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Compressibility, Laws of Nature, Initial Conditions and
Complexity

Sergio Chibbaro1,2 · Angelo Vulpiani3,4

Abstract We critically analyse the point of view for which laws of nature are just
a mean to compress data. Discussing some basic notions of dynamical systems and
information theory, we show that the idea that the analysis of large amount of data by
means of an algorithm of compression is equivalent to the knowledge one can have
from scientific laws, is rather naive. In particular we discuss the subtle conceptual topic
of the initial conditions of phenomena which are generally incompressible. Starting
from this point, we argue that laws of nature represent more than a pure compression
of data, and that the availability of large amount of data, in general, is not particularly
useful to understand the behaviour of complex phenomena.

Keywords Chaos · Information theory · Complexity

1 Introduction

It is not necessary to stress too much the fact that the external world is not just a
jungle of irregular events. There is a quite clear evidence of our ability to understand
(at least partially) the many regularities of our physical world. Then, it is quite natural
to ponder about the origin of such a success. A very general question is: why is the
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physical world comprehensible? In particular one can wonder about the existence and
the status of mathematical laws which allow us quantitative or qualitative predictions
in agreement with experiments [1,2].

In the past some scientists (and philosophers) stated that the aim of science is to
organise in the most economical fashion the data collected from experiments. In this
view, laws are just a very effective way to compress disparate data. Likely the most
important champion of such a view of the science has been Mach [3,4]:
The so-called descriptive sciences must chiefly remain content with reconstructing
individual facts … But in sciences that are more highly developed, rules for the recon-
struction of great numbers of facts may be embodied in a single expression.

Thus, instead of noting individual cases of light-refraction, we can mentally recon-
struct all present and future cases, if we know that the incident ray, the refracted ray,
and the perpendicular lie in the same plane and that sin α/ sin β = n. Here, instead
of the numberless cases of refraction in different combinations of matter and under
all different angles of incidence, we have simply to note the rule above stated and the
values of n, which is much easier. The economical purpose is here unmistakable.

This point of view has been shared by many scientists of the positivism or neopos-
itivism currents. Interestingly, such an approach has been recently reconsidered in the
framework of algorithmic complexity [5] by researcherswithout specific philosophical
interests. For instance, Solomonoff, one of the fathers of the theory, considers (without
any reference to Mach) a scientific law, and more generally a theory, as an algorithm
for compressing the results of experiments, providing a mathematical formalisation
of the idea of science as an economy of thought [6]:
The laws of science that have been discovered can be viewed as summaries of large
amounts of empirical data about the universe. In the present context, each such law
can be transformed into a method of compactly coding the empirical data that gave
rise to the law.
We can cite other similar opinions, e.g.
The existence of regularities may be expressed by saying that the world is algorithmi-
cally compressible. Given some data set, the job of the scientist is to find a suitable
compression, which expresses the causal linkages involved. For example, the positions
of the planets in the solar system over some interval constitute a compressible data set,
because Newton’s laws may be used to link these positions at all times to the positions
(and velocities) at some initial time. In this case Newtons laws supply the necessary
algorithm to achieve the compression [7].
The intelligibility of the world amounts to the fact that we find it to be algorithmically
compressible.We can replace sequences of facts and observational data by abbreviated
statements which contain the same information content. These abbreviations we often
call laws of Nature. If the world were not algorithmically compressible, then there
would exist no simple laws of Nature [8].

As an interesting exception to the idea of science as economy of thought, we may
recall Born [9] who ironically noted:

if we want to economise thinking, the best way would be to stop thinking at all, and
then the expression economy of thinking may have an appeal to engineers or others
interested in practical applications, but hardly to those who enjoy thinking for no other
purpose than clarify a problem.



In our opinion the idea of economyof thought removes all objectivity to the scientific
laws and mathematical constructions. For reasons which we do not discuss here, this
approach has gained much interest and broad success in the last decades under the
vaguely-defined concept of complexity. The word “complexity” has become rather a
“logo” for mainstream analysis; like in the 30’s to be “modern” was mandatory, to be
“complex” seems required to be fashionable today [10]. While we can agree that the
arising of nonlinear physics and mathematics since the pioneering works of Poincaré
has represented a major change in science, perhaps even a change of paradigm, the
recent insistence on the “complex” often appears preposterous [11]. Loosely speaking,
complexity studies share the idea to apply the same tools, mainly from dynamical
systems and statistical mechanics, to a very large spectrum of phenomena, from social
and human sciences to astrophysics, regardless of the specific content of each problem.
Therefore it is implicitly assumed that the laws underlying these phenomena are not
important. More recently, this point of view has become extremely radical with the
“big data” philosophy, which presents many conceptual and technical problems [11–
13]. In that framework, laws should be supplanted by the statistical analysis of a large
amount of data, again carelessly of any specificity. In this sense, science becomes a
technical compression of data.

The point of view of science as economy of thought seems to be in agreement with
the idea that the central goal of science has been thought to be “prediction and control”.
As a relevant example of this opinion we can mention the von Neumann’s belief that
powerful computers and a clever use of numerical analysis would eventually lead to
accurate forecasts, and even to the control of weather and climate:

The computer will enable us to divide the atmosphere at any moment into stable
regions and unstable regions. Stable regions we can predict. Unstable regions we can
control.1

We know now that the great von Neumann was wrong: he did not take into account
the role of chaos. About half a century ago, thanks to the contribution of M.Hénon,
E. Lorenz and B.V. Chirikov (to cite just some of the most eminent scientists in this
field), we had the (re)discovery of deterministic chaos. This event was scientifically
important, e.g. to clarify topics as the different possible origin of the statistical laws
and the intrinsic practical limits of predictions. Yet one has to admit that the topic
of “chaos” induced a certain confusion about concepts as determinism, predictability,
stochastic laws and the understanding of a phenomenon in terms of compression; for
instance, Davies [14] writes
there is a wide class of physical systems, the so-called chaotic ones, which are not
algorithmically compressible.
We will see that what is not compressible is the time sequence generated by chaotic
systems, and this is due to the non-compressibility of a generic initial condition.
The aim of the present paper is to clarify the real relevance of the ideas as ”compres-
sion” and algorithmic complexity in science, in particular in physics. For such an aim,
a detailed analysis of of laws, initial conditions and data is necessary.

1 Cited by Dyson [14].



Section 2 is devoted to a general discussion on evolution laws, initial conditions and
data. In Sect. 3 we treat in details the role of the initial conditions and the compressibil-
ity. The question of the relation between compression and laws of natures is discussed
in Sect. 4. In order to clarify the role of the algorithmic complexity in the research,
two case studies are presented in Sect. 5. Some final remarks and considerations in
Appendix section.

2 About the Laws and Data

The aimof this Section is to clarify the distinction between phenomena, evolution laws,
initial conditions, and series of data; the level of the discussion will not be technical,
the precise notion of complexity will be discussed in Sect. 3 and in the Appendix.

Natural phenomena, roughly speaking, can be divided in two large classes:

(a1) simple, e.g. stable and predictable, an example is the pendulum;
(a2) complex, i.e. irregular and unpredictable, a paradigmatic example is turbu-
lence in fluids.

The evolution laws can be:

(b1) known;
(b2) unknown.

The initial conditions can be:

(c1) simple;
(c2) complex.

Finally, the series of data generated by a certain phenomenon appear:

(d1) regular;
(d2) irregular.

2.1 The Simplest Case: The Law Is Known

First, let us consider the case b1, which is, from a methodological point of view, the
simplest one. The possibilities are the following:

a1 + c1 (S.1)

a1 + c2 (S.2)

a2 + c1 (C.1)

a2 + c2 (C.2)

The cases S.1 and S.2 are quite clear: independently from initial conditions, the system
will display a regular behaviour, thus

a1 + c1 → d1, and a1 + c2 → d1 .



The case C.1 is not typical (i.e. rather rare); on the contrary the case C.2 must be
considered generic, i.e. considering a large ensemble of natural phenomena, almost all
of them will join this class. In turn, “almost all” indicates that the probability to find
one behaving differently will be basically zero if we consider a large enough ensemble.
Indeed the situation C.1 can be observed only under particular circumstances, most
of natural phenomena are part of the category C.2. Why initial conditions are almost
always complex will be explained in Sect. 3.

Considering now the case C.2, since the evolution law of the system is known, the
irregularity in the outcome of the dynamics has to be necessarily hidden in the initial
conditions. To better clarify this point, one can consider that any initial condition x0
can be written, in a unique way, in terms of a binary sequence {i1, i2, . . .}. Such a
sequence can be

� compressible (for instance periodic, or periodic after a certain initial part), corre-
sponding to rational x0; in such a case the dynamics generates a regular sequence,
as in the C.1 case:

a2 + c1 → d1 .

� incompressible (e.g. aperiodic), in such a case the dynamics generates an irregular
sequence, as in the C.2 case:

a2 + c2 → d2 .

2.2 The Evolution Law Is Not Known

Of course only in few lucky situations (mainly in physics) we know the laws ruling a
certain phenomena with a good precision. In ecology, biology and many other applied
sciences, it is not possible towrite down the equations describing a certain phenomenon
on the basis of well established theoretical frameworks and it is unavoidable to use a
combination of intuition and experimental data [15,16].

Often the importance of the concept of state of the system, i.e. in mathematical
terms, the variables which describe the phenomenon under investigation is not enough
stressed. The relevance of this aspect is usually underestimated; only in few cases, e.g.
in mechanical systems, it is easy to identify the variables which describe a given
phenomenon. On the contrary, in a generic case, there are serious difficulties; we can
say that the main effort in building a theory on nontrivial phenomena concerns the
identification of the appropriate variables. Such a difficulty is well known in physics,
for instance in the context of statistical mechanics Onsager and Machlup, in their
seminal work on fluctuations and irreversible processes [17], stressed the problem
with the caveat: how do you know you have taken enough variables, for it to be
Markovian?2

2 As paradigmatic example let us consider the Langevin equation

d2x

dt2
+ γ

dx

dt
= −ω2x + cη



In a similar way, Ma notes that [18]: the hidden worry of thermodynamics is: we
do not know how many coordinates or forces are necessary to completely specify an
equilibrium state.

Usually we have no definitive method for selecting the proper variables and only a
deep theoretical understanding can suggest the “good ones”.

Takens [19] showed that from the study of a time series {u1, u2, . . . , uM }, where
u is an observable, it is possible (if we know that the system is deterministic and
is described by a finite dimensional vector) to determine a proper set of variables
fully describing the system . Unfortunately, in practice, the method has rather severe
limitations:

(a) it works only if we know a priori that the system is deterministic;
(b) because of the finite size M of the time series, in practice the protocol fails if the

dimension of the attractor is large enough (say more than 5 or 6).

Therefore this method cannot be used, apart from special cases (with a small dimen-
sion), to build a model for the evolution law from data [20].

We will discuss in some details the difficulties of the method in Sect. 5.2.

3 Evolution Laws and Initial Conditions

Let us now consider a topic which should be carefully analyzed: the role of initial
conditions, which are usually independent of the laws of nature. Such an important
point had been already realised by Newton [21] who noted that all the planets move
in the same direction on concentric orbits, while the comets move in eccentric orbits,
concluding that such a property of the solar system cannot be a mere coincidence, but
it is due to the initial condition. Wigner considers the understanding of the distinction
between laws and initial conditions as the most important contribution that Newton
made to science, even more important than the laws of gravitation and dynamics [22].

3.1 Two Examples of Deterministic Systems

Let us analyse the very different behaviour of two deterministic systems; we will see
how the initial conditions can play a basic role.
Example A The pendulum of length L:

d2θ

dt2
= − g

L
sin θ . (1)

From well known mathematical theorems on differential equations we know that:

Footnote 2 continued
where η is a white noise, i.e. a Gaussian stochastic process with 〈η〉 = 0 and 〈η(t)η(t ′)〉 = δ(t − t ′),
and γ > 0. It is worth emphasising that the vector y = (x, dx/dt) is a Markov process, i.e. its stochastic
evolution at t > 0 is determined only by y(0), on the contrary the scalar variable x is not a Markovian
process, and thus its dynamics depends on its past history.



(a) the initial condition (θ(0), dθ(0)/dt) determines in a unique way the state of the
system (θ(t), dθ(t)/dt) at any time t ;

(b) the motion is periodic, i.e. there exists a time T (depending on the physical
parameters) such that

(
θ(t + T ),

dθ(t + T )

dt

)
=

(
θ(t),

dθ(t)

dt

)
;

(c) the time evolution can be expressed in terms of a function of t and the initial
conditions:

θ(t) = F
(
t, θ(0),

dθ(0)

dt

)
.

The function F can be written in an explicitly way if θ(0) and dθ(0)/dt are small,
in such case T = 2π

√
L/g:

θ(t) = θ(0) cos(ωt) + 1

ω

dθ(0)

dt
sin(ωt)

dθ(t)

dt
= −θ(0)ω sin(ωt) + dθ(0)

dt
cos(ωt)

where ω = 2π/T . In the generic case, F can be easily determined with the
wished precision by numerical resolution.

Example B The Bernoulli’s shift:

xt+1 = 2xt mod 1 . (2)

Where the operation mod 1 corresponds to take the fractional part of a number, e.g.
1.473 mod 1 = 0.473.

It is possible to show that the Bernoulli’s shift is chaotic: a small error in the initial
conditions doubles at every step. Consider an initial condition x0 in the interval [0, 1],
it can be expressed by an infinite sequence of 0 and 1:

x0 = a1
2

+ a2
4

+ · · · + an
2n

+ · · · (3)

where every an takes either the value 0 or the value 1. The above binary notation allows
us to determine the time evolution by means of a very simple rule: at every step, one
has just to move the “binary point” of the binary expansion of x0 by one position to
the right and eliminate the integer part. For example, from

x0 = 0.11010000101110101010101100 . . .

one has

x1 = 0.1010000101110101010101100 . . .

x2 = 0.010000101110101010101100 . . .

x3 = 0.10000101110101010101100 . . .



and so on. In terms of the sequence{a1, a2, . . .} it becomes quite clear how crucially the
temporal evolution depends on the initial condition. If the binary sequence associated
to x0 is not complex, e.g. x0 is a rational number, then the sequence {x0, x1, . . .} will
be regular; on the contrary if the binary sequence associated to x0 is complex, the
sequence {x0, x1, . . .} will remain complex.

Let us consider two initial conditions x (1)
0 and x (2)

0 such that |x (1)
0 − x (2)

0 | < 2−M

for some arbitrary (large) integer number M , this means that x (1)
0 and x (2)

0 have the first
M binary digits identical, and they may differ only afterwards. The above discussion
shows that the distance between the points increases rapidly: for t < M one has an
exponential growth of the distance between the two trajectories

|x (1)
t − x (2)

t | ∼ |x (1)
0 − x (2)

0 | 2t , (4)

As soon as t > M one can only conclude that |x (1)
t − x (2)

t | < 1. We can say that our
system is chaotic: even an arbitrarily small error in the initial conditions eventually
dominates the solution of the system, making long-term prediction impossible.

From the above brief discussion, we see how in deterministic systems one can have
the following possible cases (in decreasing order of predictability):

1. Explicit possibility to determine the future (pendulum in the limit of small oscil-
lations);

2. Good control of the prediction, without an explicit solution (the pendulum with
large oscillations);

3. Chaos and practical impossibility of predictability (Bernoulli’s shift).

3.2 About Initial Conditions and Compression

Let us consider again the dynamical system (2), which is chaotic, i.e. the distance
between two trajectories initially very close, increases exponentially in time:

δt = |x (1)
t − x (2)

t | ∼ δ0 e
λt , (5)

where λ, called Lyapunov exponent, is positive. In the system (2), λ = ln 2, this means
that a small error in the initial conditions doubles at every step. Suppose that x0 is a
real number in the interval [0, 1], it can be expressed by an infinite sequence of 0 and 1
as in (3). We already saw that looking at the sequence {a1, a2, . . . , an, . . .}, it becomes
quite clear how crucially the temporal evolution depends on the initial condition.

Let us now make a brief digression on the notion of ”complexity” of a binary
sequence. Generally speaking, different types of sequences are possible, for example
consider the following ones:

11111111111111 . . . (6)

10101010101010 . . . (7)

00101000110100 . . . (8)



It is quite natural to say that sequences (6) and (7) appear to be ”ordered”, whereas
sequence (8) seems ”complex”. Why should one classify the sequences in this way?
In the case of (6) and (7) the knowledge of the first n values {a1, . . . , an} appears
to be sufficient to predict the following values {an+1, an+2, . . .}. This is not true for
sequence (8), which seems to be generated by a stochastic, rather than deterministic
rule. In this case, one could think that the sequence of 0 and 1 is generated tossing
a coin, and writing 1 for heads and 0 for tails. One way to formalise this intuitive
concept of complex behaviour is to associate it with the lack of a constructive rule;
then the cases (6) and (7) are not complex because they can be generated by means of
very simple rules. On a computer, for instance, (6) can be generated through a single
statement:

WRITE 1 N TIMES

and similarly for (7):

WRITE 10 N/2 TIMES

By contrast, (8) seems to require a program of the kind:

WRITE 0 WRITE 0 WRITE 1 WRITE 0 . . .

We can conclude that the sequences (6) and (7) can be considered “simple” because
they can be obtainedwith a short computer code; on the contrary the length of computer
code which generates (8) is proportional to the size of the sequence.

The rationalization of the above remarks needs the introduction of a precise math-
ematical formalisation of the algorithmic complexity of a sequence [23–25], a brief
introduction is given in the Appendix.

4 Do Scientific Laws Compress Empirical Data?

Surely it is fair to say that once a scientific law has been established one has a sort
of compression, however such a conclusion deserves a careful analysis. In order to
clarify such a topic we briefly discuss two examples of scientific laws, namely the
Newton’s equations for the classical mechanics and the Schrödinger equation.

4.1 Classical Mechanics and Astronomy

It is well know that from Newton’s equations and the gravitation law, one can derive
many important astronomical facts, for instance Kepler’s laws.

On the other hand it is not completely correct to conclude that Newton’s equations
and the gravitation law are able to compress all the astronomical behaviors. After the
seminal contribution of Poincaré, we know that a system of three bodies interacting
with the gravitational force is usually chaotic [11]. Such a celebrated system is an
example of the case (C.2).



In the following we will show how the presence of chaos implies the failure of
the possibility to compress astronomical evolution. For sake of simplicity, instead of
discussing such a difficult problem, we reconsider the system (2) which shares many
features with the three body problem.

Let us analyse the problem of transmission to a friend, with accuracy �, of a
sequence xt 0 < t < T , generated by the rule (2). At first glance, the problem seems
quite simple: we could opt for transmitting x0 and the rule (2), which costs a number
of bits independent of T . Our friend would then be left with the task of generating
the sequence x1, x2, . . . , xT . However, we must also choose the number of bits to
which x0 should be specified. From (3), the accuracy � at time T requires accuracy
δ0 ∼ 2−T� for x0, hence the number of bits specifying x0 grows with T . Again, we
have to tackle the problem of the complexity of a sequence of symbols, {a0, a1, . . .}.
The fact is that there are ”simple” initial conditions, of the type (6) or (7), which can
be specified by a number of instructions independent of the length of the sequence,
but there are complex sequences as well.

We saw that the evolution law of (2) is nothing but a shift of the binary point
of the sequence {a1, a2, . . . , }. Therefore we have that the evolution of x0 is regular
(e.g. periodic) if its sequence {a1, a2, . . . , } is not complex while it is irregular if
{a1, a2, . . . , } cannot be compressed.

Sowe have that both in systemswith regular behavior (the pendulum) and chaos (the
Bernoulli’s shift), it is straightforward to compress the evolution law. The difference
between the two systems is in the output which is always regular in the pendulum,
whereas in the Bernoulli’s shift it can be regular or irregular depending on the initial
condition.

The conclusion, somehow rather intuitive, is that in deterministic systems the details
of the time evolution are well hidden in the initial condition which turns out to be
typically complex. The complexity of initial conditions follows from an important
mathematical result of Martin-Löf [26] who showed that almost all infinite binary
sequences, which express the real numbers in [0, 1], are complex. We do not enter
into details of such a topic which involves rather subtle points related to the infinity
and the Gödel theorem [27].

Coming back to astronomy, from the previous result we can conclude that, in
presence of chaos, the knowledge of the basic laws ruling the time evolution of the
astronomical bodies (i.e. Newton’s laws and the gravitational force) is not enough to
compress the complex time behaviour which is hidden in the (almost surely) complex
initial condition.

4.2 Quantum Mechanics and Chemistry

Consider now the Schrödinger equation and its relation with chemistry; P.A.M. Dirac
wrote the following celebrated sentence [28]:

The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty lies
only in the fact that application of these laws leads to equations that are too complex
to be solved.



Weare able to find the explicit solution of the Schrödinger equation for the hydrogen
atom, and such a result has been the starting point to explain with high accuracy the
phenomena observed in experimental spectroscopy. So at first glance it seems fair to
say that the Schrödinger equation is able to compress the spectroscopic data.

On the other hand the relation between quantum mechanics and chemistry is rather
controversial, and surely much weaker than the link between Newtonian mechanics
and astronomy. For instance, in the latter case the theory was able to predict the
existence of a previously unknown planet (Neptune). On the contrary, as far as we
know, there is nothing similar in chemistry regarding the prediction of a new element
solely on the basis of quantum mechanics.

Let us briefly discuss an issue which allows us to understand the severe limitation
of the predictive power of quantum mechanics [15,29,30]. Consider the pyramidal
molecules, e.g. ammonia (NH3), phosphine (PN3) or arsine (AsH3). The three iso-
lated molecules are described by the same Hamiltonian with the unique numerical
difference of a parameter (namely the masses of the different chemical species N ,
P and As). From an analysis of the quantum problem of the isolated molecule one
obtains that the pyramidalmolecules are delocalised, in clear disagreementwith exper-
iments which show that arsine is localised [29,31]. The localization does not follow
in a straightforward way from quantum mechanics but is a consequence of the inter-
action of single molecules with an external environment consisting of a very large
number of components. The emergence of molecular structures can be understood
only considering the interaction with an environment containing a large number of
microscopic constituents [29,31]. In this case, we could say that it is not fair to speak
of compression because of the (very) complex boundary conditions to be supplied to
Schrödinger equations.

5 About the Role of Algorithmic Complexity: Two Case Study

In order to clarify the role of chaos, initial conditions and algorithmic complexity in
real scientific activity we discuss in some details two important topics. Namely we
consider the features of fully developed turbulence (FDT) [32], and how to reconstruct
the evolution law from time series in the cases it is not possible to use some well
established theory.

5.1 Turbulence

Turbulent flows, a paradigmatic case of complex system, are governed by the Navier–
Stokes equations (NSE) which can be written in one line. In the incompressible case
one has:

∂tu + (u · ∇)u = − 1

ρ
∇ p + ν�u + f, ∇ · u = 0,

where u is the velocity field, ρ the (constant) density, p the pressure, ν the kinematic
viscosity and f an external force [32,33].



So, naively, one could conclude that, since we know the equation for the time
evolution of the velocity field, somehow, the phenomenon of turbulence has been
compressed, as well as most of fluid mechanics. The study of some specific aspects
allows for the understandingof the precisemeaning and limitationof such a conclusion.
First, let us consider the problem of the initial conditions: of course in any experiment
they are necessarily knownwith a limited precision. A rather severe limitation is due to
the fact that in the limit of very large Reynolds numbers Re

3, for a proper description
of the turbulent velocity field it is necessary to consider a huge number of degrees of
freedom: a rough estimate isN ∼ R9/4

e [32,33]. Therefore for the typical values of Re

in FDT (∼ 106 − 109), because of the gigantic amount of data necessary to describe
the involved degrees of freedom, we have an obvious impossibility to access to the
initial conditions with the proper accuracy.

In addition at large Re the NSE are chaotic: the distance between two initially close
initial conditions increases very fast. Therefore, as a consequence of the practical
impossibility to access the initial conditions with high accuracy, and the presence
of deterministic chaos, even with a very powerful computer and accurate numerical
algorithms, it is not possible to perform a simulation of the NSE for a long term and
compare the single-trajectory prediction with experimental results.

Because of the practical impossibility to compare the experimental results with the
numerical computation of the field u(x, t), we cannot say that the NSE are able to
compress the turbulent behaviors. Nevertheless there is a general consensus on the
validity of the NSE for the FDT.

We can mention at least four items supporting the opinion that NSE are able to
describe FDT, the agreement of the results observed in FDT and those obtained by the
NSE for:

(a) short time prediction of the velocity field;
(b) long time prediction of averaged (e.g. spatially caorse grained) quantities;
(c) the scaling laws, and more generally, the statistical features;
(d) the qualitative and quantitative spatio-temporal features (e.g. large scale coherent

structures).

A general discussion can be found in the literature [32,33].

5.2 When the Evolution Law Is Not Known

Let us note that the NSE have been derived on a theoretical basis using the Newton
equations, assuming the hypothesis of the continuity of matter, and some thermody-

3 The Reynolds number

Re = UL

ν
,

being U and L the typical velocity and length of the flow respectively, indicates the relevance of the non
linear terms. At small Re we have a laminar flow, while the regime Re 	 1 is called fully developed
turbulence.



namic considerations. One can wonder about the possibility to obtain the NSE just
looking directly at experimental data.

Since in the NSE one deals with fields (i.e. infinite dimensional quantities), it is
natural to expect formidable difficulties. A less ambitious (but conceptual similar) task
is to build models in finite dimension on the basis of experimental data [34]. Only for
the sake of simplicity we assume the most favorable case, i.e. the time is discrete, the
system is deterministic and we know that the state of the system at time k is a finite
dimensional vector xk .

Consider the problem of the prediction from the available data, i.e. a long time
sequence. A quite natural approach is to search for a past state similar to the present
state of a given phenomenon of interest, then, looking at the sequence of events that
followed the past state, one may infer by analogy the evolution that will follow the
present state. In more precise terms, given a known sequence of ”analogues”, i.e. of
past states x1, . . . , xM which resemble each other closely in pairs, so that |xk−xM | < ε

with ε reasonably small, one makes the approximate prediction:

xM+1 = xk+1

if xk is an analogue of xM [11].
In the case the above protocol can be used, one may then proceed to build a model

of the phenomenon, i.e. to determine a function f(x) such that the sequence of states
is well approximated by the dynamical system

xk+1 = f(xk). (9)

The application of this method requires knowledge of at least one analogue. It is
possible to state4 that such knowledge requires sufficiently long sequences, at least of
duration of order TR ∼ (L/ε)D , where L is the typical length scale of the system, and
D is the dimension of the attractor5.

The exponential growth of TR as a function of D has a severe impact on our ability
to make predictions, and the building of a model for the evolution law (9), solely
relying on previously acquired data. One can say that D larger than 6 renders the
approach described here useless, because it makes it practically impossible to observe
the ”same” state twice, i.e. within an acceptable accuracy ε.

As already stressed in Sect. 2.2, the state of the system, i.e. the variables which
describe the phenomenon under investigation, is typically not known. Therefore an
unavoidable technical aspect is the determination of the proper state of the system
from the study of a time series {u1, u2, . . . , uM }, where u is an observable. The most
relevant result for such a problem is due to Takens who has been able to show that, at
least from a mathematical point of view, it is possible (if we know that the system is
deterministic, described by a finite dimensional vector, and M is arbitrarily large) to
determine a proper state-variable X. In a nutshell: there is a finite integer m such that

4 This is the essence of Kac’s lemma, a well know result of ergodic theory [11].
5 In conservative cases, e.g. Hamiltonian systems, D is the number of variables involved in the dynamics; if
the system is dissipative, D can be a fractional number and is smaller than the dimension of the phase-space.



the delay coordinate vector (of dimension m)

y(m)
k = (uk, uk−1, .., uk−m+1) (10)

can faithfully reconstruct the properties of the underlying dynamics.6

Of course the practical limitation due to the exponential increasing of TR as a
function of D, is present also in the Takens’s method; therefore we have rather
severe practical limitations [11]. Indeed, the conceptual idea behind all these inductive
approaches is always to try a reconstruction of the relevant phase-space, which, at a
resolution level ε, has roughly a volume of (L/ε)D . To be explicit, and stress the limit
of the method, consider a system ruled by a deterministic law, for which the dimension
of the attractor is D, and we know a time series {u1, u2, . . . , uM } of an observable; the
method of Takens allows to find (an approximation of ) the evolution law only if M
is larger compared with AD . The value of A depends on the wished accuracy; just to
give an idea let us assume A = 100, corresponding to just a fair accuracy, for D = 6,
7, and 8 we have AD = 1012, 1014 and 1016 respectively. Therefore also in the case
we know that the system is ruled by a deterministic law, such a knowledge does not
imply the actual possibility to perform an explicit compression.

5.3 Discussion

McAllister [35] has observed that empirical data sets are algorithmically incom-
pressible, concluding that the task of scientific laws and theories does not consist
in compressing empirical data. We share such an opinion on the incompressibility of
generic empirical data, even though his argument is maybe too sharp. As previously
discussed in the context of chaotic deterministic systems (e.g. the Bernoulli’s shift),
the typical output is incompressible and, from a mathematical point of view, such a
result is a consequence of the important result obtained by Martin-Löf [26]: almost
all the initial conditions correspond to incompressible sequences.

Regarding the opinion that scientific laws constitute a compression of empirical
data, McAllister claims that no scientist has ever made such a statement. We do not
enter into the historical aspects. However we want to discuss the following example:
consider a series of light-refraction experiments, in which {α1, . . . , αN } are the angles
of the incident rays, and {β1, . . . , βN } the angles of the refracted rays. The sequences
{α1, . . . , αN } and {β1, . . . , βN } may or may not be compressed. This is a frozen
accident which depends on the protocol followed by the scientist while preparing the
experiment, for instance, in the case of the protocol αn+1 = αn + δ, the sequences can
be compressed, on the contrary if each αn is selected according to a random rule, the
sequences are not compressible. However, once the values {α1, . . . , αN } are known,
the sequence {β1, . . . , βN } is simply determined by the Snell’s law: sin α/ sin β = n,
and this is a genuine form of compression. Therefore the example about the Snell’s

6 A rigorous result states: m ≥ 2[D] + 1; from heuristic arguments on can expect that m = [D] + 1 is
enough [11].



laws, which is often cited (likely because mentioned by Mach), is not particularly
deep.

A less trivial instance concerns the Navier–Stokes equation for fluids. We saw how
in such a chaotic systems, although the time sequences are not compressible, the NSE
have a predictive power, in the sense that they are able to generate results in good
qualitative and quantitative agreement with the experiments.

The claim that the world is comprehensible because it is algorithmically compress-
ible is, in our opinion, a truism, which is equivalent to saying that laws of nature exist.
We note that the actual possibility to understand the world arises mainly from a series
of lucky facts, in particular:

• Typically physical laws obey spatially and temporally local rules, i.e. a given
phenomenon is not affected too much by events which are distant in time and/or
in space. Practically the main laws of physics, like the equations of Maxwell,
Schrödinger, Newton etc., obey the locality assumption and are described by dif-
ferential equations.

• Despite the enormous complexity and the intricate interconnections of different
phenomena, often there is a scale separation which allows us for a description in
terms of effective theories of the different levels on which reality may be consid-
ered.

A celebrated example of an effective theory coming from the use of the separation
of scales which characterises the microscopic, and the macroscopic realms, is the
Langevin equation describing the Brownian motion.

On the other hand, if the laws are not known and we have just the possibility to
study time series, the scenario is quite pessimistic. If the effective dimensionality is
(relatively) large, even in themost simple case of deterministic system, it is not possible
to find the evolution laws and therefore to perform an explicit compression [36].
Therefore the idea law = possibility of compression of data, must be (re)considered
with many caveats. Perhaps we live in a “big data” era, but actually not big enough to
model complex phenomena, without the help of some theory.

We stress again that disregarding the distinction between initial conditions and
laws of nature can lead to great confusion. In the Introduction we cited Davies [7] who
claims that chaotic systems are not algorithmically compressible. The discussion in
Sect. 3 shows how chaotic systems can be trivially compressible (in the sense that it
is easy to write down the evolution laws, as, e.g., for the Bernoulli’s shift or the NSE).
What can be not compressible is the output and this is related to the complexity of the
sequence associated to the initial condition.

McAllister after an analysis of the relevance of compressibility in science concludes
[35]:

In sum, a scientific law or theory provides an algorithmic compression not of a data
set in its entirety, as Mach, Solomonoff and others believed, but only of a regularity
that constitutes a component of the data set and that the scientist picks out in the data.
The remaining component of the data set, which is algorithmically incompressible, is
regarded as noise in the sense of classical information theory.

We may agree with the previous sentence, if we keep our eyes open. To be able
to distinguish a regularity (the law) from underlying noise, a proper resolution and,



capitally, the separation of scale which permits to build coarse-graining description
are necessary. Moreover, in our opinion, for the understanding of any nontrivial topic
it is too naive to hope in an approach based on data and algorithms, and the study of
the phenomenal framework is unavoidable [37].

Some remarks are in order. First, we would like to stress an issue which, although
rather important, is often not discussed. The relevance of the scale resolution is closely
linked with the proper effective variables which are able to describe the phenomenon
under investigation. Let us consider a fluid which can be described, at microscopic
level, in terms of its molecules; in such an approach the correct variables are the posi-
tions andmomenta of themolecules. Sowe have a very accurate description containing
a lot of informations. However, the microscopic level sometimes is not interesting. For
instance in engineering (or geophysical) problems it is much more relevant to adopt
an hydrodynamical description in terms of few fields (velocity, temperature and so
on). Of course using such a macroscopic description one has a huge decreasing of the
amount of information and an increasing of the possibility to compress data.

Then, few words on the qualitative aspects of science. Often qualitative results are
considered less important than the quantitative ones. That is an unfair view, since
although some results cannot be expressed in terms of numerical sequences, they
can be interesting and rigorous. For instance it can be important to know that a phe-
nomenon is periodic or some variables are bounded in a certain domain. We can
mention the Lotka-Volterra like equations, for which sometimes one can show that the
time behaviour is periodic, even though it is not possible to find the explicit solution.
In a similar way, in some celestial mechanics problems, it is enough to be sure that the
motion (e.g. of an asteroid) remains in a bounded region [11]. The previous qualita-
tive results, although they cannot be formalized in terms of algorithmic compression
(which involves sequences) are genuine forms of compression of information.

Finally, we would like to indicate an important example of a complex systemwhich
has been understood rather successfully thanks to a traditional theory/data approach:
weather forecasting. This problem is related to the dynamics of atmosphere which is
characterized by (i) huge degrees of freedom;(ii) dynamical interactionwith a complex
environment; (iii) chaos andmany non-linear feedbackmechanisms. Nevertheless, the
modern developments of weather forecasting are based on the basic theory of such a
system, fluid mechanics as pioneered by Richardson [15,38]. In particular, the use of
the theory and the analysis of many phenomenological data have led to the recognition
of different separated scales, which has been key for the development of a hierarchy
of models adequate at different scales today solved by numerical integration. Those
models are statistical and mainly qualitative, but rigorous to some extent thanks to the
separation of scale. This example should point out that the path to the understanding
of complex phenomena is a brilliant interplay of deep empirical analysis, creative
theoretical developments and technical developments.
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Appendix: The Algorithmic Complexity in a Nutshell

The rationalization of the idea of ”randomness” needs the introduction of a precise
mathematical formalisation of the complexity of a sequence.

This has been proposed independently in 1965 by Kolmogorov, Chaitin and
Solomonoff, and refined by Martin-Löf [5,26].

Given the sequence a1, a2, . . . , aN , among all possible programs which generate
this sequence one considers with the smallest number of instructions. Denoting by
K (N ) the number of these instructions, the algorithmic complexity of the sequence is
defined by

K = lim
N→∞

K (N )

N
.

Therefore, if there is a simple rule that can be expressed by a few instructions, the
complexity vanishes. If there is no explicit rule, which is not just the complete list of
0 and 1, the complexity is maximal, that is 1. Intermediate values of K between 0 and
1 correspond to situations with no obvious rules, but such that part of the information
necessary to do a given step is contained in the previous steps.

To give an intuitive idea of the concept of complexity, let us consider a situation
related to the transmission of messages [39]: A friend on Mars needs the tables of
logarithms. It is easy to send him the tables in binary language; this method is safe
but would naturally be very expensive. It is cheaper to send the instructions necessary
to implement the algorithm which computes logarithms: it is enough to specify few
simple properties, e.g.

ln(a b) = ln(a) + ln(b), ln(aαbβ) = α ln(a) + β ln(b),

and, in addition, for |x | < 1 the following Taylor expansion:

ln(1 + x) =
∞∑
n=1

(−1)n+1 x
n

n
.

However, if the friend is not interested in mathematics, but rather in football or the
lottery, andwants to be informed of the results of footballmatches or lottery draw, there
is no way of compressing the information in terms of an algorithm whose repeated
use produces the relevant information for the different events; the only option is the
transmission of the entire information. To sum up: the cost of the transmission of the
information contained in the algorithm of logarithms is independent of the number
of logarithms one wishes to compute. On the contrary, the cost of the transmission
of football or lottery results increases linearly with the number of events. One might
think that the difference is that there are precise mathematical rules for logarithms,
but not for football matches and lottery drawings, which are then classified as random
events.
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