

]
J 2
mz

[√
2Jz
ν
kpz

]

×
[
α2
p

1−λp

]2
Ĉ[mφ,m·Ω, Rg, k

p
r , k

p
z ] . (83)

Equation (83), along with its antisymmetric equivalent from equa-

tion (C3), are the main results of this section. As in FPP15,

equation (83) may be further simplified thanks to the so-called

approximation of the small denominators. This amounts to fo-

cusing on the contributions from the waves that yield the max-

imum amplification. One therefore assumes that the function

(kr, kz) 7→λ(kr, kz), in its allowed domain (i.e. kz≥k1z(kr),
see figure 4) reaches a well-defined maximum λmax(Rg, ω) for

(kr, kz)=(kmax
r , kmax

z ). One may then define the neighbouring

region Vmax = {(kr, kz)
∣∣λ(kr, kz) ≥ λmax/2}, and its area

|Vmax|. The previous expression of the diffusion coefficients can

then straightforwardly be approximated as

Dsym
m (J) = δevenmz

π|Vmax|
(2π)2

J 2
mr

[√
2Jr
κ
kmax
r

]
J 2
mz

[√
2Jz
ν
kmax
z

]

×
[
α2
max

1−λmax

]2
Ĉ[mφ,m·Ω, Rg, k

max
r , kmax

z ] . (84)

One can improve the previous approximation by performing the

integrations from equation (83) only for (kr, kz)∈Vmax. Such a

calculation is more numerically demanding but does not alter the

principal conclusions drawn in this paper, while ensuring a better

estimation of the diffusion flux.

3.6 Collisional orbital diffusion

Relying similarly on the amplification eigenvalues obtained in sec-

tion 3.3, we may now proceed to the evaluation of the collisional

drift and diffusion coefficients from equations (15) and (16).
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3.6.1 Estimation of the susceptibility coefficients

Let us first estimate the dressed susceptibility coefficients from

equation (13). Using the shortened notation from equation (69),

they read

1

Dm1,m2(J1,J2, ω)
=

∑

p

ψ(p)
m1

(J1)

[
1

1−λp(ω)

]
ψ(p)∗

m2
(J2) .

(85)

Separating the contributions from symmetric and antisymmetric

basis elements, equation (85) can be rewritten as

1

Dm1,m2(J1,J2, ω)
=
∑

p

[
ψ

s,(p)
m1

ψ
s,(p)∗
m2

1−λs
p

+
ψ

a,(p)
m1

ψ
a,(p)∗
m2

1−λa
p

]
,

(86)

where the superscripts “s” and “a” respectively correspond to sym-

metric and antisymmetric basis elements. It was shown in equa-

tions (46) and (A7) that a Fourier transformed basis element ψ
(p)
m

involves an azimuthal Kronecker symbol δ
k
p
φ
mφ . Moreover, in the

symmetric (resp. antisymmetric) case, it also involves a δevenmz
(resp.

δoddmz
). As a consequence, in equation (86), in order to have non zero

susceptibility coefficients, one must necessarily have

mφ
1 =m

φ
2 = kpφ and (mz

1−mz
2) even . (87)

Since mz
1 and mz

2 must have the same parity, when computing

the susceptibility coefficients from equation (86), depending on the

parity of mz
1, one has to consider the symmetric elements only or

the antisymmetric ones only. Before proceeding with the evaluation

of the susceptibility coefficients from equation (86), we will first

emphasise a crucial consequence of the localised thick WKB ba-

sis from equation (28), which is the restriction to local resonances.

This is the matter of the next section.

3.6.2 Restriction to local resonances

The Balescu-Lenard drift and diffusion coefficients from equa-

tion (15) and (16) involve an integration over the dummy variable

J2. For a given value of J1, m1 and m2, this should be seen

as a scan of the entire action space, searching for regions where

the resonant condition m1 ·Ω1−m2 ·Ω2=0 is satisfied. Because

the epicyclic approximation was assumed, the intrinsic frequencies

(Ωφ, κ, ν) from equations (22) and (24) only depend on the action

Jφ, which makes the resonance condition simpler. For fixed val-

ues of R1=Rg(J1), m1 and m2, one therefore has to find the

resonant radii Rr2 such that the resonance condition f(Rr2)=0 is

satisfied, where f(Rr2) is defined as

f(Rr2) = m1 ·Ω(R1)−m2 ·Ω(Rr2) . (88)

Once these resonant radii have been identified, one may finally rely

on the rule for the composition of a Dirac delta and a function

which reads

δD(f(x)) =
∑

y∈Zf

δD(x−y)
|f ′(y)| , (89)

where Zf =
{
y
∣∣ f(y)=0

}
. In order to use the expression (89), one

also has to assume that the poles of f are non-degenerate so that

d(m2 ·Ω)

dR

∣∣∣∣
Rr

2

6= 0 . (90)

As noted in equation (87), one has mφ
1 =m

φ
2 . As a consequence,

the resonance condition from equation (88) takes the form

mφ
1Ω

1
φ+m

r
1κ

1+mz
1ν

1=mφ
1Ω

r
φ+m

r
2κ
r+mz

2ν
r , (91)

where we used the shortening notation Ω1
φ=Ω1

φ(R1) and

Ωrφ=Ωφ(R
r
2). Because the Fourier transformed basis elements

from equations (46) and (A7) involve the narrow radial Gaussian

BR0 , the relevant resonant radiiRr2 must necessarily be close toR1,

so that ∆R=Rr2−R1 is such that |∆R|≤ (few)σ. Equation (91)

may then be rewritten as
[
mφ

2

dΩφ
dR

+mr
2
dκ

dR
+mz

2
dν

dR

]
∆R=

[
mr

1−mr
2

]
κ1+

[
mz

1−mz
2

]
ν1 .

(92)

In the l.h.s. of equation (92), the terms within brackets is non-

zero thanks to the assumption from equation (90) that the resonant

poles are simple. Notice that ∆R is small because of the scale-

decoupling approach used in the construction of the WKB basis

elements. The r.h.s. of equation (92) is discrete in the sense that it

is the sum of a multiple of κ and of ν. As the disc is supposed to

be not too thick, it may be assumed that ν≫κ. Moreover, as was

also shown in equation (87) (mz
1−mz

2) is an even number. As a

consequence, if (mz
1−mz

2) 6=0, then
∣∣(mz

1−mz
2) ν(R1)

∣∣ ≥ 2ν(R1) ≫
∣∣mr

1−mr
2

∣∣κ(R1) , (93)

provided that the resonance vectors m1 and m2 are of small order.

The l.h.s. of equation (92) is therefore small, while its r.h.s. is of

the order of ν(R1). As a consequence, equation (92) necessarily

implies that mz
1=m

z
2. Equation (92) then takes the form

d(m2 ·Ω)

dR
∆R =

[
mr

1−mr
2

]
κ(R1) . (94)

Similarly, the l.h.s. of equation (94) is small because of ∆R, while

its r.h.s. is either zero or of the order κ(R1). This immediately im-

poses that both sides of equation (94) have to be zero. As a conclu-

sion, the use of the thick WKB basis implies that only local reso-

nances are allowed so that

Rr2=R1 ; mr
1=m

r
2 ; mz

1=m
z
2 . (95)

This a crucial consequence of the restriction to the thick WKB basis

from equation (28).

3.6.3 Asymptotic continuous limit

One may now evaluate the susceptibility coefficients from equa-

tion (86) by restricting ourselves to the cases R2=R1 and

m2=m1. As noted in equation (86), the symmetric case (i.e. mz
1

even) and the antisymmetric one (i.e. mz
1 odd) can be treated sepa-

rately. The upcoming calculations will be made for the symmetric

case, from which the antisymmetric expressions are straightforward

to deduce. When writing explicitly the sum on the basis elements,

and using the expression (46) of the Fourier transformed basis ele-

ments, equation (86) becomes

1

Dm1,m1

=
∑

k
p
r ,R

p
0
,np

G

Rp0h

1

(kpr )2+(kpz)2
1√
πσ2

exp

[
− (R1−Rp0)2

σ2

]

× α2
p

1−λp(ω)
Jmr

1

[√
2J1

r
κ1

kpr

]
Jmr

1

[√
2J2

r
κ1

kpr

]

× Jmz
1

[√
2J1

z
ν1

kpz

]
Jmz

1

[√
2J2

z
ν1

kpz

]
. (96)

In equation (96), the shortened notations 1/Dm1 ,m1 was

introduced for 1/Dm1 ,m1(R1,J
1
r ,J

1
z ,R1,J

2
r ,J

2
z ,ω), as well as

κ1=κ(R1), ν1=ν(R1) and kpz=k
np
z One should also note that

the sum on kpφ was executed thanks to the constraint from equa-

tion (87). As in section 3.5, the next step of the calculation is to
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replace the discrete sums on kpr and Rp0 by continuous expressions.

To do so, we rely on the step distance from equation (76) and re-

place the Gaussian in (R1−Rp0) in equation (96) by δD(R1−Rp0).
The integration on Rp0 may then be performed, and equation (96)

becomes

1

Dm1,m1

=
G

2πR1h

∑

np

∫
dkr

1

k2r+(kpz)2
α2
p

1−λp(ω)
(97)

× Jmr
1

[√
2J1

r
κ1

kr

]
Jmr

1

[√
2J2

r
κ1

kr

]
Jmz

1

[√
2J1

z
ν1
kpz

]
Jmz

1

[√
2J2

z
ν1

kpz

]
.

One must note that in equation (97) there still remains a sum on

the vertical index np. At this stage of the calculation, there are two

possible strategies to complete the evaluation of the susceptibility

coefficients. If one assumes the disc to be sufficiently thick, one

may replace the sum on np by a continuous integral over kz . Con-

versely, in the limit of a thin disc, one should keep the discrete sum

in equation (97). In the following calculations, the first continuous

approach will be pursued. In Appendix D, the second approach is

investigated: it is shown that these two approaches are fully consis-

tent one with another, and how the razor-thin limit from FPC15 may

be recovered. As noted in equation (40), the distance between two

successive quantised kz can be approximated by ∆kz≃π/h. Pro-

vided that the function present in the r.h.s. of equation (97) varies

on scales larger than ∆kz , one may use once again the Riemann

sum formula to rewrite equation (97) as

1

Dm1,m1

=
G

2π2R1

∫
dkrdkz

1

k2r+k2z

α2
kr ,kz

1−λkr ,kz (ω)
(98)

× Jmr
1

[√
2J1

r
κ1

kr

]
Jmr

1

[√
2J2

r
κ1

kr

]
Jmz

1

[√
2J1

z
ν1

kz

]
Jmz

1

[√
2J2

z
ν1

kz

]
.

This explicit expression of the dressed susceptibility coefficients is

the main result of the present section: it relates the gravitational

susceptibility of the disc to known analytic functions of its actions

via a simple regular quadrature. Following equation (84), we may

further simplify equation (98) by using the so-called approximation

of the small denominators, so that it becomes

1

Dm1,m1

=
G

2π2R1

|Vmax|
(kmax
r )2+(kmax

z )2
α2
max

1−λmax
Jmr

1

[√
2J1

r
κ1
kmax
r

]

× Jmr
1

[√
2J2

r
κ1
kmax
r

]
Jmz

1

[√
2J1

z
ν1
kmax
z

]
Jmz

1

[√
2J2

z
ν1
kmax
z

]
. (99)

One can improve this approximation by rather performing the in-

tegrations in equation (98) for (kr, kz)∈Vmax. This approach is

more numerically demanding but allows for a more precise deter-

mination of the diffusion flux. Using this improved approximation

does not alter the principal conclusions drawn in this paper. Finally,

for mz
1 odd, the antisymmetric analogs of the previous expres-

sions of the susceptibility coefficients are straightforward to obtain

through the substitution α→β, introduced in equation (A6), and

by considering the antisymmetric amplification eigenvalues from

equation (53).

3.6.4 Estimation of the drift and diffusion coefficients

The final step of the collisional calculation is to determine the

Balescu-Lenard drift and diffusion coefficients from equations (15)

and (16). Thanks to the restriction to local resonances justified in

equation (95), the sum on m2 in equations (15) and (16) is only

limited to m2=m1, and using the formula (89), one may immedi-

ately perform the integration on J2
φ, which adds a prefactor of the

form 1/|∂(m1 ·Ω1)/∂Jφ|. Using the shortened notation

1

(m1 ·Ω1)′
=

1∣∣ ∂
∂Jφ

[m1 ·Ω1]
∣∣
J1
φ

, (100)

one can write the expression of the drift coefficients as

Am1(J1)=− 8π4µ

(m1 ·Ω1)′

∫
dJ2

r dJ
2
z

m1 ·∂F/∂J(J1
φ , J

2
r , J

2
z )

|Dm1,m1(J1,J2,m1 ·Ω1)|2
.

(101)

Similarly the diffusion coefficients are given by

Dm1(J1)=
8π4µ

(m1 ·Ω1)′

∫
dJ2

rdJ
2
z

F (J1
φ, J

2
r , J

2
z )

|Dm1,m1(J1,J2,m1 ·Ω1)|2
.

(102)

In equations (101) and (102), the susceptibility coefficients are

given by equation (98), or equation (99) within the approximation

of the small denominators (or their antisymmetric analogs depend-

ing on the parity of mz
1). In particular, they have to be evaluated

for J2
φ=J

1
φ. In the case where the DF takes the form of a quasi-

isothermal DF as in equation (27) and where the susceptibility co-

efficients are obtained via the approximation of the small denomi-

nators from equation (99), the integrations on J2
r and J2

z in equa-

tions (101) and (102) may be explicitly computed (see Appendix C

of FPC15 for an illustration in the razor-thin limit). To do so, in

addition to equation (48), one relies on the integration formula

∫ +∞

0

dJ J e−aJJ 2
m

[
b
√
J
]
=

1

a2
exp

[
− b2

2a

]

×
{[

− b2

2a
+1+|m|

]
Im

[
b2

2a

]
+
b2

2a
I|m|+1

[
b2

2a

]}
. (103)

We do not detail here these calculations, and only give the final

expressions of the drift and diffusion coefficients. Equations (101)

and (102) become

Am1(J1)=−G(0)
m1

(J1)G
(1)
m1

(J1
φ)
[
αm1(J

1
φ)−βrm1

(J1
φ)−βzm1

(J1
φ)
]
,

Dm1(J1)=G
(0)
m1

(J1)G
(1)
m1

(J1
φ) , (104)

where we introduced the functions G
(0)
m1

(J1) and G
(1)
m1

(J1
φ) as

G(0)
m1

(J1)=
8π4µ

(m1 ·Ω1)′
F (0)(J1

φ)C
D
m1

(J1) ,

G(1)
m1

(J1
φ)=

σ2
r

κ1
Imr

1

[
χmax
r

]
e−χ

max
r

σ2
z

ν1
Imz

1

[
χmax
z

]
e−χ

max
z . (105)

In equation (105), we introduced the functions F (0)(J1
φ) and

CD
m1

(J1), so that the quasi-isothermal DF from equation (27) and

the susceptiblity coefficients from equation (99) read

F (J1)=F
(0)(J1

φ) exp

[
− κ1Jr

σ2
r

]
exp

[
− ν1Jz

σ2
z

]
,

1

|Dm1,m1 |2
=CD

m1
(J1)J 2

mr
1

[√
2J2

r
κ1
kmax
r

]
Jmz

1

[√
2J2

z
ν1
kmax
z

]
. (106)

In equation (104), we also introduced the coefficients αm1(J
1
φ),

βrm1
(J1
φ) and βzm1

(J1
φ) defined as

αm1(J
1
φ) = mφ

1

∂ ln[F (0)]

∂J1
φ

−mr
1
κ1

σ2
r

−mz
1
ν1
σ2
z

,

βrm1
(J1
φ) = mφ

1

∂[κ1/σ
2
r ]

∂J1
φ

σ2
r

κ1
γrmr

1
(J1
φ) ,

βzm1
(J1
φ) = mφ

1

∂[ν1/σ
2
z ]

∂J1
φ

σ2
z

ν1
γzmz

1
(J1
φ) , (107)
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where the coefficient γrmr
1
(J1
φ) is defined as

γrmr
1
(J1
φ) =

1

Imr
1

[
χmax
r

]
{
(−χmax

r +1+|mr
1|) Imr

1

[
χmax
r

]

+χmax
r I|mr

1 |+1

[
χmax
r

]}
. (108)

Equation (108) naturally extends to the definition of γzmz
1
(J1
φ),

thanks to the substitutionsmr
1→mz

1 and χmax
r →χmax

z . The WKB

approximation allowed us therefore to obtain in equation (104) ex-

plicit expressions for the drift and diffusion coefficients, where all

quadratures have been computed.

Finally, let us note that if one assumes the system’s DF

to be at statistical equilibrium and to take the form of a Boltz-

mann DF, F (J)=C e−βH(J), then the previous drift and diffu-

sion coefficients are directly connected one to another. Indeed, for

such a DF, one has ∂F/∂J=−β F Ω(Jφ), where one notes that

within the epicyclic approximation, the system’s intrinsic frequen-

cies Ω only depend on the azimuthal action Jφ. The drift coeffi-

cients from equation (101) may then be computed, and one gets

Am1(J1)=m1 ·Ω(J1
φ)β Dm1(J1), which takes the form of a

generalised Einstein relation for each resonance. This is a generic

property of the Balescu-Lenard equation, which remains true be-

yond the present WKB approximation (Chavanis 2012).

The simple and tractable expressions of the drift and diffusion

coefficients from equations (101) and (102) constitute one of the

main results of this paper. Let us insist on the fact that the WKB

formalism presented in this section is self-contained and that no

ad hoc fittings were required. Finally, except for the explicit re-

covery of the amplification eigenvalues in equation (49), the previ-

ous calculations are not restricted to the quasi-isothermal DF from

equation (27). As a consequence, the collisional drift and diffusion

coefficients from equations (101) and (102) are valid for any tepid

disc’s DF, provided that the epicyclic angle-action mapping from

equation (26) is applicable.

4 APPLICATION: DISC THICKENING

Let us now implement the previous thick WKB diffusion equa-

tions to get a better grasp of the various resonant processes at

play during the secular evolution of a thick disc. Let us already

emphasise that describing self-consistently the secular evolution

of a self-gravitating stellar disc is a very challenging task, which

raises many difficulties. There exists no generic angle-action coor-

dinates in the thickened geometry, nor appropriate basis elements,

nor methods to compute the properties of the disc’s collective ef-

fects. The previous WKB formalism allows for the simultaneous

resolution of all these difficulties, at the cost of additional assump-

tions, e.g., epicyclic approximation, tightly wound perturbations,

etc. The WKB framework appears therefore as a legitimate first step

to investigate from first principles the complex dynamics of thick-

ened discs. We present in section 4.1 the considered disc model. In

section 4.2 the formalism will first be applied to the formation of

vertical ridges in action space found in the numerical experiments

of Solway et al. (2012). We will then consider in section 4.3 the

associated diffusion timescales and discuss the limitations of the

WKB framework. In section 4.4, we will focus on illustrating the

thickening of galactic discs via resonant diffusion induced by cen-

tral decaying bars, while in section 4.5 we will consider the effect

of the joint evolution of GMCs.

Figure 8. Shape of the active surface density Σstar from equation (115).

Because of the tapering functions from equation (114), the self-gravity of

the disc is turned off in its inner and outer regions.

4.1 The disc model

In order to setup a typical thick disc, we follow the recent sec-

ular simulations of isolated thick discs presented in Solway et al.

(2012), hereafter So12 (specifically, the numerical parameters from

the simulation named UCB, keeping only the most massive of its

two components). This simulation is especially relevant for the for-

malism presented here, since it models an unperturbed isolated sta-

ble and stationary thick disc, in which So12 observed the sponta-

neous appearance of transient spirals seeded by the disc’s discrete-

ness, and, only on secular timescales, the formation of a central

bar.3 The disc considered therein corresponds to a thickened Mes-

tel disc. We start from an infinitely thin Mestel disc of surface den-

sity ΣM(R)=V 2
0 /(2πGR), where V0 is a constant independent of

radius. Assuming a vertical profile shape, one may thicken this sur-

face density ΣM to build up a density ρM. Indeed, the 3D density

ρM(R, z) can be defined as

ρM(R, z) = ΣM(R)
1

4z0(R)
sech

2

[
z

2z0(R)

]
, (109)

where a Spitzer vertical profile (Spitzer 1942) was used, introduc-

ing z0 the local thickness of the mean disc. Of course, note that the

thickening was defined such that
∫
dz ρM(R, z)=ΣM(R). At this

stage, we recall that one could have used alternative vertical pro-

files, e.g., exponential. Indeed, the results presented thereafter can

straightforwardly be applied to different profiles, by adapting ac-

cordingly the relations between h, z0 and σz/ν, obtained in equa-

tions (34) and (113). Once the total thickened density has been de-

fined, one can then numerically determine the associated potential

ψM via ψM(x)=−
∫
dx1GρM(x1)/|x−x1|. Relying on the ax-

3 Let us emphasise that this simulation UCB is significantly different from

another simulation, M2, also presented in detail in Solway et al. (2012). In-

deed, M2 was tailored to support am=2 unstable spiral mode, in particular

via a groove in the disc’s DF. It contained a thin disc made ofN=1.2×106

particles, and was evolved up to t≃390. On the other hand, the simulation

UCB aimed at studying the effects of multiple transient spirals seeded by the

finite number of particles in a quasi-stationary and stable disc. It contained

only N=2×105 particles and was evolved up to t≃3500. Let us high-

light the strong differences between the M2 and UCB simulations: unstable

vs. stable, spiral mode vs. multiple transient spirals, large N vs. small N ,

short integration time vs. long integration time, and collisionless dynamics

vs. collisional dynamics.

c© 0000 RAS, MNRAS 000, 1–31



Resonant thickening of self-gravitating discs 15

isymmetry of the system, one obtains

ψM(R, z) =

∫
dR1dz1

−4GR1ρM(R1, z1)√
(R−R1)2+(z−z1)2

× Fell

[
π

2
,− 4RR1

(R−R1)2+(z−z1)2
]
, (110)

where Fell[φ,m] is the elliptic integral of the first kind, defined as

Fell[φ,m]=
∫ φ
0
dφ′ [1−m sin2(φ′)]−1/2. Thanks to this numerical

estimation of the thickened total potential ψM of the disc, one may

then use equations (21), (22) and (24) to numerically determine the

mapping Rg 7→Jφ and the intrinsic frequencies Ωφ, κ and ν. This

completely characterises the epicyclic mapping to the angle-action

coordinates presented in equation (26). For a sufficiently thin disc,

one expects these mappings to be close to those obtained in the

infinitely thin case, for which one immediately has

Jφ = V0R
thin
g ; Ωthin

φ =
V 2
0

Jφ
; κthin =

√
2Ωthin

φ . (111)

Given the thickened mean density profile ρM with its associated in-

trinsic frequencies, one may use the one-dimensional Jeans equa-

tion (see, e.g., Eq. (4.271) in Binney & Tremaine 2008) to con-

strain the value of the equilibrium vertical velocity dispersion σz .

Indeed, one has

∂(ρM σ2
z)

∂z
= −ρM ∂ψM

∂z
, (112)

where it is assumed that σz is only a function of R. Differentiating

equation (112) once w.r.t. z and evaluating it at z=0, one gets

σz(R)

ν(R)
=

√
2 z0(R) . (113)

Consequently, once the scale height z0 of the disc and the intrinsic

vertical frequency ν are numerically determined, the vertical ve-

locity dispersion σz within the disc follows immediately by equa-

tion (113). One should note that the determination of the intrinsic

frequencies required the use of the total potential of the system ψM

from equation (110). However, our goal here is to model the secular

evolution of the dynamically active component of the disc, i.e. the

stars, whose density Σstar is only one component of the total ΣM.

Indeed, in order to build up a stable disc and deal with its central

singularity and infinite extent, two tapering functions Tinner and

Touter must be introduced. They read






Tinner(Jφ) =
Jνtφ

(RiV0)νt+J
νt
φ

,

Touter(Jφ) =

[
1+

[
Jφ
RoV0

]µt
]−1

,

(114)

where νt and µt are two power indices controlling the sharpness

of the two tapers, whileRi and Ro are two scale parameters. These

two tapers mimic the presence of a bulge and the replacement of the

outer disc by the dark halo. It is also assumed that only a fraction

ξ of the system is active (while the missing component will be a

static contribution from the dark matter halo). As a consequence,

the active surface density Σstar of the disc may be written as

Σstar(Jφ) = ξΣM(Jφ)Tinner(Jφ)Touter(Jφ) . (115)

The shape of the active surface density Σstar is illustrated in fig-

ure 8. In order to follow the same setup as So12’s UCB simulation,

the numerical parameters are given the values

V0 = 1 ; G = 1 ; Ri = 1 ; Ro = 15 ; νt = 4 ; µt = 6 , (116)

while the heat content of the disc is characterised by

σr = 0.227 ; ξ = 0.4 . (117)

It then only remains to define the height of the disc. So12 used a

somewhat unusual vertical profile of constant vertical scale zS , to

define a thickened density ρS as

ρS(z) =
ΣM

1.83 zS

1

(e|z/zS|/2+0.2 e−5|z/zS|/2)2
. (118)

One can easily relate the Spitzer scale height z0 from equa-

tion (109) to the height zS from equation (118) by imposing the

constraint ρM(z=0)=ρS(z=0), which gives z0 = 0.66 zS. As

So12 used the choice zS=0.4, we use here the value z0=0.26.

Finally, it also important to note that So12’s simulation was

limited to the harmonic sector 0≤mφ≤8, except mφ=1 (to avoid

decentring). In our case, in order to clarify the dynamical mech-

anisms at play during the secular evolution, a more drastic limi-

tation to the considered potential perturbations will be used and

they will be restricted only to mφ=2. In addition to this restric-

tion, throughout the numerical calculations, the analysis will also

be limited to only 9 different resonances, i.e. 9 different vectors

m=(mφ,mr,mz). Indeed, we assume mφ=2, mr ∈{−1, 0, 1}
andmz∈{−1, 0, 1}. Among these resonances, we define the coro-

tation resonance (COR) as m=(2, 0, 0), the radial (resp. vertical)

inner Lindblad resonance (rILR) (resp. vILR) as m=(2,−1, 0)
(resp. m=(2, 0,−1)), and similarly the radial (resp. vertical) outer

Lindblad resonance (rOLR) (resp. vOLR) as m=(2, 1, 0) (resp.

m=(2, 0, 1)). Once the orbital frequencies Ω and the considered

resonance vectors m have been specified, one may study the be-

haviour of the resonance frequencies ω=m·Ω as a function of

the position within the disc. These frequencies, for which the am-

plification eigenvalues and the perturbation autocorrelation as in

equation (83) have to be evaluated, are illustrated in figure 9.

When simulated on secular timescales, one observes se-

quences of transient spirals within the disc leading to an irreversible

diffusion of the system’s DF in action space (M. Solway, private

communication). To probe such a secular thickening of the disc,

one may consider the marginal distribution of vertical action Jz as

a function of the guiding radius Rg within the disc. We define the

function FZ(Rg, Jz, t) as

FZ(Rg, Jz, t) =

∫
dθ′dJ ′ δD(Rg−R′

g) δD(Jz−J ′
z)F (J ′, t)

= (2π)3
dJφ
dRg

∫
dJ ′

r F (Rg, J
′
r, Jz, t) . (119)

In equation (119), starting from equation (21), one can straight-

forwardly show that dJφ/dRg=(Rgκ
2)/(2Ωφ) (=V0 for an in-

finitely thin Mestel disc, thanks to equation (111)). The time varia-

tion of FZ may generically be estimated via equations (11) and (18)

as

∂FZ

∂t
= (2π)3

dJφ
dRg

∫
dJ ′

r div(F tot)(Rg, J
′
r, Jz, t) . (120)

One can also rewrite equation (120) as the divergence of a flux

FZ=(Fφ
Z,Fz

Z) defined in the (Jφ, Jz)−plane, so as to have

∂FZ(Jφ, Jz)

∂t
=

(
∂

∂Jφ
,
∂

∂Jz

)
·FZ =

∂Fφ
Z

∂Jφ
+
∂Fz

Z

∂Jz
, (121)

where the flux components (Fφ
Z ,Fz

Z) are given by





Fφ
Z = (2π)3

∫
dJ ′

r Fφ
tot(Jφ, J

′
r, Jz) ,

Fz
Z = (2π)3

∫
dJ ′

r Fz
tot(Jφ, J

′
r, Jz) .

(122)
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Figure 9. Behaviour of the intrinsic frequency of resonance ω=m·Ω as a function of the position within the disc and the resonant vector m=(mφ, mr ,mz).
The grey lines correspond to the pattern frequency mpΩp introduced in the bar perturbations from equation (130) and considered in figure 16.

In equation (122), the total diffusion flux F tot in the (Jφ, Jr, Jz)
space from equations (11) and (18) was naturally written as

F tot=(Fφ
tot,Fr

tot,Fz
tot).

The initial contours of FZ are illustrated in the left panel of

figure 10, while their long-term evolution is illustrated in the right

panel of the same figure. When comparing the two panels of fig-

ure 10, one can clearly note the formation on secular timescales of

a narrow ridge of enhanced vertical actions in the inner region of

the disc, characterised by an increase of the mean value of the ver-

tical action in these regions.4 Let us note that the disc considered in

So12 was purposely designed to be linearly stable, quasi-stationary,

isolated and unperturbed. So12 could then explicitly check that this

disc does not develop any spiral mode or bar instability for hun-

dreds of dynamical times. The only source of fluctuations in the

disc is due to weak transient spiral arms seeded by the disc’s finite

number of particles. In this context, the vertical ridge observed in

figure 10 has to be the signature of the spontaneous secular thick-

ening of the disc sourced by its intrinsic shot noise amplified by

self-gravity, since these are the only perturbations remaining in the

system.5 As already shown quantitatively in Fouvry et al. (2015c)

in the context of razor-thin discs, this corresponds to the exact dy-

namical regime of application of the Balescu-Lenard equation (12).

The aim of the upcoming sections is to discuss how the pre-

vious WKB limits of the collisionless and collisional secular dif-

fusion equations provide a qualitative illustration of this ridge for-

mation. Secular evolution being by essence a slow process, we will

restrict ourselves here to the estimation of the initial diffusion flux,

4 Figure 10, showing a vertical ridge, is a new figure, which was not pre-

sented nor discussed in Solway et al. (2012). It was graciously provided to

us by M. Solway. Although present in Solway’s UCB simulations, it was

never put forward nor discussed in previous papers.
5 This conclusion is also reinforced by two additional tests presented

in Sellwood (2012), which investigated razor-thin analogs of So12’s thick-

ened simulations. The figure 2 of Sellwood (2012) shows that the larger

the number of particles, the slower the evolution. The evolution is therefore

induced by discreteness effects, as recovered quantitatively in Fouvry et al.

(2015c). Moreover, figure 5 of Sellwood (2012) also shows that after redis-

tributing randomly the azimuthal phases of the particles at some stage of the

evolution, the ridge would still appear on the same timescale. The resonant

ridge is therefore not a phase-dependent feature, and only depends on the

system’s mean orbital structure, i.e. its mean DF F =F (J , t).

F tot, at the time t=0. In Fouvry et al. (2015c) in the context of

razor-thin discs, we already emphasised how the computation of the

initial diffusion flux allows indeed for the recovery of the formation

of resonant ridges in action space. Computing the evolution at later

time, while theoretically interesting (and challenging), would not

be astrophysically relevant in the present context, because it would

describe an evolution on a timescale much larger than the age of

the universe (see section 4.5).

4.2 Shot noise driven resonant disc thickening

To compute the secular diffusion flux from equations (11) and (18),

one first has to study the behaviour of the amplification eigenval-

ues λ(kr, kz) from equations (49) and (53), thanks to which the

approximation of the small denominators may be performed. For

a given resonance m and position Jφ, the amplification function

(kr, kz) 7→λ(kr, kz) is illustrated in figure 11. As presented in

equations (84) and (99), such a behaviour allows us to determine

a region Vmax(m, Jφ) over which the (kr, kz)−integrations from

equations (83) and (98) may be performed. Figure 12 illustrates

the importance of the self-gravitating amplification by represent-

ing the behaviour of the function Jφ 7→1/(1−λmax(m, Jφ)) for

various resonances. After having estimated the system’s amplifica-

tion eigenvalues, one may in turn compute the induced collisionless

diffusion (section 4.2.1) and the collisional one (section 4.2.2).

4.2.1 Collisionless forced thickening

In order to gain some qualitative insight on the formation of

the vertical ridge observed in figure 10, one may first rely

on the WKB limit of the collisionless diffusion formalism ob-

tained in section 3.5. Because So12 considered an isolated disc,

one has to assume some form for the perturbation power spec-

trum Ĉ[mφ, ω,Rg, kr, kz] that appears in equation (83). As

in Fouvry & Pichon (2015); Fouvry et al. (2015a), it will be as-

sumed that the source of noise is given by shot noise, due to the

finite number of stars in the disc. Such a type of perturbation may

also mimic the perturbations induced by compact gas clouds within

the disc. For such a Poisson shot noise, the perturbing potential

varies radially like ψe∝
√
Σstar. For simplicity, the dependence of
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Figure 10. Results from the simulation UCB1 of So12. Left panel: Initial contours of the function FZ(Rg, Jz , t) from equation (119) for t=0. This illustrates

the distribution of vertical actions Jz as a function of the guiding radius Rg within the disc. Contours are spaced linearly between 95% and 5% of the function

maximum. The red curve gives the mean value of Jz for a given Rg. Right panel: Same as in the left panel but at a later stage of the evolution t=3500. One

can clearly note the formation on secular timescales of a narrow ridge of enhanced vertical actions Jz in the inner regions of the disc.

Figure 11. Behaviour of the function (kr , kz) 7→λ(kr , kz), as defined in

equation (49), for m=mCOR and Jφ=1.5. One should remember that

the diffusion coefficients generically require to evaluate the amplification

eigenvalues at the intrinsic frequency ω=m·Ω. Contours are spaced lin-

early between 90% and 10% of the function maximum λmax. The grey re-

gion corresponds to the domain Vmax={(kr , kz)
∣

∣λ(kr , kz)≥λmax/2},

i.e. the region on which the integrations from equations (83) and (98) may

be performed. One can finally note that here the maximum of amplification

lies on the line kz=k1z(kr), i.e. along the line of the minimum quantised

vertical frequency kz .

Ĉ with ω, kr , kz is neglected. Moreover, as detailed below equa-

tion (118), as perturbations were restricted to the sole harmonic

sector mφ=2, the same restriction applies to Ĉ. As a consequence,

let us assume for our illustration purposes that, up to a normali-

sation, the autocorrelation of the external perturbations takes the

Figure 12. Dependence of the amplification factor 1/(1−λmax(m, Jφ))
as a function of the position Jφ within the disc, for various resonances m.

The amplification eigenvalues λ are given by the simplified expression from

equation (55). The amplification associated with the COR is always larger

than the ones associated with the other resonances. As expected, in the inner

and outer regions of the disc, the strength of the amplification is turned off

by the tapering functions from equation (114).

simple form

Ĉ[mφ, ω,Rg, kr, kz] = δ2mφ
Σstar(Rg) . (123)

One should note that shot noise is not per se an external per-

turbation. To account in a more rigourous way for such intrinsic

finite−N effects, one should rely on the inhomogeneous Balescu-

Lenard equation, as will be presented in section 4.2.2. One should

finally note that the noise assumption from equation (123) is rather

crude, since we only included a dependence w.r.t. Rg. Here the

lack of dependence w.r.t. ω implies that at a given location in the

disc, all resonances undergo the same perturbations, even if they are

not associated with the same resonant frequencies m·Ω. Thanks to

the estimation of the disc’s amplification eigenvalues, and the per-
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Figure 13. Illustration of the initial contours of ∂FZ/∂t|t=0 predicted

by the collisionless diffusion equation (2), when considering a secular

forcing by shot noise as in equation (123). Red contours, for which

∂FZ/∂t|t=0<0, correspond to regions from which the orbits will be de-

pleted and are spaced linearly between 90% and 10% of the function min-

imum, while blue contours, for which ∂FZ/∂t|t=0>0, correspond to re-

gions where the number of orbits will increase during the diffusion and are

spaced linearly between 90% and 10% of the function maximum. The back-

ground contours correspond to the initial contours of FZ(t=0), spaced lin-

early between 95% and 5% of the function maximum, and determined for

the quasi-isothermal DF from equation (27).

turbation power spectrum from equation (123), one may compute

the WKB collisionless diffusion flux F tot from equation (10), and

subsequently its divergence div(F tot). One can then estimate the

initial time variation of the function FZ from equation (120). The

initial contours of ∂FZ/∂t|t=0 are illustrated in figure 13. In this

figure, one recovers qualitatively the formation of a resonant ridge

of increased vertical actions in the inner region of the disc, as was

observed in figure 10. This illustrates qualitatively how the Poisson

shot noise induced by the finite number of particles – as approxi-

mated by equation (123) – may lead to a secular thickening of the

disc.

4.2.2 Collisional thickening

The previous section relied on the WKB collisionless diffusion

equation (2). In order to better account for the intrinsic Poisson shot

noise, one may now proceed to the same estimations, while relying

on the WKB Balescu-Lenard equation (12). Thanks to the previ-

ous estimations of the amplification eigenvalues, one may straight-

forwardly compute the collisional susceptibility coefficients from

equation (99). This allows us to determine the drift and diffusion

coefficients from equations (101) and (102), and consequently the

total collisional diffusion flux introduced in equation (17). Because

the mass of the particles is given by µ=Mtot/N , we will rather

consider the quantity NF tot, which is independent of N . Fol-

lowing equation (121), one can then compute the diffusion flux

NFZ in the (Jφ, Jz)−plane. The initial contours of the norm

|NFZ|(t=0) are illustrated in figure 14. In this figure, one can

note how the diffusion flux NFZ is localised in the inner region

Figure 14. Illustration of the norm of the collisional diffusion flux

|NFZ|(t=0) in the (Jφ, Jz)−plane predicted by the Balescu-Lenard

equation (12). The contours are spaced linearly between 90% and 10% of

the maximum norm. The background contours correspond to the initial con-

tours of FZ(t=0), spaced linearly between 95% and 5% of the function

maximum, and determined for the initial quasi-isothermal DF from equa-

tion (27). One can clearly note the presence of an enhanced diffusion flux

in the inner region of the disc, compatible with the localised increase of the

vertical actions observed in figure 10.

of the disc. Both figures 13 and 14 are in qualitative agreement and

predict a localised increase in the vertical actions as observed in di-

rect numerical simulations. The crude approximation of the Poisson

shot noise from equation (123) also allows us to qualitatively re-

cover with the collisionless secular diffusion formalism, the results

obtained here thanks to the collisional formalism, within which the

spectral properties of the Poisson shot noise are self-consistently

accounted for.

4.2.3 Vertical kinetic heating

In order to better assess the properties of the diffusion induced by

finite−N effects, let us now consider the induced increase in the

vertical velocity dispersion. Indeed, disc thickening can observa-

tionally best be probed by determining the evolution of the vertical

velocity dispersion ς2z (Rg, t)= 〈v2z〉(Rg, t), defined as

ς2z (Rg, t) =

∫
dθ′dJ ′ δD(Rg−R′

g)F (J ′, t) (v′z)
2

∫
dθ′dJ ′ δD(Rg−R′

g)F (J ′, t)

. (124)

Thanks to the epicyclic approximation from equations (25)

and (26), one immediately has v2z=2Jzν sin
2(θz). In equa-

tion (124), one can perform the integrations over θ′ and J ′
φ to ob-

tain

ς2z (Rg, t) = ν(Rg)

∫
dJ ′

rdJ
′
z F (Rg, J

′
r, J

′
z, t)J

′
z

∫
dJ

′

rdJ
′
z F (Rg, J

′
r, J

′
z, t)

. (125)
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Figure 15. Top panel: Illustration of the expected increase in the vertical

velocity dispersion ςz(Rg, t) as a function of the position within the disc, at

various stages of the diffusion, relying on the collisionless WKB diffusion

from equation (2). For t=0, one has ςz(Rg, t=0)=σz(Rg), while for

larger values of t (here ∆T is an arbitrary timestep), we used the estimation

ςz(Rg, t)≃σz(Rg)+t ∂ςz/∂t|t=0, and equation (126). Bottom panel:

Same as the top panel, for the collisional WKB limit of the Balescu-Lenard

equation (12). Here ∆τWKB is a timestep introduced in section (4.3).

Because for t=0, F (J ′, t) is given by the quasi-

isothermal DF from equation (27), one immediately recovers

ς2z (Rg, t=0)=σ2
z(Rg). One can also compute the initial time

derivative of ς2z . After some simple algebra, it reads

∂ς2z
∂t

∣∣∣∣
t=0

= ν

∫
dJ ′

rdJ
′
z J

′
z
∂F

∂t

∣∣∣∣
t=0

− σ2
z

ν

∫
dJ ′

rdJ
′
z
∂F

∂t

∣∣∣∣
t=0∫

dJ ′
rdJ

′
z F (t=0)

, (126)

where ∂F/∂t=div(F tot) is given by the diffusion equations (11)

and (18). Using the fact that ∂ς2z/∂t=2ςz∂ςz/∂t, one can

anticipate a secular increase in the vertical velocity disper-

sion ςz under the effect of the Poisson shot noise pertur-

bations. This is illustrated in figure 15, where we represent

ςz(Rg, t)≃σz(Rg)+t ∂ςz/∂t|t=0, as predicted by both colli-

sionless and collisional formalisms. Consistently with figures 13

and 14, the WKB formalisms predict that the most significant in-

crease in the vertical velocity dispersion occurs in the inner region

of the disc, as already observed in figure 10. This illustrates qual-

itatively how the discrete Poisson shot noise may lead on secular

timescales to a thickening of the disc. Finally, recall that a strength

of the Balescu-Lenard formalism is that it is self-contained and

does not involve any ad hoc fittings of the system’s perturbations.

Thanks to the calculation of the induced collisional increase in ςz
presented in the bottom panel of figure 15, one may now study

the typical timescale of collisional diffusion predicted by the thick

WKB Balescu-Lenard equation and compare it to the one observed

in So12’s simulation. This is the purpose of the next section.

4.3 Diffusion timescale

Thanks to the previous estimates of the collisional diffusion flux

NFZ, one may now compare the diffusion timescale of appearance

of the finite−N effects predicted by the Balescu-Lenard equation

with So12’s numerical measurements. Indeed, one can note that

the Balescu-Lenard equation (12) depends on the number N of

particles through the mass of the individual particles µ=Mtot/N .

Equation (12) may therefore be rewritten as

∂F

∂t
=

1

N
CBL[F ] , (127)

where CBL[F ]=Ndiv(F tot) is the N−independent Balescu-

Lenard collisional operator, i.e. the r.h.s. of equation (12) mul-

tiplied by N=Mtot/µ. Equation (127) illustrates the fact that

the larger the number of particles, the slower the secular evolu-

tion. Introducing the rescaled time τ= t/N , one may rewrite equa-

tion (127) as

∂F

∂τ
= CBL[F ] , (128)

so as to write the Balescu-Lenard equation without any ex-

plicit appearance of N . This allows us to compare the time dur-

ing which So12’s simulation was performed with the collisional

timescale of evolution predicted by the Balescu-Lenard formal-

ism. The right panel of figure 10 was observed in So12 with

N=2×105 particles, after a time ∆tSo12=3500. As a conse-

quence, So12 observed the resonant ridge after a rescaled time

∆τSo12=∆tSo12/N≃2×10−2. In figure 10, looking at the evolu-

tion of the mean value of Jz , one can note that during the rescaled

time ∆τSo12, the mean vertical action in the inner region of the

disc was approximately doubled. One can then compare this time

with the typical time predicted by the thick WKB Balescu-Lenard

formalism to lead to a similar increase of the mean vertical action.

Thanks to equations (25) and (26), one has v2z=2νJz sin
2(θz), so

that ς2z =ν
〈
Jz

〉
. As a consequence, doubling the mean vertical ac-

tion
〈
Jz

〉
only requires to multiply the vertical velocity dispersion

ςz by
√
2. Thanks to figure 15, one can note that such an increase in

ςz is reached after a rescaled time ∆τWKB=103. Comparing the

numerically measured time ∆τSo12 and the thick WKB Balescu-

Lenard prediction ∆τWKB, one obtains

∆τSo12
∆τWKB

∼ 2×10−5 . (129)

The disagreement between the measured and the predicted

timescales is even larger than what was obtained in FPC15 in

the razor-thin case (∼10−3) for the Jr−diffusion. The timescale

discrepancy observed in FPC15, while using the razor-thin WKB

limit of the Balescu-Lenard formalism – which was solved

in Fouvry et al. (2015c) by resorting to a global evaluation of

the Balescu-Lenard diffusion flux – was interpreted to be due

to the incompleteness of the WKB basis. Indeed, by restrict-

ing ourselves only to tightly wound perturbartions, this WKB

limit was not able to capture the swing amplification mech-

anism (Goldreich & Lynden-Bell 1965; Julian & Toomre 1966;

Toomre 1981) which describes the strong amplification of unwind-

ing perturbations. The thickened WKB formalism presented in sec-

tion 3 suffers from the same flaw, and this is illustrated in the

timescale mismatch from equation (129), that can be directly at-

tributed to the neglect of some components of the self-gravitating

amplification in the qualitative illustrations obtained via the WKB

frameworks.
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4.4 Thickening induced by bars

In order to investigate another mechanism of secular thickening,

one may modify the perturbations sourcing the WKB collisionless

diffusion coefficients from equation (84). Instead of considering the

effect of shot noise as in equation (123), we may now study the

secular effect of a stochastic series of central bars on the galactic

disc thickness. Let us then assume that the autocorrelation of the

external perturbations takes the simple form

Ĉ[mφ,ω,Rg,kr,kz]=δ
mφ
mpAb(Rg) exp

[
− (ω−mpΩp)

2

2σ2
p

]
, (130)

wheremp=2 is the pattern number of the bar, Ωp is its typical pat-

tern speed, and σp∼1/Tb∼ (1/Ωp)(∂Ωp/∂t), with Tb the typical

bar’s lifetime, describes the typical decay time of the bar frequency.

The slower Ωp evolves, the narrower the frequency window from

equation (130) will be, and therefore the smaller σp. Finally, in

equation (130), Ab(Rg) is an amplitude factor depending on the

position within the disc, describing the radial profile and exten-

sion of the bar. One should note that equation (130) is a rather

crude assumption, since for simplicity, we neglect here any depen-

dence w.r.t. kr and kz (which in turn implies that the perturbation is

radially and vertically decorrelated). We consider the same thick-

ened Mestel disc as in section 4.1, perturbed by various series of

bars characterised by Ωp∈{0.4, 0.25} and σp∈{0.03, 0.06}. Fi-

nally, in order to focus on the intermediate regions of the disc,

i.e. belonging to neither the bulge nor the bar, we assume that

Ab(Rg)=H [Rg−Rcut], where H [x] is an Heaviside function

such that H [x]=1 for x≥0 and 0 otherwise, and Rcut=2.5 is

a truncation radius, below which the bar is present. The initial con-

tours of ∂FZ/∂t|t=0, for these various choices of bar perturbations,

are illustrated in figure 16. From the various panels of figure 16, one

should first note how the frequency selection present in the noise

assumption from equation (130) tends to localise as expected the

resonant ridge of enhanced thickness. This figure also emphasises

how the dynamical properties of the bars may change the orbital

signature of diffusion. Indeed, by comparing the left-hand panels

with the right-hand ones, one recovers that the slower the bar, the

further out the ridge of diffusion, i.e. as Ωp decreases, the ridges

move outwards. Similarly, by comparing the top panels with the

bottom ones, one observes that the more long-lived the bars, the

narrower the diffusion features, i.e. as σp decreases, the ridges get

sharper and do not overlay anymore. Finally, the position of the

various ridges observed in figure 16 can be straightforwardly in-

terpreted thanks to figure 9, which illustrates the behaviour of the

resonance frequencies ω=m·Ω as a function of the position in

the disc. This allows us to determine the dominant resonance as-

sociated with each of the ridges observed in figure 16. Because

shot noise perturbations as in equation (123) and perturbations as-

sociated with bars as in equation (130) do not have the same spec-

tral structure, the diffusion features observed in figures 13 and 16

are significantly different. The perturbations’ spectral characteris-

tics (equations (123) or (130)) shape the diffusion coefficients from

equation (3).

The process of secular thickening induced by a bar-like pertur-

bation should have a clear chemo-dynamical signature in the radial

and vertical distribution of stars of a given age and vertical disper-

sion. Indeed, gas inflow will (re)-generate a cold component of stars

within a razor-thin disc throughout a Hubble time. Conversely, po-

tential fluctuations near the disc will trigger radial and vertical mi-

grations in regions which resonate with the perturbations. Hence,

depending on the spectral properties of the perturbations, the rate

of star formation, the gas infall within the disc, and the underlying

orbital structure, the distribution of stellar ages, metallicities and

vertical velocities should reflect the net effect of all these processes.

4.5 GMCs triggered thickening

In a realistic galactic disc, we do not expect the self-induced dif-

fusion of stars alone to drive the disc’s thickening within a Hub-

ble time. However, the predicted collisional timescale of diffusion

from section 4.3 should be updated when accounting for the joint

evolution of the galaxy’s GMCs. So12 gives a possible scaling to

physical units as

Ri = 0.75 kpc ; τ0 =
Ri

V0
= 3.0Myr . (131)

A typical Milky Way like galaxy is such that NMW∼1011. As

a consequence, the rescaled time ∆τSo12≃2×10−2 becomes for

such a system

∆tMW ≃ 6×106 Gyr ≃ 6×105 tHub. , (132)

where we introduced the Hubble time as tHub.≃10Gyr. This

shows that the mechanism of self-induced thickening of stel-

lar disc investigated in So12 is too slow to be relevant per

se for a Milky Way like galaxy. However, it has been sug-

gested (e.g., Spitzer & Schwarzschild 1953; Wielen 1977; Lacey

1984; Binney & Lacey 1988; Jenkins 1992; Ida et al. 1993;

Shiidsuka & Ida 1999; Hänninen & Flynn 2002; Aumer et al.

2016) that the joint evolution of a stellar disc and a popula-

tion of forming and dissolving GMCs could be responsible for

such thickening through local deflections. As already emphasised

in Heyvaerts (2010); Chavanis (2012), the Balescu-Lenard for-

malism may describe simultaneously multiple populations of var-

ious masses, while accounting by construction for transient spi-

ral structures and non-local resonant encounters between dressed

orbits. Let us emphasise that the resonant diffusion captured

by the Balescu-Lenard equation is a different mechanism from

the close encounters associated with the scattering mechanism

from Spitzer & Schwarzschild (1953).6 We now briefly discuss

how the joint evolution of a population of stars and GMCs could

lead to a global thickening of the disc on a much shorter timescale.

One can write the Balescu-Lenard equation for a system with

multiple components (corresponding to say, stars and GMCs, of

different mass). The different components will be indexed by the

letters “a” and “b”. The particles of the component “a” have a

mass µa and follow the DF F a. Each DF F a is normalised such

that
∫
dxdvF a=Ma

tot, where Ma
tot is the total active mass of the

component “a”. The evolution of each DF is given by

∂F a

∂t
=π(2π)d

∂

∂J1
·
[ ∑

m1,m2

m1

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)

|Dm1 ,m2(J1,J2,m1 ·Ω1)|2

×
∑

b

{
µb F

b(J2)m1 · ∂F
a

∂J1
−µa F

a(J1)m2 · ∂F
b

∂J2

}]
. (133)

In the multi-component case, the susceptibility coefficients are still

6 See Chavanis (2013) for a detailed discussion of the links between the

self-consistent Balescu-Lenard equation and other kinetic theories based on

two-body encounters.
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Figure 16. Illustration of the initial contours of ∂FZ/∂t|t=0 using the same conventions as in figure 13, when considering a secular collisionless forcing

by a series of bar as in equation (130), for different precession rates Ωp and temporal decays σp. The diffusion in the inner regions has been turned off

by considering a perturbation amplitude Ab(Rg)=H[Rg−Rcut], with Rcut=2.5. The position of the various resonance radii can be determined thanks

to the behaviours of the intrinsic frequencies ω=m·Ω from figure 9. Top-left panel: Ωp=0.4 and σp=0.03, i.e. long-lived fast bars. Top-right panel:

Ωp=0.25 and σp=0.03, i.e. long-lived slow bars. Bottom-left panel: Ωp=0.4 and σp=0.06, i.e. short-lived fast bars. Bottom-right panel: Ωp=0.25
and σp=0.06, i.e. short-lived slow bars.

given by equation (13). However, now the response matrix encom-

passes all the active components of the system, so that

M̂pq(ω)=(2π)d
∑

m

∫
dJ

m·∂(∑bF
b)/∂J

ω−m·Ω
[
ψ(p)

m (J)
]∗
ψ(q)

m (J) .

(134)

Introducing drift and diffusion coefficients, equation (133) may be

rewritten under the form

∂F a

∂t
=
∑

m1

∂

∂J1
·
[
m1

∑

b

{
µaA

b
m1
(J1)F

a(J1)+µbD
b
m1

(J1)m1·
∂F a

∂J1

}]
,

(135)

where the drift and diffusion coefficients Ab
m1

(J1) and Db
m1

(J1)
both depend on the location J1 in action-space, the considered res-

onance m1 and the component “b” which is used as the underlying

DF to estimate them. Indeed, the drift coefficients are generically

given by

Ab
m1
(J1)=−π(2π)d

∑

m2

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)

|Dm1,m2(J1,J2,m1·Ω1)|2
m2·∂F

b

∂J2
,

(136)

while the diffusion coefficients read

Db
m1

(J1)=π(2π)
d
∑

m2

∫
dJ2

δD(m1 ·Ω1−m2 ·Ω2)

|Dm1 ,m2(J1,J2,m1·Ω1)|2
F b(J2) .

(137)

One should pay attention to the fact that the drift and diffu-

sion coefficients from equations (136) and (137) do not have the

c© 0000 RAS, MNRAS 000, 1–31



22 J.-B. Fouvry, C. Pichon, P.-H Chavanis & L. Monk

same dimensions as the mono-component ones introduced in equa-

tions (15) and (16). One can finally rewrite equation (135) as

∂F a

∂t
=
∑

m1

∂

∂J1
·
[
m1

{
µa A

tot
m1

(J1)F
a(J1)+D

tot
m1

(J1)m1·
∂F a

∂J1

}]
,

(138)

where we defined the total drift and diffusion coefficientsAtot
m1

and

Dtot
m1

as

Atot
m1

(J1) =
∑

b

Ab
m1

(J1) ; Dtot
m1

(J1) =
∑

b

µbD
b
m1

(J1) .

(139)

In equation (138), the drift coefficients are multiplied by the mass

µa of the considered component. This essentially captures the

known process of segregation, when a spectrum of masses is in-

volved. This can be seen for instance by seeking asymptotic sta-

tionary solutions to equation (138) by nulling the curly brace on

the r.h.s., leading to the multi-component Boltzmann distribution.

Let us now emphasise some properties of the multi-component

Balescu-Lenard equation (138) when considering the joint evolu-

tion of stars and GMCs in a stellar disc. Let us assume that the disc

contains a total mass M⋆
tot of N⋆ stars of individual mass µ⋆, de-

scribed by the DF F ⋆. In addition, the system contains a total mass

MG
tot of NG GMCs of individual mass µG described by the DF

FG. For simplicity, it will also be assumed that the stars and the

GMCs are distributed according to a similar distribution (keeping

in mind that in reality the GMCs are typically colder). Therefore,

because of their normalisation, one has the relation

FG =
MG

tot

M⋆
tot

F ⋆ . (140)

One may then estimate the total drift and diffusion coefficients from

equation (139) which take the form

Atot
m1

= (1+αA)A
⋆
m1

; Dtot
m1

= (1+αD)µ⋆D
⋆
m1

, (141)

where we introduced the dimensionless quantities αA and αD as

αA=
MG

tot

M⋆
tot

=
µG

µ⋆

NG

N⋆
; αD=

µGM
G
tot

µ⋆M⋆
tot

=

(
µG

µ⋆

)2
NG

N⋆
. (142)

Thanks to equation (138), the evolution equation for the stars’ dis-

tribution becomes

∂F ⋆

∂t
=
∑

m1

∂

∂J1
·
[
m1µ⋆

{
(1+αA)A

⋆
m1
F ⋆+(1+αD)D

⋆
m1

m1·
∂F ⋆

∂J1

}]
,

(143)

where the dependences w.r.t. J1 have not been written out to sim-

plify the notations. In equation (143), the case without GMCs can

be recovered by assuming αA=αD=0. Murray (2011) gives the

typical current properties of the Milky Way’s GMCs7 as

µG≃105M⊙ ; NG≃104 ; MG
tot≃109M⊙ . (144)

As a consequence, for a Milky Way like galaxy, with N⋆≃1011

and µ⋆≃1M⊙, one obtains

µG

µ⋆
∼105

1
∼105; NG

N⋆
∼ 104

1011
∼10−7 =⇒ αA∼10−2 ; αD∼103 .

(145)

7 A more involved modelling would also account for the expected secular

variability of these populations, due to the exponential decay in the sys-

tem’s star formation throughout cosmic times and the rapid disappearance

of GMCs.

Using the fact that αA≪1 and αD ≫ 1, equation (143) becomes

∂F ⋆

∂t
=
∑

m1

∂

∂J1
·
[
m1 µ⋆

{
A⋆m1

F ⋆+αDD
⋆
m1

m1·∂F
⋆

∂J1

}]
. (146)

The presence of the GMCs therefore tends to boost the diffusion

coefficients both in absolute terms and w.r.t. the drift ones. Since

αD≫1, the GMCs will act as a catalyst and will significantly has-

ten the diffusion of the stars and therefore the thickening of the

disc. The multi-component Balescu-Lenard formalism captures the

secular effect of multiple resonant deflections of stars by GMCs:

the lighter stellar population will drift towards the high altitude “at-

mosphere” (larger Jz), while the GMCs sink in. If this selective

boost of the diffusion component w.r.t. the drift is directly trans-

lated into the diffusion timescale of secular thickening of the disc,

one obtains

∆tG+⋆ =
∆t⋆
αD

, (147)

where ∆t⋆ corresponds to the timescale of the disc’s spontaneous

thickening when only stars are considered, while ∆tG+⋆ corre-

sponds to the case where the joint evolution of the GMCs is taken

into account. The presence of the GMCs, which are less numerous

but more massive than the stars, can therefore significantly alter

how stars diffuse compared to the case where they diffuse alone.

Let us emphasise that these considerations are generic and inde-

pendent from the thickened WKB approximation presented in the

previous sections. When applied to equation (132), the timescale

boost from equation (147) immediately translates to

∆tMW+G ≃ 6×102 tHub. , (148)

where ∆tMW+G corresponds to the timescale of thickening of a

Milky Way like galaxy when the joint evolution of the GMCs is also

taken into account. Equation (148) emphasises how the presence of

GMCs tends to significantly hasten the secular thickening of stellar

discs induced by discrete resonant encounters. However, despite

this diffusion boost, the secular broadening mechanism described

previously still appears as too slow compared to the typical lifetime

of a Milky Way like galaxy. The previous analysis therefore tends to

show that the self-induced collisional mechanism of secular thick-

ening sourced by finite−N fluctuations, captured by the Balescu-

Lenard equation (12), and numerically studied in So12, even when

accounting for the diffusion acceleration due to the presence of the

more massive and less numerous GMCs, is not sufficiently rapid

to lead to a significant secular thickening of a Milky Way like

stellar disc on a Hubble time. Aumer et al. (2016) reached a sim-

ilar conclusion on the efficiency of the GMCs heating to thicken

stellar discs when studying the quiescent growth of isolated galac-

tics discs in numerical simulations. One could finally perform the

same calculations to determine the typical timescale of appearance

of the radial ridge observed in Sellwood (2012). There, the radial

ridge in the (Jφ, Jr)−plane appears after a time ∆tradialS12 =1500
for N=5×107 particles. The associated rescaled time of diffu-

sion is then given by ∆τ radial=3×10−5. Relying on the physical

units from equation (131), for a Milky Way-like galaxy, the radial

ridge would appear after a time ∆tradialMW =103tHub., when only the

stars are considered. We showed in equation (147) that the simul-

taneous presence of the GMCs would hasten the system’s diffusion

and would therefore lead to an appearance of the radial ridge on

a timescale of the order ∆tradialMW+G≃∆tradialMW /(103)≃ tHub.. As a

consequence, while we showed in equation (148) that the presence

of the GMCs would still not allow for the appearance of a vertical

ridge on the typical lifetime of a Milky Way like galaxy, such a
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self-induced diffusion mechanism would be fast enough to induce

a radial ridge in the galaxy’s DF. This could lead for example to a

signature in the Milky Way’s DF, soon probed by the GAIA space-

craft.

5 CONCLUSION

The thickening of thin and thick galactic discs is the topic of very

active research (e.g., Minchev et al. 2015; Grand et al. 2016). In

this context, two equations describing the orbital diffusion of a self-

gravitating system were investigated: the collisionless evolution in-

duced by external stochastic perturbations or the spontaneous colli-

sional evolution described by the inhomogeneous Balescu-Lenard

equation. These diffusion equations were applied to a thickened

tepid galactic disc. Relying on the epicyclic approximation, their

thick WKB limits were found while assuming that only radially

tightly wound transient spirals are sustained by the disc. An ad

hoc uniform cavity was assumed in particular in order to solve

Poisson’s equation in a closed form. This yielded equation (83),

a simple double quadrature for the collisionless diffusion coeffi-

cients, and equations (101) and (102) for the collisional drift and

diffusion coefficients (and equations (136) and (137) for the multi-

component counterparts), providing a straightforward understand-

ing of the positions of maximum orbital diffusion within the disc.

A scale-height dependent thick disc Toomre parameter was also de-

rived correspondingly.

When applied to a shot noise perturbed tepid Toomre-stable

tapered thick disc, these formalisms predict the formation of ver-

tical ridges of resonant orbits towards larger vertical actions, in

qualitative agreement with the vertical ridges identified numerically

by Solway et al. (2012) via direct N−body simulations. This ex-

tends the findings of Binney & Lacey (1988) to the self-gravitating

case, as in the present work we treat in a coherent manner the dress-

ing of the perturbations, the associated spiral response and the in-

duced thickening. Potential fluctuations within the disc statistically

induce a vertical bending of a subset of resonant orbits, triggering

the corresponding increase in vertical velocity dispersion. Such a

process provides a possible mechanism allowing for galactic discs

to thicken on secular timescales, either perturbed by their own Pois-

son shot noise or, e.g., by a set of dynamically dragged bars, or

catalised by the joint evolution of GMCs. In the case of decaying

bars, we have shown that, as expected, the diffusion is strongest

at resonances and tightest when the rate of change of the pattern

is slowest. When considering the collisional effects of GMCs, we

showed that such a mechanism is not sufficiently fast to lead to a

significant secular thickening of a Milky Way like galaxy on a Hub-

ble time (see D’Onghia et al. (2013) and references therein for the

effects of GMCs on spiral activity). Determining which of these

processes are the dominant ones depends on the relative amplitude

of the various external and internal potential fluctuations sourcing

the diffusion coefficients. The amplitude of the former will have to

be quantified on simulations. Both should have a clear signature in

vertical metallicity gradients to be quantified by GAIA, consistent

with radial churning (Sellwood & Binney 2002) and migration.

It should be emphasised that various approximations were

made in order to reach these conclusions:

• we relied on the epicyclic approximation and the plane parallel

Schwarzschild approximation to build an integrable model for a

tepid thickened disc.

• we approximated the edge of the disc with a sharp edge to

solve Poisson’s equation vertically.

• we relied on the WKB approximation to describe the radial

component of spiral waves.

• when computing the susceptibility of the disc, we neglected

the relative importance of vertical action gradients of the DF com-

pared to radial ones.

• we also assumed when computing the susceptibility of the disc

that the orbits are closed on resonance.

• when considering the dressed collisionless diffusion, we as-

sumed some partially ad hoc external source of perturbations to

describe shot noise or sequences of slowing down bars.

One should keep in mind that the WKB approximation sig-

nificantly underestimates the amplitude of the resonant ridges

(but less so for thin rather than razor-thin disc, given the in-

creased Q number), as it cannot account for swing amplifi-

cation (Goldreich & Lynden-Bell 1965; Julian & Toomre 1966;

Toomre 1981), the strong self-gravitating amplification of unwind-

ing perturbations.

Beyond the scope of this paper, it would be worthwhile to im-

plement anharmonic corrections in the vertical oscillation to better

account for the stiffness of the vertical potential. As emphasised

here, one should eventually not restrict one’s description to WKB

waves as they do not capture swing amplification which boosts

the amplitude of the diffusion coefficients, and narrows the ridge.

One would then solve the exact field equations without assuming

separability and deal with a full response matrix while consid-

ering both secular processes (dressed collisionless Fokker-Planck

and Balescu-Lenard) simultaneously. While it was clearly already

a numerical challenge in the 2D case presented in Fouvry et al.

(2015c), its implementation in 3D is all the more difficult that we

do not have angle-action coordinates for thick discs beyond the

epicyclic approximation. One would have to resort to constructions

such as the torus machine to first build perturbatively a mapping

of action space from an integrable model to the non integrable one

via fits of generating functions (Kaasalainen & Binney 1994a,b).

Should chaos around regular islands become important, one could

resort to the dual stochastic Langevin formulation (see Fouvry et al.

2017) and account for the corresponding induced chaotic diffu-

sion. Finally, evolving forward in time a diffusion equation such

as the Balescu-Lenard equation still remains a challenging numer-

ical problem, in particular because of the self-consistency require-

ment. Indeed, as the diffusion occurs, i.e. as the system’s orbital

structure gets distorted, the system’s drift and diffusion coefficients

have to be recomputed in order to account for the new system’s

DF. One possibility to integrate in time such an equation is to re-

sort to its associated stochastic Langevin rewriting (Fouvry et al.

2017), which describes the stochastic dynamics of one test star in-

stead of the diffusion of the system’s whole DF. The choice of bar-

like correlation in equation (130) would also need to be revisited in

view of statistical measurements of bar formation and dissolution

in cosmological simulations. More generally, it would be useful to

quantify the statistics of cosmic noise at the disc length scale, ex-

tending the work of Aubert & Pichon (2007), which focused on the

virial radius. Such formalisms could also give some insight on the

thickening of debris protoplanetary or galacto-centric discs in the

quasi-Keplerian regime (Fouvry et al. 2017).
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APPENDIX A: ANTISYMMETRIC BASIS

Section 3.2 was restricted to symmetric basis elements. A very

similar construction can also be made for antisymmetric basis ele-

ments. Assuming ψz(−z)=−ψz(z), the ansatz from equation (35)

leads to D=−A and C=−B, so that the system from equa-

tion (36) becomes
{
Ae−krh = 2iB sin(kzh) ,

krAe
−krh = −2ikzB cos(kzh) .

(A1)

Similarly to equation (37), it imposes the quantisation relation

tan(kzh) = −kz
kr
. (A2)

It then leads to the same typical step distance ∆kz as in equa-

tion (40). Similarly to equations (41) and (42), the full expres-

sions of the antisymmetric potential and density basis elements can

straightforwardly be obtained as

ψ[kφ,kr ,R0,n] (R,φ, z) = Aψ
[kφ,kr,R0]
r (R,φ)

×






sin(knz z) if |z| ≤ h ,

ekrhsin(knz h) e
−kr |z| if z ≥ h ,

−ekrhsin(knz h) e
−kr |z| if z ≤ h .

(A3)

and

ρ[kφ,kr,R0,n](R,φ, z) = − k2r+(knz )
2

4πG

× ψ[kφ,kr,R0,n](R,φ, z)Θ

[
z

h

]
. (A4)

As for the symmetric case, the relative orthogonality of the an-

tisymmetric elements is immediately satisfied. In addition, for a

given set of indices [kφ, kr, R0], the symmetric elements are nat-

urally orthogonal w.r.t. the antisymmetric ones. As a consequence,

the thick WKB basis, when extended with the antisymmetric ba-

sis elements, still constitutes a biorthogonal basis. In analogy with

equation (43), the amplitude of the antisymmetric basis elements is

given by

A =

√
G

R0h(k2r+(knz )2)
βn , (A5)

where similarly to equation (44), βn is a numerical prefactor given

by

βn =

√
2

1−sin(2knz h)/(2knz h)
. (A6)

Note that in the antisymmetric case, the quantisation relation (A2)

imposes k1z>π/(2h) (see figure 4), so that in this domain

1.3.βn.1.5. Following equation (46), the Fourier transformed

antisymmetric basis elements read

ψ
[kφ,kr,R0,n]
m (J) = δ

kφ
mφ δ

odd
mz

A eikrRg imz−1−mr BR0(Rg)

× Jmr

[√
2Jr
κ
kr

]
Jmz

[√
2Jz
ν
knz

]
. (A7)

APPENDIX B: A DIAGONAL RESPONSE MATRIX?

In this Appendix, let us detail why it may be assumed as in equa-

tion (47) that the system’s response matrix is diagonal. First of all,

because the symmetric (resp. antisymmetric) Fourier transformed

basis elements from equation (46) (resp. equation (A7)) involve a

δevenmz
(resp. δoddmz

), one may immediately conclude that the response

matrix coefficients from equation (5) are equal to zero as soon as

the two considered basis elements do not have the same symmetry.

As a consequence, the symmetric and antisymmetric cases may be

treated separately.

The basis elements from equation (28) depend on four indices

[kφ, kr, R0, n]. As was obtained in FPP15 by relying on the tight-

winding approximation, the response matrix can be considered as

diagonal w.r.t. the indices [kφ, kr, R0]. Therefore, for a given set

[kφ, kr, R0], it remains to check whether or not the response matrix

is diagonal w.r.t. the knz index. It is straightforward to generalise the

expression (49) of the symmetric diagonal coefficients to the non-

diagonal ones as

M̂pq =
2πGΣαpαq

hκ2
√

(1+(kpz/kr)2)(1+(kqz/kr)2)

×
∑

ℓzeven

exp

[
− (kpz )

2+(kqz)
2

2ν2/σ2
z

]
Iℓz

[
kpzk

q
z

ν2/σ2
z

]

× 1

(1−s2ℓz )

{
F(sℓz , χr)−ℓz

ν

σ2
z

σ2
r

κ
G(sℓz , χr)

}
. (B1)

As in equation (53), the expression of the antisymmetric non-

diagonal matrix coefficients can straightforwardly be obtained from

equation (B1) by making the substitution α→β and restricting the

sum on ℓz only to odd values. Thanks to its symmetry, showing that

the response matrix may be assumed as diagonal amounts to prov-

ing that for p 6=q, one has M̂pq≪M̂pp. In order to perform such a

comparison, one has to focus on the quantities which depend on kpz
and kqz in equation (B1). Let us therefore define the dimensionless

quantity K
(ℓz)
pq as

K(ℓz)
pq =

1√
(1+(kpz/kr)2)(1+(kqz/kr)2)

× exp

[
− (kpz)

2+(kqz)
2

2ν2/σ2
z

]
Iℓz

[
kpzk

q
z

ν2/σ2
z

]
. (B2)

Equation (B2) does account for the prefactors αp and αq as they are

always of order unity. While present in equation (B1), note that the

definition of K
(ℓz)
pq from equation (B2) does not involve the terms

F(sℓz , χr), G(sℓz , χr) and 1/(1−s2ℓz ) since they do not depend

on the choice of kpz and kqz . As illustrated in figure B1, the func-

tions sℓz 7→F(sℓz , χr) and sℓz 7→G(sℓz , χr) are ill-defined when

sℓz is an integer. To regularise these values, a small imaginary part

must be added to sℓz . However, while regularising the values of

these functions for exact integers, this procedure does not prevent

the divergences of F and G in the neighbourhood of integers. To

avoid these diverging behaviours, the functions F and G are ap-

proximated by smooth functions as

F(sℓz , χr) ≃ fr ; G(sℓz , χr) ≃ −gr sℓz , (B3)
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Figure B1. Illustration of the behaviours of the functions s 7→F(s, χ) and

s 7→G(s,χ) (black curves), for a given value χ=1, along with their ap-

proximations from equation (B3) (grey lines). One should note the diverg-

ing branches of these functions in the neighbourhood of integers. However,

these functions are well defined when evaluated for integer values of s,

provided that one considers limη→0 Re[F(n+iη, χ)] (similarly for G), as

illustrated with the black dots.

where fr and gr do not depend on sℓz . This is illustrated in fig-

ure B1. When evaluating the response matrix to compute the col-

lisionless diffusion coefficients from equation (3) or the collisional

dressed susceptibility coefficients from equation (13), one has to

consider ω to be at resonance so that ω=m·Ω. In that situation,

sℓz = mr+(mz−ℓz)ν
κ
. (B4)

Therefore, the value of sℓz is either an integer (for ℓz=mz) or far

from one, provided that ν/κ is of high rational order. This justifies

the approximations from equation (B3). One may then cut the sum

on ℓz defining M̂pq in equation (B1) according to the resulting

powers of ℓz . In order to prove that for p 6=q, one has M̂pq≪M̂pp,

one is left to prove that

Sγ(p, q) =
∑

ℓz

ℓγzK
(ℓz)
pq

1−s2ℓz
≪Sγ(p, p) , (B5)

where the power index γ is such that γ∈{0, 1, 2}. To further

dedimensionalise the problem, let us define the typical dynamical

height of the disc d=σz/ν and introduce the dimensionless quan-

tities ℓp, ℓq and ℓr as

ℓp = kpzd ; ℓq = kqzd ; ℓr = krd , (B6)

so that the expression (B2) of K
(ℓz)
pq may be rewritten as

K(ℓz)
pq =

Iℓz [ℓpℓq] e−(ℓ2p+ℓ
2
q)/2

√
(1+(ℓp/ℓr)2)(1+(ℓq/ℓr)2)

. (B7)

Figure B2. Illustration of the asymptotics of the modified Bessel functions

of the first kind from equation (B10). The full lines are the four first Bessel

functions, alongside with their polynomial approximations in zero (dashed

curves). The black dashed curve is their exponential approximation.

As illustrated in figure 4, the quantisation of the vertical frequen-

cies implies that the fundamental symmetric mode plays a different

role than all the other quantised frequencies (both symmetric and

antisymmetric), since it is the only frequency inferior to π/(2h).
In order to emphasise this specific role, let us renumber, in this

Appendix only, the indices p, such that p=0 corresponds to the

fundamental symmetric mode, while p≥1 corresponds to the other

quantised frequencies superior to π/(2h). With such a choice, the

numbering of the antisymmetric basis elements only starts at p=1.

As shown in figure 4, one has the inequalities

0<k0z<
π

2h
;
(p− 1

2
)π

h
<kpz<

(p+ 1
2
)π

h
(for p≥1) . (B8)

Finally note that in the infinitely thin limit, equation (39) has the

asymptotic behaviour k0z∼
√
kr/h. Given the relation (113) be-

tween the sharp cavity of height h and the physical scale d of the

disc, the relation h=2d holds, so that equation (B8) may be rewrit-

ten as

0<ℓ0<
π

2
√
2
;
(p− 1

2
)π√

2
<ℓp<

(p+ 1
2
)π√

2
(for p≥1) . (B9)

Similarly, ℓr=(krh)/
√
2. Notice that expression (B7) of K

(n)
pq in-

volves a modified Bessel function In(ℓpℓq), that needs to be ap-

proximated carefully. Indeed, equivalents in 0 and +∞ of In are

respectively given by

In(x) ∼
0

1

n!

(x
2

)n
; In(x) ∼

+∞

ex√
2πx

. (B10)

As illustrated in figure B2, one must determine which approxima-

tion (polynomial or exponential) is relevant for a given value of n
and x. Therefore, for each n≥0, let us introduce xn, such that for

x≤xn (resp. x≥xn), one uses the asymptotic development from

equation (B10) in 0 (resp. +∞). In the expression (B7) of the ma-

trix coefficients, notice that the Bessel function is only evaluated in

ℓpℓq, with p and q two integers. For p and q given, there exists an

integer npq such that:

∀ℓz < npq, Iℓz (ℓpℓq) ≃
eℓpℓq√
2πℓpℓq

,

∀ℓz ≥ npq, Iℓz (ℓpℓq) ≃
1

ℓz!

(
ℓpℓq
2

)ℓz
. (B11)

Notice in figure B2, that except for ℓz=0, the exponential approx-

imation is significantly bigger than the actual value of Iℓz . This
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does not impact the following calculation, since when proving that

M̂pq≪M̂pp the exponential approximation will only be applied

on M̂pq alone, or on M̂pq and M̂pp simultaneously with similar

errors, so that the comparison between the approximated values

will also hold for the exact values. A naive approach to compare

Sγ(p, q) and Sγ(p, p) as required by equation (B5), would be to

compare them term by term, that is to prove that K
(ℓz)
pq ≪K

(ℓz)
pp

for all ℓz . This is unfortunately not sufficient, and one must be more

cautious, and cut the sum on ℓz in Sγ(p, q) from equation (B10),

between three different contributions, for which one can directly

show:

• For the first terms (with |ℓz|<npp and |ℓz|<npq):

K(ℓz)
pq ≪K(1)

pp .

• For the intermediate terms (with npp≤|ℓz|<npq):

∑

npp≤|ℓz|<npq

ℓγzK
(ℓz)
pq

1−s2ℓz
≪K(1)

pp .

• For the last terms (with |ℓz|≥npq):

∑

|ℓz|≥npq

ℓγzK
(ℓz)
pq

1−s2ℓz
≪K(1)

pp .

This last relation holds when krh&0.03, but gets violated in the

limit of a razor-thin disc, when q=0. These comparisons are easy

to obtain, and only require to use the appropriate approximations

of the Bessel functions from equation (B10) for the two elements

which are compared, and rely on the step distances between two

consecutive basis elements from equation (B9). These inequalities

show that, when krh&0.03, for all p and q, one has M̂pq≪M̂pp.

The same result also holds for krh.0.03, but only when q 6=0. We

therefore reached the following conclusions:

• The antisymmetric response matrix can always be assumed to

be diagonal.

• For krh& 0.03, the symmetric response matrix can be as-

sumed to be diagonal.

• For krh.0.03, i.e. in the limit of a razor-thin disc, the sym-

metric response matrix takes the form of an arrowhead matrix.

Finally, let us now justify why for a sufficiently thin disc, for

which the symmetric response matrix takes the form of an arrow-

head matrix, the diagonal response matrix case is recovered. In this

limit, the symmetric response matrix takes the form

M̂ =




α z1 · · · zn
z1 d1
...

. . .

zn dn


 . (B12)

Assuming that ∀i , zi 6=0 and ∀i 6=j , di 6=dj, it can be

shown (O’Leary & Stewart 1990) that the eigenvalues (λi)0≤i≤n
of the arrowhead matrix from equation (B12) are the (n+1)
solutions of the equation

f
M̂
(λ) = α−λ −

n∑

i=1

z2i
di−λ

= 0 . (B13)

Provided that the di are in descending order, the eigenvalues λi of

M̂ are interlaced so that

λ0 > d1 > λ1 > ... > dn > λn . (B14)

dn d3 d2 d1 α

α

λ0λ1λ2λn

Figure B3. Illustration of the behaviour of the function λ 7→f
M̂

(λ), thanks

to which the eigenvalues of the arrowhead response matrix from equa-

tion (B12) may be determined.

Finally, the eigenvectors xi associated with the eigenvalue λi are

proportional to

xi =

(
1 ;

z1
λi−d1

; ... ;
zj

λi−dj
; ... ;

zn
λi−dn

)
. (B15)

In our case, the comparison relations α≫zi and zi≫di also hold.

An illustration in this regime of the behaviour of the function

λ 7→f
M̂
(λ) from equation (B13) is shown in figure B3. To jus-

tify why the arrowhead response matrix from equation (B12) may

be considered as diagonal, one has to justify that despite the first

line and column, the matrix eigenvalues remain close to the matrix

diagonal coefficients, so as to have

λ0 ≃ α and λi ≃ di (for i≥1) . (B16)

Similarly, it must also be ensured that the associated eigenvectors

xi remain close the natural basis elements so that

xi ≃ (0 ; ... ; 1 ; 0 ; ....) , (B17)

where the only non-zero index is at the ith position. As illus-

trated in figure B3, to determine the eigenvalues λi, the equation

f
M̂
(λi)=0 introduced in equation (B13) must be solved. This may

be rewritten as

1− λi
α

−
n∑

i=1

(zi/α)
2

(di/α)−(λi/α)
= 0 . (B18)

Since one has (zi/α)≪1, in order for equation (B18)

to be fulfilled, one must necessarily have λi/α≃1 or

((di/α)−(λi/α))≪1. It follows immediately that λ0≃α
and λi≃di. As a consequence, equation (B16) holds: the matrix

eigenvalues λi remain close to the matrix diagonal coefficients

(α, d1, ..., dn). The eigenvectors xi introduced in equation (B15),

can be rewritten as

xi=

(
1;

(z1/α)
2

(λi/α)−(d1/α)
1

(z1/α)
;...;

(zj/α)
2

(λi/α)−(dj/α)
1

(zj/α)
;...

)
. (B19)

In equation (B19), if one considers the case i=0, thanks to equa-

tion (B16), one has λ0≃α, so that using the fact that dj≪α, the

generic term from equation (B19) takes the form

(zj/α)
2

(λ0/α)−(dj/α)

1

(zj/α)
≃ (zj/α)

1
≪ 1 , (B20)

where we used the fact zj≪α. As a consequence, for i=0, in

equation (B19), all the terms except the first one are negligible in

front of 1, so that one has x0≃ (1; 0; ...; 0). In equation (B19), if
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one considers the case i 6=0, one has to study the ith term of equa-

tion (B19) which takes the form

(zi/α)
2

(λi/α)−(di/α)

1

(zi/α)
≃ 1

(zi/α)
≫ 1 . (B21)

In this calculation, equation (B18) was used to show that for i 6=0,

one has
(zi/α)

2

(di/α)−(λi/α)
≃1. As a consequence, for i 6=0, the eigen-

vector xi is dominated by its ith coefficient and can therefore be

assumed to be proportional to (0; ..; 1; 0; ...), where the non-zero

index is as the ith position. Consequently, we may assume that the

response matrix eigenvectors remain close to the natural basis ele-

ments. As a conclusion, even in the limit of a razor-thin disc, the

arrowhead symmetric response matrix from equation (B12) may

still be assumed to be diagonal. This justifies the generic use of the

diagonal amplification eigenvalues in equation (47), when comput-

ing the diffusion coefficients.

APPENDIX C: ANTISYMMETRIC COLLISIONLESS

DIFFUSION

In this Appendix, let us show how one may obtain the counter-

parts of equation (80) for the antisymmetric components. Here, the

main differences are that the quantised kz frequencies are given by

equation (A2) (with the same step distance as in equation (40)), the

mz considered will necessarily be odd, and the Fourier transformed

basis elements from equation (A7) must be considered, which in-

volve a different normalisation constant βn. In analogy with equa-

tion (80), the antisymmetric diffusion coefficients are given by

Danti
m (J) = δoddmz

1

(2π)2

×
∫
dkprdk

p
z Jmr

[√
2Jr
κ
kpr

]
Jmz

[√
2Jz
ν
kpz

]
β2
p

1−λp

×
∫
dkqrdk

q
z Jmr

[√
2Jr
κ
kqr

]
Jmz

[√
2Jz
ν
kqz

]
β2
q

1−λq
× Ĉψe [mφ,m·Ω, Rg, k

p
r , k

q
r , k

p
z , k

q
z] , (C1)

where one should pay attention to the fact that the pertubation au-

tocorrelation Ĉψe introduced in equation (79) for the symmetric

case has to be computed slighlty differently for the antisymmetric

case. Indeed, because the antisymmetric basis elements from equa-

tion (A3) possess an odd vertical dependence, the even-restricted

vertical Fourier transform from equation (72) should be replaced

by an odd-restricted vertical Fourier transform defined as

fkz =

∫ +h

−h

dz sin(kzz) f [z] . (C2)

In equation (C1), notice that the integrations on kpz and kqz should

only be made for kz≥k1z,a, i.e. for kz larger than the fundamental

antisymmetric mode k1z,a as illustrated in figure 4. Using the anti-

symmetric diagonalisation of the autocorrelation obtained in equa-

tion (E15) and following equation (83) for the symmetric diffusion

coefficients, equation (C1) may be simplified as

Danti
m (J) = δoddmz

π

(2π)2

∫
dkprdk

p
z J 2

mr

[√
2Jr
κ
kpr

]
J 2
mz

[√
2Jz
ν
kpz

]

×
[
β2
p

1−λp

]2

Ĉ[mφ,m·Ω, Rg, k
p
r , k

p
z ] . (C3)

In equation (C3), despite the fact that one is considering antisym-

metric diffusion coefficients, it is important to note that here Ĉ con-

tains an even-restricted vertical Fourier transform, as detailed in

equation (E15). Such a property underlines how the symmetric and

antisymmetric diffusion coefficients are indeed similar. Proceeding

as in equation (84), the approximation of the small denominators

simplifies equation (C3) as

Danti
m (J) = δoddmz

π|Vmax|
(2π)2

J 2
mr

[√
2Jr
κ
kmax
r

]
J 2
mz

[√
2Jz
ν
kmax
z

]

×
[
β2
max

1−λmax

]2
Ĉ[mφ,m·Ω, Rg, k

max
r , kmax

z ] . (C4)

APPENDIX D: FROM THICK TO THIN DISCS

D1 The collisionless case

In this Appendix, let us show how one can estimate the diffusion

coefficients when the disc is too thin to use the continuous expres-

sion from equation (78). It will be shown how this second approach

is consistent with that from equation (78) and how the infinitely thin

results from FPP15 are recovered.

As observed in equation (78), the use of the Riemann for-

mula w.r.t. the index kpz is only justified if the typical step distance

∆kz≃π/h from equation (40) is sufficiently small compared to

the scale of variation of the function kz 7→gs(kz). In the limit of a

thinner disc, h→0, so that ∆kz→+∞. This approximation can-

not be used anymore and the discrete sum over the quantised kpz
from equation (77) should be kept. It is also within this framework

that we may hope to recover in the razor-thin limit the known re-

sults from FPP15 for an infinitely thin stellar disc. Starting from

equation (77) for the symmetric diffusion coefficients, one rewrites

equation (80) as

Dsym
m (J) = δevenmz

1

(2h)2

×
∑

np,nq

∫
dkpr Jmr

[√
2Jr
κ
kpr

]
Jmz

[√
2Jz
ν
k
np
z (kpr )

]
α2
p

1−λp

×
∫
dkqrJmr

[√
2Jr
κ
kqr

]
Jmz

[√
2Jz
ν
k
nq
z (kqr)

]
α2
q

1−λq
× Ĉψe [mφ,m·Ω, Rg, k

p
r , k

q
r , k

np
z (kpr ), k

nq
z (kqr)] , (D1)

where the autocorrelation of the external perturbation has been de-

fined in equation (79). Starting from equation (C1), the antisym-

metric analog of equation (D1) is straightforward to obtain, thanks

to the substitution αp→βp and δevenmz
→δoddmz

. However, as empha-

sised in equation (C2), one should pay attention to the fact that it

will involve an odd-restricted vertical Fourier transform of the po-

tential perturbations. The next step, as in equation (82), is to diag-

onalise the autocorrelation of the external perturbation, taking into

account that, contrary to the continuous case from equation (80),

the vertical frequencies kz=kz(kr, n) are no longer a free vari-

able but should be seen as functions of the associated kr and n.

Following the same calculations as in Appendix E, and using the

shortening notation k
n1/2
z =k

n1/2
z (k

1/2
r ), we may write

〈
ψ̂e

k1r,k
n1
z

[Rg, ω1] ψ̂e
∗

k2r,k
n2
z

[Rg, ω2]

〉
= 2πδD(ω1−ω2)

× δD(k
1
r−k2r)

1

2

∫ 2h

−2h

dv Ĉ[v]Gsym[kn1
z , kn2

z , v] . (D2)

Thanks to the Dirac delta δD(k
1
r−k2r), kn1

z and kn2
z are evaluated

for the same kr so that equation (40) gives

n1 6= n2 ⇒ |kn1
z −kn2

z | & π/h , (D3)
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where for a thin disc, the quantised kz will therefore tend to be

far apart. Given the approximation of Gsym obtained in equa-

tion (E8), we may assume that equation (D2) is non-negligible only

for n1=n2, i.e. kn1
z =kn2

z . One may rewrite equation (D2) simi-

larly to equation (82) as
〈
ψ̂e
mφ,k

1
r ,k

n1
z

[Rg, ω1] ψ̂e
∗

mφ,k
2
r ,k

n2
z

[Rg, ω2]

〉
=2πh δD(ω1−ω2)

× δD(k
1
r−k2r) δn2

n1
Ĉ[mφ, ω1, Rg, k

1
r , k

n1
z ] , (D4)

where the presence of the Kronecker symbol δn2
n1

should be noted.

Thanks to this diagonalised autocorrelation, the discrete expression

of the symmetric diffusion coefficients from equation (D1) imme-

diately takes the form

Dsym
m (J)= δevenmz

1

4h

∑

np

∫
dkpr J 2

mr

[√
2Jr
κ
kpr

]
J 2
mz

[√
2Jz
ν
k
np
z (kpr )

]

×
[
α2
p

1−λp

]2

Ĉ[mφ,m·Ω, Rg, k
p
r , k

np
z (kpr )] . (D5)

This expression is the direct discrete equivalent of equation (83),

and these two expressions are in full agreement. Indeed, starting

from equation (D5), the continuous expression on kpz is recovered

using the Riemann sum formula with, as given by equation (40), a

step distance ∆kz=π/h. Equation (83) is then exactly recovered.

As in equation (84) for the continuous approach, the approximation

of the small denominators can be used so as to write

Dsym
m (J) = δevenmz

1

4h

∑

np

∆k
np
r J 2

mr

[√
2Jr
κ
kmax
r,np

]
J 2
mz

[√
2Jz
ν
kmax
z,np

]

×
[
(αmax
np

)2

1−λmax
np

]2

Ĉ[mφ,m·Ω, Rg, k
max
r,np

, kmax
z,np

] , (D6)

where for a given value of np, we considered the behaviour of the

function kpr 7→λ(kpr , k
np
z (kpr )). We assumed it reached a maximum

λmax
np

for kr=k
max
r,np

on a region of typical extension ∆k
np
r . Finally,

we also used the shortening notation kmax
z,np

=k
np
z (kmax

r,np
). The ex-

pression (D5) can straightforwardly be translated to the antisym-

metric diffusion coefficients as

Danti
m (J) = δoddmz

1

4h

∑

np

∫
dkpr J 2

mr

[√
2Jr
κ
kr

]
J 2
mz

[√
2Jz
ν
k
np
z (kpr )

]

×
[
β2
p

1−λp

]2
Ĉ[mφ,m·Ω, Rg, k

p
r , k

p
z ] , (D7)

where the antisymmetric quantised kz frequencies from equa-

tion (A2) should be considered. As emphasised in equation (E15),

one should also pay attention to the fact that in equation (D7), Ĉ
contains an even-restricted vertical Fourier transform of the auto-

correlation, despite the fact that one is considering antisymmetric

diffusion coefficients. Similarly, the approximation of the small de-

nominators from equation (D6) extends straightforwardly to the an-

tisymmetric case.

Given the discrete diffusion coefficients from equation (D5),

we may now illustrate how in the infinitely thin limit, the diffusion

coefficients obtained in FPP15 are recovered. As illustrated in fig-

ure 4, notice that except for the fundamental symmetric frequency

k1z,s, one has knz >π/(2h). As a consequence, in the infinitely thin

limit, for which h→0, one has knz →+∞, except for k1z,s. Recall

that the dependence of Ĉ[kpz ] with h is given by equation (E9) and

takes the form

Ĉ[kpz ] =
∫ 2h

−2h

dv Ĉ[v] cos[kpzv] . (D8)

The following upper bound holds |Ĉ[kpz ]|≤4h Ĉmax, which, in the

razor-thin limit, will cancel the prefactor in 1/(4h) present in equa-

tion (D5). Recalling the fact that ∀n≥0 , limx→+∞ Jn(x)=0, it

follows straightforwarldy that

lim
thin

Danti
m (J) = 0 . (D9)

Similarly, for the symmetric diffusion coefficients, the sum on np
from equation (D5) can be limited to the only fundamental term

np=1. In equation (39), we estimated that in the thin limit, one

has the asymptotic behaviour k1z,s≃
√
kr/h. Consequently, equa-

tion (D5) implies that as soon as mz 6=0, limthinD
sym
m =0. As a

conclusion, in the infinitely thin limit, only the symmetric diffusion

coefficients associated withmz=0 will not vanish. Similarly, start-

ing from equation (D5), it is straightforward to note that one must

have Jz=0 so as to have a non vanishing symmetric diffusion co-

efficient. Hence, in the razor-thin limit, for mz=0 and Jz=0,

lim
thin

Dsym
m (J) = lim

thin

1

4h

∫
dkpr J 2

mr

[√
2Jr
κ
kpr

][
α2
1

1−λp

]2

× Ĉ[mφ,m·Ω, Rg, k
p
r , k

1
z,s] . (D10)

Given the definition of αp from equation (44), limthin α1=1. Sim-

ilarly, we have shown in equation (60), that for the fundamental

symmetric mode, in the razor-thin limit, one has limthin λp=λ
thin
p .

The last step of the calculation is to study the behaviour of Ĉ[k1z,s]
in the razor-thin limit, as written in equation (D8). Equation (D8)

takes the form of an integral over an interval of length 4h of

a function oscillating at the frequency k1z,s≃
√
kr/h. The num-

ber of oscillations of this function on this interval is of the order

k1z,sh∼
√
krh, so that in the razor-thin limit, the number of oscil-

lations of the function v 7→cos[k1z,sv] tends to 0. This allows us to

perform the replacement cos[k1z,sv]→1. As a consequence, in the

razor-thin limit, equation (D8) becomes

lim
thin

Ĉ[k1z,s] = 4h Ĉ[v=0] . (D11)

When injected in equation (D11), one finally obtains

lim
thin

Dsym
m (J) =

∫
dkpr J 2

mr

[√
2Jr
κ
kpr

] [
1

1−λthin
p

]2

× Ĉthin[mφ,m·Ω, Rg, k
p
r ] , (D12)

where Ĉthin[mφ,m·Ω, Rg, k
p
r ] stands for the local power spec-

trum of the external perturbations in the equatorial plane as com-

puted in the infinitely thin case presented in FPP15. Hence equa-

tion (D12) is in complete agreement with the results obtained in

that paper.

D2 The collisional case

Let us now show how one can estimate the collisional susceptibility

coefficients in the case where the disc is too thin to use the contin-

uous expressions from equation (98). We will especially show how

this second approach starting from equation (97) allows us to re-

cover the razor-thin susceptibility coefficients derived in FPC15.

We observed in equation (98) that the use of the Riemann sum

formula w.r.t. the index k
np
z is only justified if the typical step dis-

tance ∆kz≃π/h from equation (40) is sufficiently small compared

to the scale of variation of the function present in the r.h.s. of equa-

tion (97). In the limit of a thinner disc, for which h→0, one has

∆kz→+∞. The approximation based on the Riemann sum for-

mula cannot be used, and one should therefore stick with the dis-

crete sum from equation (97). It is within this limit that one may
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recover the razor-thin results obtained in FPC15. As illustrated in

figure 4, one should note that except for the fundamental symmetric

frequency k1z,s, one always has k
np
z >π/(2h). As a consequence,

in the razor-thin limit for which h→0, one has k
np
z →+∞, except

for k1z,s. In equation (97), one should also note the presence of a

prefactor in 1/h. In the limit h→0, one therefore has to study the

asymptotic behaviour of a term of the form

1

h

1

k2r+(k
np
z )2

−→
thin






1

kr
if k

np
z =k1z,s ,

0 if k
np
z 6=k1z,s .

(D13)

As a consequence, in the razor-thin limit, since all the other terms

appearing in equation (97) are bounded, one has

lim
thin

1

Danti
m1,m1

= 0 . (D14)

Similarly, in the razor-thin limit, for the symmetric susceptibility

coefficients from equation (97), the sum on np can be limited to

the only fundamental term np=1. We recall the asymptotic be-

haviour in 0 of the Bessel functions Jn(x)∼ (1/n!)(x/2)n. As

a consequence, since k1z,s→0 in the razor-thin limit, as soon as

mz
1 6=0, one has limthin 1/Dsym

m1 ,m1
=0. Therefore, in the razor-

thin limit, only diffusion associated with mz
1=0 will not vanish,

and we may restrict ourselves to only considering this term. We

also note that in order to have non-vanishing susceptiblity coeffi-

cients, one should restrict oneself to the case J1
z =0. In the razor-

thin limit, one has limthinλp=λthin
p , and thanks to equation (44),

one has limthin α1=1. As a consequence, in the razor-thin limit

with mz
1=0 and J1

z =0, the symmetric susceptibility coefficients

from equation (97) may be approximated as

lim
thin

1

Dsym
m1,m1

∼ 1

Dthin
m1,m1

J0

[√
2J2

z
ν1
k1z,s

]
, (D15)

where we introduced the razor-thin WKB susceptibility coefficients

obtained in FPC15 as

1

Dthin
m1,m1

(J1
φ, J

1
r , J

1
φ, J

2
r , ω)

=
G

2πR1

∫
dkr

1

1−λthin
kr

(R1, ω)

× Jmr
1

[√
2J1

r
κ1

kr

]
Jmr

1

[√
2J2

r
κ1

kr

]
. (D16)

We start from equation (101) and estimate the drift coefficients in

the razor-thin limit. We rewrite the thick system’s DF from equa-

tion (27) as

Fthick(J
1
φ, J

1
r , J

1
z )=Fthin(J

1
φ, J

1
r )

ν1
2πσ2

z

exp

[
− ν1Jz

σ2
z

]
, (D17)

where we introduced the razor-thin DF Fthin as

Fthin(J
1
φ, J

1
r ) =

ΩφΣ

πκ1σ2
r

exp

[
− κ1J

1
r

σ2
r

]
. (D18)

To illustrate this straightforward calculation, we only consider the

remaining dependences w.r.t. J2
z in equation (101). One has to con-

sider an expression of the form

ν1
2πσ2

z

∫
dJ2

z exp

[
− ν1J

2
z

σ2
z

]
J 2

0

[√
2J2

z
ν1

k1z,s

]
=

1

2π
I0

[
(k1z,s)

2

ν21/σ
2
z

]
exp

[
− (k1z,s)

2

ν21/σ
2
z

]

−→
thin

1

2π
, (D19)

where we used the formula 6.615 from Gradshteyn & Ryzhik

(2007), and also used equations (39) and (113), so as to have in

the razor-thin limit (k1z,s)
2/(ν21/σ

2
z)∼h→0. As a consequence,

injecting equation (D19) into the general expression (101) of the

drift coefficients, one finally obtains

lim
thin

Asym
m1

(J1) = − 4π3µ

(m1 ·Ω1)′

×
∫
dJ2

r

m1 ·∂Fthin/∂J(J
1
φ, J

2
r )

|Dthin
m1,m1

(J1
φ, J

1
r , J

1
φ, J

2
r ,m1 ·Ω1)|2

,

(D20)

where one has to restrict oneself to mz
1=0 and J1

z =0. Following

the same approach, the razor-thin limit of the diffusion coefficients

from equation (102) is straightforward to compute and reads

lim
thin

Dsym
m1

(J1) =
4π3 µ

(m1 ·Ω1)′

×
∫
dJ2

r

Fthin(J
1
φ, J

2
r )

|Dthin
m1,m1

(J1
φ, J

1
r , J

1
φ, J

2
r ,m1 ·Ω1)|2

.

(D21)

The two razor-thin expressions from equations (D20) and (D21) are

in full agreement with the expressions obtained in FPC15 where

the razor-thin WKB limit of the inhomogeneous Balescu-Lenard

equation was first presented.

APPENDIX E: PERTURBATION AUTOCORRELATION

This Appendix shows how the hypothesis of quasi-stationarity from

equation (81) leads to a diagonalisation of the autocorrelation w.r.t.

kr and kz as expressed in equation (82). To shorten the notations,

let us drop the index mφ in equation (82), and use the notation

ψ=ψe. Using the definitions of the local radial Fourier trans-

form and the even-restricted vertical Fourier transform from equa-

tion (72), the l.h.s. of equation (82) may be written as
〈
ψ̂k1r ,k1z [Rg, ω1] ψ̂

∗
k2r ,k

2
z
[Rg, ω2]

〉
=

1

(2π)2

∫
dt1dt2dR1dR2dz1dz2

× gr[Rg−R1] gr[Rg−R2] e
−i(R1−Rg)k

1
r ei(R2−Rg)k

2
r

× cos(k1zz1) cos(k
2
zz2)

〈
ψ[R1, z1, t1]ψ

∗[R2, z2, tz]
〉
, (E1)

where we defined gr[R]=e−R
2/(2σ2) and the integrations on z1

and z2 have to be performed on [−h; h]. As in FPP15, one can

perform the integrations on t1, t2, R1 and R2 to write
〈
ψ̂k1r ,k1z [Rg, ω1] ψ̂

∗
k2r ,k

2
z
[Rg, ω2]

〉
=2πδD(ω1−ω2)δD(k

1
r−k2r)

×
∫
dz1dz2 cos(k

1
zz1) cos(k

2
zz2) Ĉ[ω1,Rg,k

1
r ,z1+z2,z1−z2] , (E2)

where Ĉ[..., Rg, k
1
r , ...] stands for the local radial Fourier transform

of the function r 7→ Ĉ[..., Rg, r, ...] in the neighbourhood of r=0 at

the frequency k1r , on a scale σ′=
√
2σ as defined in equation (72)

(see FPP15). In equation (E2) to compute the remaining integrals

on z1 and z2, one performs the change of variables u=z1+z2 and

v=z1−z2. Keeping only the remaining dependences on u and v

and writing k1/2=k
1/2
z , the second line of equation (E2) reads

1

2

∫ 2h

−2h

dv

∫ 2h−|v|

−2h+|v|

du cos

[
u+v

2
k1

]
cos

[
u−v
2

k2

]
Ĉ[u, v] . (E3)

Let us now assume that on the scale h on which the external pertur-

bations are considered, the function u 7→ Ĉ[u, v] slowly depends on
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u, so that we may perform the replacement Ĉ[u, v]→Ĉ[0, v]. As a

consequence, in equation (E3), the integral on u may be computed.

It reads
∫ 2h−|v|

−2h+|v|

du cos

[
u+v

2
k1

]
cos

[
u−v
2

k2

]
=

2

(k1−k2)(k1+k2)

×
{
k1 cos[k2(h−|v|)] sin[hk1]+k1 cos[hk2] sin[k1(h−|v|)]

−k2 cos[k1(h−|v|)] sin[hk2]−k2 cos[hk1] sin[k2(h−|v|)]
}

= Gsym[k1, k2, v] . (E4)

The next step of the calculation is to approximate the function

Gsym, so as to diagonalise it w.r.t. to k1 and k2. To a given pair

(k1, k2), let us associate the coordinates (k̃, δ̃k) defined as

k̃ =
k1+k2

2
; δ̃k =

k1−k2
2

. (E5)

Let us then assume that Gsym follows the ansatz

Gsym(k̃+δ̃k, k̃−δ̃k, v) = Hsym(k̃, v) δD(δ̃k) . (E6)

The constraint which has to be satisfied by Hsym is then given by

Hsym(k̃, v) =

∫ +∞

−∞

dδ̃k Hsym(k̃, v) δD(δ̃k)

=

∫ +∞

−∞

dδ̃k Gsym(k̃+δ̃k, k̃−δ̃k, v)

= π cos(k̃v) . (E7)

We may therefore use the approximation

Gsym(k1, k2, v) = 2π δD(k1−k2) cos
[
k1+k2

2
v

]
, (E8)

where the factor 2 comes from the property 2δD(δ̃k)=δD(δ̃k/2).
Equation (E3) then leads to

(E3) = πδD(k
1
z−k1z)

∫ 2h

−2h

dv Ĉ[u=0, v] cos[k1zv]

= πδD(k
1
z−k2z) Ĉ[k1z ] , (E9)

where the first line of equation (E9) could be seen as a local even-

restricted vertical Fourier transform of the function v 7→ Ĉ[0, v] on

the interval [−2h; 2h] as defined in equation (72), and we wrote

Ĉ[k1z ]= Ĉ[u=0, k1z ] for simplicity. As a conclusion, injecting this

result into equation (E2) yields
〈
ψ̂k1r,k1z [Rg, ω1] ψ̂

∗
k2r,k

2
z
[Rg, ω2]

〉
=2π2δD(ω1−ω2)

× δD(k
1
r−k2r) δD(k1z−k2z) Ĉ[mφ, ω1, Rg, k

1
r , k

1
z ] , (E10)

so as to recover the diagonalised autocorrelation from equa-

tion (82).

When considering the antisymmetric diffusion coefficients, as

underlined in equation (C1), the autocorrelation of the external per-

turbation involves the odd-restricted vertical Fourier transformed

potential perturbations defined in equation (C2). As a consequence,

for antisymmetric perturbations, the diagonalisation of the autocor-

relation as started in equation (E1) only requires to make the change

“cos”→“sin”. In the antisymmetric case, while the diagonalisa-

tions w.r.t. ω and kr remain the same, equation (E3) now requires

to evaluate

1

2

∫ 2h

−2h

dv

∫ 2h−|v|

−2h+|v|

du sin

[
u+v

2
k1

]
sin

[
u−v
2

k2

]
Ĉ[u, v] . (E11)

Using the same assumption as in equation (E3), let us assume that

the function Ĉ[u, v] slowly depends on u, so that equation (E4)

becomes
∫ 2h−|v|

−2h+|v|

du sin

[
u+v

2
k1

]
sin

[
u−v
2

k2

]
= − 2

(k1−k2)(k1+k2)

×
{
k1 cos[k1(h−|v|)] sin[hk2]+k1 cos[hk1] sin[k2(h−|v|)]

−k2 cos[k2(h−|v|)] sin[hk1]−k2 cos[hk2] sin[k1(h−|v|)]
}

= Ganti[k1, k2, v] . (E12)

As in equation (E6), Ganti should follow the ansatz

Ganti(k̃+δ̃k, k̃−δ̃k, v) = Hanti(k̃, v) δD(δ̃k) . (E13)

Again following equation (E7), Hanti can be computed as

Hanti(k̃, v) =

∫ +∞

−∞

dδ̃k Ganti(k̃+δ̃k, k̃−δ̃k, v)

= π cos(k̃v) (E14)

Therefore, in the antisymmetric case, as in equation (E8),Ganti can

be approximated by

Ganti(k1, k2, v) = 2πδD(k1−k2) cos
[
k1+k2

2
v

]
. (E15)

As a conclusion, for antisymmetric contributions, the diagonalised

autocorrelation takes the exact same form as the symmetric one

obtained in equation (E10). It involves an even-restricted vertical

Fourier transform of the perturbation autocorrelation, as defined in

equation (E9). Therefore, from equations (E8) and (E15), whatever

the symmetry of the basis elements considered, the diffusion coef-

ficients are always sourced by the even component of the autocor-

relation power spectrum.
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