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Experimental evidence of a helical, supercritical instability in pipe flow of shear
thinning fluids.

L. Picaut, O. Ronsin, C. Caroli and T. Baumberger
Institut des NanoSciences de Paris, CNRS, Sorbonne Université – Pierre et Marie Curie,

UMR 7588, 4 place Jussieu, 75005 Paris, France

We study experimentally the flow stability of entangled polymer solutions extruded through glass
capillaries. We show that the pipe flow becomes linearly unstable beyond a critical value (Wic ' 5)
of the Weissenberg number, via a supercritical bifurcation which results in a helical distorsion of the
extrudate. We find that the amplitude of the undulation vanishes as the aspect ratio L/R of the
capillary tends to zero, and saturates for large L/R, indicating that the instability affects the whole
pipe flow, rather than the contraction or exit regions. These results, when compared to previous
theoretical and experimental works, lead us to argue that the nature of the instability is controlled
by the level of shear-thinning of the fluids. In addition, we provide strong hints that the non-linear
development of the instabiilty is mitigated, in our system, by the gradual emergence of gross wall
slip.

I. INTRODUCTION

Extrusion, which consists in forcing viscoelastic poly-
mer melts or solutions out of a reservoir through an
axisymmetric pipe, or “die”, is an important shaping
process, unfortunately prone to a variety of instabilities
which spoil the surface or the bulk of the extrudate [1–3].
Among these, an ubiquitous one, usually referred to as
“melt fracture”, results in a distortion of the extrudate
into a more or less pronounced and regular helical shape.
Visualization of the velocity and stress fields in the reser-
voir [3–6] has lent strong support to the idea that melt
fracture was ascribable to the well documented destabi-
lization of the elongational flow upstream of the sudden
contraction at the entry of the die [4, 7]. Due to viscous
damping, such velocity oscillations are expected to de-
cay over a finite length as the fluid is advected through
the pipe. Hence, it is not surprising that helical insta-
bilities were reported by many authors as being more
severe when using short dies, rather than pipes with
larger length/radius (L/R) aspect ratios [3]. However,
as pointed out by Larson [1], one cannot rule out that
the flow in a long pipe may itself develop a bulk helical
instability, in which case the amplitude of the extrudate
distorsion should not decrease upon increasing the die
aspect ratio.

The stability of the flow in an infinitely long pipe, in
the limit of vanishing Reynolds numbers, has been the
subject of extensive theoretical studies, in the case of
viscoelastic fluids obeying either the Oldroyd-B [8, 9] or
the White-Metzner [10, 11] constitutive equations. In
the first case, dealing with the peculiar class of non shear
thinning fluids, it has been shown that the Poiseuille flow,
although linearly stable, exhibits a weakly non-linear sub-
critical instability: beyond a critical value of the Weis-
senberg number Wi, the flow is unstable against a finite
but small noise amplitude, therefore resulting in a hys-
teretic behavior [8, 9]. The existence of such an instabil-
ity has later been confirmed by the experimental studies
of Bertola et al. [12] Bonn et al. [13] and Pan et al. [14]

on axisymmetric pipe and 2D channel flows.

A wider class of great practical importance deals with
polymeric fluids which exhibit both a large first normal
stress difference and strong shear thinning in the same
range of shear rates. It has been studied theoretically
by Wilson and coll. [10, 11, 15] within the framework
of the White-Metzner equation, under the assumption
of a power law dependence of the shear-rate dependent
viscosity η(γ̇). They have shown that the base flow is lin-
early unstable provided that the shear thinning exponent
n = 1− |d log η/d log γ̇| is smaller than 0.3 [10, 11]. The
non-linear behavior has not been investigated, however,
so that the super- or subcritical nature of the instabil-
ity remains unpredicted. Strong hints that a bulk flow
instability actually occurs beyond a finite Wi value in
strongly shear-thinning fluids (n ' 0.2) have been pro-
vided by Bodiguel et al. [16] who observed the emergence
of sinuous tracer paths in microfluidic 2D channels. This
emergence is associated with that of strong fluctuations
of the velocity field, as confirmed by Poole [17] using
larger scale pipe flows with Re ' 100. However, due to
the difficulty of quantifying the spatio-temporal behav-
ior of the velocity field inside the die, these studies did
not permit a full characterization of the nature of the
bifurcation, in terms of amplitude evolution and possible
presence of hysteresis.

Here, we report on a study of the extrusion through
long glass capillaries (aspect ratios L/R up to 200) of a
strongly shear thinning (n ' 0.3) polymer solution ex-
hibiting a rheology well described by a White-Metzner
equation. A detailed quantitative analysis of the extru-
date shape, together with the observation of tracer paths
in the glass capillaries, provide experimental proof of: (i)
the existence of an instability associated with the helical
distorsion of the extrudate, (ii) the supercritical nature
of the bifurcation, which occurs beyond a critical Weis-
senberg Wic ' 4–6, with a wavelength λc ' 3R, (iii) the
concomitant emergence of undamped velocity oscillations
extending along the whole length of the capillary,

On this basis, we provide what we think is the first
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evidence and characterization of a helical linear instabil-
ity of the axisymmetric base flow in a long pipe, in the
vanishing Reynolds number limit. We are therefore able
to conclude that, at least for shear thinning viscoelastic
fluids, upstream destabilization of the contraction flow
is not the sole route to the helical extrudate instability
which, though an ubiquitous phenomenon, has attracted
much less attention in the theoretical litterature than the
“sharkskin” or “spurt flow” ones [1, 2, 18].

II. MATERIALS AND METHODS

A. Polymer solutions: preparation and rheological
characterization

Polymer solutions were prepared by dissolving sodium
alginate (average molecular mass M̄ = 246 kDa, Kalys
S.A., France), a biopolymer extracted from seaweed, in
deionized water. 500 ppm sodium azide were added to
prevent bacterial development. We have made use of so-
lutions with alginate concentration c = 4, 6 or 10 wt.%,
referred to in the following as ALG4, ALG6 or ALG10.
At the lowest concentration (ALG4), overnight magnetic
stirring was sufficient to obtain a homogeneous solution.
For higher concentrations, alginate powder was left to
swell and dissolve for several days under periodic gentle
manual stirring. Homogeneity of the solution was as-
sessed from its optical aspect.

Rheological measurements were performed using a
stress-controlled rheometer (MCR 501, Anton Paar)
equipped with a 50 mm diameter, 2◦ cone-plate, sand-
blasted cell geometry.

The concentration dependence of the zero-shear spe-
cific viscosity [19][20] yields a concentration at the onset
of the entanglement regime cE = 1 wt.%, so that the
three systems tested in this work are well entangled poly-
mer solutions. Their viscoelastic properties were charac-
terized by the measurement of both the steady flow vis-
cosity η(γ̇) and the first normal stress-difference N1(γ̇)
for shear rates γ̇ in the range 10−1–102 s−1.

The measurement of the first normal stress difference
is known to be fraught with potential experimental errors
[21]. Laun has proposed a procedure, akin to the Cox-
Merz rule [22], to derive N1(γ̇) from the linear response
moduli G′(ω) and G′′(ω). As illustrated in [19] mate-
rial, we have checked on the ALG10 solution that Laun’s
empirical rule was accurate enough to legitimate its use
with ALG4 and ALG6 solutions, the much lower level
of normal forces involved with these solutions preventing
reliable direct measurements of N1. The data presented
on Fig.1 have been obtained according to this procedure.

As seen on Fig.1.a, the three solutions exhibit a marked
shear thinning behavior that we have characterized using
a Cross law:

η =
η0

1 + (γ̇/γ̇0)1−n
(1)

Fitting values of the plateau viscosity η0 and crossover
shear rate γ̇0 are given in Table I. We found that a
single shear-thinning exponent n was able to account for
the behavior of the three solutions, namely n = 0.29 ±
0.02, a value compatible with the “universal” one (n '
0.24) reported for a broad class of entangled, random coil
polysaccharide solutions [23] to which alginate belongs.
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FIG. 1. Rheological characteristics of the shear-thinning al-
ginate solutions. (a) Flow viscosity η: The solid lines are a
fit by a Cross law with a common shear-thinning exponent
n = 0.29. The dashed lines mark the crossover shear rates γ̇0.
Parameters of the fit are listed in Table I. (b) Fist normal
stress difference.

TABLE I. Plateau viscosity η0 and crossover shear rates γ̇0
values for the three alginate concentrations c used in this
study. The last two columns give the critical values of the
average shear rate and the corresponding Weissenberg num-
ber estimated at the capillary wall at the onset of the helical
instabiliy.

c [wt.%] η0[Pa s] γ̇0 [s−1] V/R|c[s−1] Wic

ALG4 4 30 8 340–500 5–5.6

ALG6 6 110 3 60 4

ALG10 10 1900 0.3 8–14 4.3–5.1

Fig. 2 shows the shear rate dependence of the Weis-
senberg number Wi defined as:

Wi =
N1(γ̇)

η(γ̇)γ̇
(2)
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As commonly observed with shear-thinning viscoelastic
fluids [16] Wi(γ̇) exhibits a markedly sublinear growth
indicative of an extended spectrum of viscoelastic relax-
ation times. This is reasonably well described for γ̇ > γ̇0
by a simple power law:

Wi ' (γ̇/γ̇0)m (3)

with m ' 0.3. From m ' n, we conclude that entangled
alginate solutions are well described by a White-Metzner
model, yielding η = Gτ and N1 = 2G(γ̇τ)2, with a con-
stant elastic modulus G and a shear-rate dependent re-
laxation time τ ∼ γ̇n for γ̇ > γ̇0.

0.1

1

10

0.01 0.1 1 10 100

W
i

γ [s-1]

ALG10

ALG6

ALG4

FIG. 2. Sublinear, shear rate dependent Weissenberg number
for alginate solutions. The dashed lines indicates the values
of γ̇0 and the full lines are (γ̇/γ̇0)m with m ' 0.3.

B. Extrusion set-up

Polymer solutions were extruded through cylindrical
capillaries of inner radius R and length L using com-
mercial 1 mL syringes. The body of the syringe was
filled with the viscous polymer solution using a spatula.
The volumetric throughput Q was prescribed by driving
the piston velocity through a home-made syringe pump
operated by a stepping motor. As usual when working
with microfluidic circuits, their finite compressibility as-
sociated with their large hydraulic impedance results in
long transients. These were monitored by measuring the
force on the piston with an on-line transducer. Fortu-
nately, thanks to shear thinning, the impedance decreases
markedly as the throughput increases so that for all Q
values used in this study, the volume of fluid extruded
during a transient remained negligibly small. In the fol-
lowing, we will characterize the steady state flow by the
average velocity in the capillary V = Q/(πR2).

Except when specified, we have made use of cylindrical
borosilicate glass capillaries with radii 100, 150 and 250

syringe

stepping motor

alginate solution

extrudate

glass capillary

shortened steel needle

saline solution

CCD
camera

force tranducer

plastic hub

glass cell

FIG. 3. Schematic representation of the extrusion setup.

µm ±10% (VitroCom, USA). Each capillary, used as pur-
chased, was first diamond-cut to the prescribed length,
then inserted into a shortened commercial steel needle,
with an inner radius chosen to tightly fit the outer radius
of the capillary. The assembly was finally epoxy-glued to-
gether, with the capillary end just emerging out of the
steel needle, into the tappered plastic hub (see Fig. 3).
The exit end of the syringe has an outer (resp. inner)
diameter of 4 (resp. 1) mm.

In order to minimize surface tension and gravity-
induced drawing effects on the extrudate, extrusion was
carried out into a bath of aqueous liquid. We have made
use of a 0.5 M MgCl2 saline solution into which algi-
nate is poorly soluble so that, although Mg2+ ions do
not crosslink alginate molecules, the extrudate preserves
its shape and sharp interface long enough for its distor-
sions to be quantified.

The whole set-up (syringe, capillary and bath) was
thermostated at T = 20± 0.5◦C.

The extrusion bath being contained in a glass cell, sig-
nificant lengths (typically ' 20R) of the capillary and the
extrudate on either side of the exit plane can be moni-
tored under direct, quasi-parallel illumination, using a
video camera equipped with a macro objective and op-
erating at speeds up to 300 frame/s. Sequences where
acquired for each value of the control parameter V and
stored for analysis.
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C. Profile analysis

The undulation amplitude ∆R of the extrudate (see
left panel Fig.4) is measured from the reconstruction of
its profile, using the section visible at each time t within
the field of view. First of all, we select one edge and de-
termine its position y(t) at a distance x = D from the
exit plane of the capillary (see Fig.4 for the definition of
x and y). A value D = 4R is chosen so as to be out of
the zone of viscoelastic recovery responsible for the “die
swelling” phenomenon. The edge position in the fixed
framework linked to the capillary evolves with time due
to the advection of the distorded extrudate along the
capillary axis but also perpendicular to it due e.g. to
the flagellar motion associated with the sinuous distor-
sion. The latter contribution is redundant and must be
removed. We therefore determine the translation vector
of the extrudate at time t in the vicinity of the abscissa
D by applying a standard image correlation technique in
a zone of interest between two successive frames. The
y-component is used to correct the edge position while
the x-one is used to map the time t onto the position
x along the capillary axis. We thus obtain the shape
R(x) of the profile edge corresponding to an extrudate
length ' 300R. It is Fourier transformed so as to get the
power spectrum from which a peak is identified, centered
on a spatial frequency f0 (Fig.5). Finally, from the area
of the peak, one computes the r.m.s. amplitude of the
corresponding oscillations, named ∆R in the following.

III. EXPERIMENTAL RESULTS

The three solutions under study exhibit the same qual-
itative behavior when extruded at increasing values of V .
Except when explicitly stated, the data presented in this
section have been obtained with ALG10 solutions.

A. Characteristics of the instability

The following description refers to the labelled pictures
on the left-side panel of Fig.4.

At very low throughput (a), the extrudate profile is
cylindrical and smooth. Then (b), upon increasing V ,
although the extrudate remains straight, a characteristic
fine pattern appears on its surface. The pattern contrast
gradually increases with V , indicating the growth of the
surface distorsion until it shows up as a sawtooth defor-
mation of the profile edges (c), unmistakably attributable
to the “sharkskin” instability [1–3].

In the vicinity of a velocity Vc, the extrudate profile,
as well as trains of micro bubbles which are sporadically
coextruded, exhibit bursts of wavy distorsion (c). When
increasing V slightly above Vc, a wavy instability clearly
develops. It manifests itself as a fairly regular, sinuous
undulation of the profile edges (d). It is worth noting
that the sharkskin pattern does not vanish at the onset

of the larger scale undulations but remains superimposed
to them, which suggests that both instabilities have in-
dependent physical and spatial origins.

The amplitude of the undulation increases rather
sharply upon increasing V above Vc and reaches a plateau
for V/Vc ' 1.2 (d), (e). Finally, we have observed no fur-
ther qualitative changes in the extrudate aspect and/or
dynamics upon further increasing V/Vc up to typically
10, i.e. the undulations remain regular and no other in-
stability occurs.

In the following we focus on this instability — leaving
the sharkskin one aside — and refer to it as “the” insta-
bility. In order to put this description on a more quan-
titative basis, we have systematically measured the rms.
amplitude of the oscillations ∆R and their mean spatial
frequency f0, when the undulating mode was present.

a. The instability is helical — In order to assess the
full 3D symmetry of the extrudate undulation, we have
measured ∆R at a single velocity V & Vc, for a fixed po-
sition of the camera but different values of the azimuthal
angle θ around the capillary axis. Fig. 6 shows that the
undulation amplitude is θ-independant. This, together
with the sinuosity of the profile, demonstrates that the
extrudate is deformed into a helical shape.

b. The instability is supercritical — A possible sub-
critical nature of the instability would be revealed by the
occurence of hysteresis in the oscillation amplitude when
ramping V up and down [12]. Fig.7 shows that, within
experimental uncertainties, no hysteresis is measurable,
either on the amplitude or on the spatial frequency of the
undulations. We can therefore conclude that the instabil-
ity occurs via a supercritical bifurcation. This is compat-
ible with the existence of damped bursts of undulation
close below the threshold. Accordingly, we determine the
critical velocity Vc by extrapolating to ∆R = 0 the uni-
versal behavior of the amplitude in the close vicinity of
the threshold for a supercritical (Hopf) bifurcation [24],
namely (∆R)2 ∼ V − Vc.

As V/Vc grows, the amplitude ∆R departs from its uni-
versal behavior and tends to plateau at a value ∆Rmax

which remains relatively small, namely ∆Rmax/R . 0.1.
Accordingly, the profile edges remain quasi-sinusoidal (ie.
the non-linear terms of the underlying dynamics remain
small). More precisely, the power spectra of R(x) show
no harmonic peak and remain relatively narrow (typ.
∆f/f0 ' 0.2) in the whole range (V/Vc < 10) investi-
gated. The spectrum shown on Fig.5, which corresponds
to V/Vc ' 1.2, i.e. to the maximum ∆Rmax of oscillation
amplitude, is therefore typical.

c. The instability is controlled by the Weissenberg
number — Fig.8 shows the variations of ∆R and f0
with V for ALG10 flowing through capillaries with three
different radii R. Clearly, the critical velocity Vc, the
maximum undulation amplitude ∆Rmax and the spatial
frequency f0 depend on the capillary radius. Fig.9 shows
that Vc, ∆Rmax and the pitch of the helical disturbance
λ = 1/f0 depend linearly on R.

Accordingly we have replotted the data, suitably scaled
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FIG. 4. Left pannel: Snapshots of the extrudate exiting from a glass capillary with internal radius R = 250µm (see dashed
white lines) for increasing average velocities V . At a critical value Vc sinuous features show up, such as trains of microbubbles
arranged sinusoidally, indicated by white arrows on (c) and (d), see text. The slight bending of the extrudate visible on (b–c)
is due to the large scale viscous coiling of the extrudate from the bottom of the glas cell. Right pannel: Characteristic paths
of microbubbles tracked in the end portion of the capillary extending ' 20R upstream of the exit plane. The velocity scale is
common to both panels. We have expanded the vertical scale in order to magnify the bubble displacement perpendicular to
the axis.
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by R (Fig.10). For a given alginate concentration
(ALG10) the relevant control parameter is therefore the
average shear-rate V/R. We have determined the critical
value V/R|c for ALG4 and ALG6 as well. The values
compiled in Table I are compatible with a critical value
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FIG. 6. Azimuthal isotropy of the rms amplitude of the extru-
date undulation (V = 2× Vc) as measured by a fixed camera
but for different angular positions θ of the whole extrusion
setup (R = 100µm) around its symmetry axis.

Wic = 4–6 of the Weissenberg number (evaluated at the
wall, under a no-slip hypothesis, as detailed in [19]).
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B. Evidence of a bulk flow instability inside the
capillary

Oscillations of the extrudate necessarily result from an
oscillating velocity field inside the die, at least in the close
vicinity (' R) of the exit plane. In order to check this,
we have tracked microbubbles advected along the glass
capillary in the end region extending ' 20R upstream of
the exit plane. The right panel of Fig.4 shows represen-
tative paths selected at different average velocities below
and above the threshold Vc. As expected, whereas for
V < Vc the paths are straight, for V > Vc their projec-
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tion onto the observation plane are quasi-sinusoidal.
At this stage, we must assess whether the flow insta-

bility responsible for the extrudate one is an entry, exit
or bulk one. For this purpose, we have monitored for
V > Vc bubble paths at different locations along the
capillary, up to a distance ' 80R upstream of the exit.
The observation of quasi-sinusoidal paths with compa-
rable amplitudes and periods, whatever their location
along x, illustrated on Fig. 11, indicates the presence
of undamped oscillations of the velocity field, i.e. an in-
stability which, in contradistinction to the sharkskin one
[1], is not localized in the vicinity (' R) of the exit plane.

Moreover, note that the wavelengths of the bubble
paths are ' 8R, i.e. significantly larger than the period
(' 3R) of the extrudate distorsion. This was already
pointed out by Wilson and Loridan [11] in their analysis
of Bodiguel et al. data [16]. Such an apparent wavelength
dilatation is akin to a Doppler effect. The analysis per-
formed in [19] enables us to estimate that the magnitude
of the phase velocity vϕ of the oscillating perturbation is
comparable with V .

(a)

(b)

(c)

(d)

FIG. 11. Paths of lagrangian tracers recorded at different
locations along a R = 250µm capillary. The portions of the
capillary corresponding to each path are shown on the upper
drawing.

Finally, the fact that the extrudate instability is ob-
served for capillaries with aspects ratios L/R as large
as 200 strongly suggests that it cannot originate from a
destabilization of the flow upstream of the abrupt con-
traction. As pointed out by Larson [1], some unstable
pipe modes must be at work in order to pump energy
from the base flow and compensate for the viscous losses
associated with the velocity oscillations.

In order to make a more precise statement, we have
constructed capillaries with a 5:3 contraction by glueing
a R− = 150µm capillary inside a R+ = 250µm one and
cutting the narrow portion at different lengths L150 (see
inset of Fig.12). The throughput range was chosen so

that the flow in the wider capillary remained stable while
enabling to cross the instability threshold — as revealed
by the undulations of the extrudate — in the narrower
one. Fig.12 shows the maximum amplitude ∆Rmax of the
undulations as a function of L150/R−. At large enough
aspect ratios, i.e. L150/R− & 40, ∆Rmax becomes insen-
sitive to the length. This definitely establishes that the
helical deformation of the extrudate is the outer manifes-
tation of an instability which affects the whole flow inside
the capillary. The results presented so far were obtained
for L/R ' 200, hence correspond to the instability of
an “infinite” pipe. For L/R < 40, the amplitude de-
creases markedly and, when extrapolated to the “orifice
die” limit (L/R → 0) the amplitude vanishes (Fig.12 ).
As will be discussed in the next section, this is in strong
contradistinction with the usually reported phenomenol-
ogy for polymer melt extrusion where shorter dies, mostly
used in practice, are also the most prone to the so-called
“melt fracture” helical instability.
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FIG. 12. Maximal amplitude of undulation of a extrudate ex-
iting a R− = 150µm capillary at a distance L150 downstream
a 5:3 contraction with R+ = 250µm (see sketch on inset).
The broken lines are guides for the eyes.

IV. DISCUSSION

A. Comparison with previous studies

d. Influence of shear-thinning on the nature of the
instability — The results presented so far are in clear
contradistinction with those of Bertola et al. [12] and Pan
et al. [14] who evidenced a pipe instability controlled by
the Weissenberg number but exhibiting a large hystere-
sis — an obvious subcritical feature, while the instability
is, in our case, supercritical. Since the two cases differ
essentially by the steady flow characteristics of the fluids
under study, namely their being shear-thinning or not,
we are led to conclude that it is this rheological feature
which primarily controls the nature of the pipe insta-
bility. This is fully supported by the theoretical predic-
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tion that planar channel flows of “weakly” shear-thinning
White-Metzner fluids (n > 0.3) are linearly stable [10]
while “strongly” shear-thinning ones (n ≤ 0.3) are lin-
early unstable. The theoretical limiting value of n for
axisymmetric pipe flows is unknown but our results in-
dicates that, in this respect, entangled alginate solutions
with n ' 0.3 belong to the “strongly shear thinning”
class of fluids.

Beyond proving the existence of a linear pipe flow in-
stability, our results reveal that: (i) it corresponds to a
direct Hopf bifurcation — a feature which would require
a non-linear analysis of the flow dynamics to be theoreti-
cally assessed — and (ii) the first unstable mode is helical
— hence a relevant theoretical study of the flow stability
should be fully 3D [18].

As far as symmetry breaking is concerned, our pipe
flow helical instability is strongly reminiscent of the sin-
uous one reported by Bodiguel et al. [16] for 2D micro-
channel flows. Although the high molecular weight, par-
tially hydrolyzed polyacrylamide (PAa) solutions used in
their study exhibited an exponent n ' 0.2, i.e. were
highly shear thinning, the results could not be directly
compared to the theoretical predictions of [10]. Indeed,
on the one hand, for technical reasons [15], the theoretical
flow stability was restricted to “varicose” axisymmmet-
ric modes. On the other hand, PAa does not obey the
White-Metzner constitutive equation with a single expo-
nent ruling power laws (1) and (3). In [16], n = 0.21 and
m = 0.43 indicates that the elastic modulus itself is rate
dependent. The consequence of this extra complication
has been studied by Wilson & Loridan [11] using an ex-
tended constitutive law. Interestingly, albeit they have
restrained their analysis to varicose modes, they have
shown that the flow stability, i.e. the critical value of the
Weissenberg number, is noticeably increased by the rate
dependence of the modulus. This is an important exam-
ple showing that rheological details may have quantita-
tive consequences on a flow instability while preserving
its qualitative characteristics. This would be worth be-
ing confirmed experimentally by swapping the two fluid
systems — ALG and PAa — in each of the two flow
configurations of [16] (2D channel flow) and the present
study (axisymmetric pipe flow).

e. Competition between pipe and contraction flow in-
stabilities — In the field of extrusion instabilities, a
touchstone is the broad phenomenology pertaining to
the so-called “melt fracture” of polymer melts [3, 5, 25].
In their early review, Petrie and Denn [26] pointed out
the apparent contradiction between two groups of ex-
perimental results dealing with either branched or linear
polyethylene. For branched, low density polymer melts,
the severity of extrudate distorsion does decrease as the
die length is increased, while the opposite effect is ob-
served for linear, high density polyethylene. Despite of its
intriguing nature, clearly suggesting two distinct types of
instabilities, this phenomenon has not been studied sys-
tematically until recently. Here we focus on the extensive
study by Combeaud et al. [6, 25] of the helical extru-

sion instability of linear polystyrene (PS). Their polymer
melts and our entangled polymer solutions exhibit a com-
mon rheological characteristic since the flow viscosity of
PS is strongly shear thinning [25] with a power law ex-
ponent n ' 0.2, a plateau viscosity η0 ' 5×104 Pa.s and
a cross-over shear rate γ̇0 ' 1 s−1. It appears therefore
meaningful to compare the results obtained on PS and
ALG, taking advantage that in both studies, the extru-
date together with the upstream (pipe or contraction)
flow have been characterized.

At first sight, the two systems behave similarly since
in both cases the extrudate exhibits at large enough
throughput a transition from a cylindrical to a fairly
regular helicoidal shape. The authors report that for
PS this instability occurs at shear rates far beyond the
range accessible in a cone-plate rheometer. Therefore,
the critical value Wic of the Weissenberg could only be
roughly estimated by extrapolation of their rheological
data to range between 2 and 10. Since our own estimate
is Wic = 5 ± 1, the comparison is not conclusive, even
though both ranges are compatible.

Much more specific is the behavior of the pitch λ of
the distorted extrudate upon increasing the shear rate.
In this respect, both systems show antagonistic trends:
while for ALG it is the spatial frequency λ−1 which re-
mains constant (Fig.8), for PS it is the temporal one V/λ
which exhibits but small variations. This strongly sug-
gests that both systems develop instabilities of different
origins. This is confirmed in [6] by the direct visualization
of the velocity field in the reservoir, upstream of the inlet,
which clearly indicates that emergence of the extrudate
instability coincides with the destabilization of the con-
traction flow, a phenomenon which has been extensively
studied by McKinley et al. for non shear-thinning Boger
fluids [7]. Correlatively, as the die aspect ratio is reduced,
the extrudate undulation becomes more pronounced for
PS, whereas it vanishes for ALG (Fig.12).

Although for practical reasons extrusion of polymer
melts is usually performed through short dies, Combeaud
et al have extended their study to aspect ratios up to
L/R = 64. They show that the helicoidal undulations
persist up to this aspect ratio value, although strongly
reduced (see Fig. 3.7 of [25]). The gradual attenuation
of the helix amplitude however strongly slow down for
L/R & 32 (see Fig. 3.8.b. of [25]). Interestingly, this
value, which could be considered a priori quite large for
an “infinite die” regime to be reached, is compatible with
our own finding that the “infinite pipe” limit is reached
for L/R ' 40 (12). From this comparison we conclude
that the main body of experiments on PS (resp. ALG)
are concerned with “short” (resp.“long”) dies in which
reservoir (resp. pipe) flow instabilities are favored.

In light of the present results, it should be extremely
useful to focus experimentally on a contraction flow in-
stability of ALG and a possible pipe flow instability of
PS, although the high viscosity of the melts probably pre-
cludes using the long pipes required for this instability to
fully develop.
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FIG. 13. Evolution with respect to V of (a) the swelling ratio
Q, (b) the sharkskin contrast index (see text) and (c) the
scaled oscillation amplitude. Different radii are represented
by the same symbols as in Fig.8.

B. Non-linear instability development vs. wall slip

The standard extrusion phenomenology of polymer
melts involves the gradual transition from a quasi-
periodic helical disturbance to a more or less chaotic one
as the throughput is increased beyond a critical thresh-
old. With this in mind we have systematically explored
the evolution of the extrudate undulations beyond Wic.
No widening of the oscillation spectrum (see Fig.5) was
observed up to the experimental limit of V ' 10 × Vc
(however only a two-fold increase in the slowly varying
Wi). Surprisingly, although one could expect a slow-

ing down of the amplitude growth due to the build-up of
stabilizing non-linear terms in the flow dynamics, we sys-
tematically observe a marked decrease of the amplitude,
as shown on Fig.13.c. This means that the plateauing
trend observed close above Vc (Fig.8) signals, in fact, the
existence of a maximum of the amplitude. Such a be-
havior is, to our knowledge, quite unusual in non-linear
dynamics.

Since the extrudate undulations involve some motion
of the surrounding bath fluid, we have checked whether
viscous damping could be involved. We have changed the
saline solution (viscosity ηs ' 10−3 Pa.s) for a 1 wt.% so-
lution of sodium alginate (viscosity η1% ' 10−1 Pa.s). No
significant difference in the ∆R(V ) curve was observed,
neither close to onset nor well beyond threshold, suggest-
ing that the viscosity of the bath is not relevant to the
undulation development.

Some further insight into the underlying physical
mecanisms responsible for this behavior can be gained
from the simultaneous measurement of two characteris-
tics of the extrudate, namely the (die-)swelling ratio Q
and the sharkskin amplitude. The swelling ratio in the
presence of oscillations is determined by measuring the
average axial velocity of the extrudate Vout well down-
stream the capillary exit. The amplitude of the extru-
date undulation remains smaller than 0.1 so that the
volumetric flow of the extrudate can be approximated
to V × (πR2

out) with Rout the radius of the thread, to
within a few percent. Hence we define the die swell ratio
as Q = (V/Vout)

1/2. The sharkskin amplitude is esti-
mated from the contrast of the resulting pattern, deter-
mined under constant illumination and video acquisition
parameters.

Fig.13.a reveals an unusual behavior of the swelling
ratio which is expected to grow as some power law of
the shear rate with a small exponent [27]. Here, Q first
increases with the throughput but hardly builds up to
values larger than 1.3 and then decreases to a plateau
value . 1.2 (close to the value 1.1 for a purely newto-
nian fluid). The same trend is exhibited by the shark-
skin contrast (see Fig.13.b and Fig.4): although always
superimposed to the volume oscillations, the sharkskin is
less and less severe as the throughput is increased beyond
threshold.

Both die swell and sharkskin are qualitative indica-
tors of the validity of the no-slip condition at the cap-
illary wall. Die swell is a manifestation of the sudden
relaxation of the first normal stress difference which it-
self requires viscous shear to build up. It is therefore
mitigated by wall slip. Sharkskin results from the stress
singularity which develops at the exit rim where bound-
ary conditions abruptly switch from no-slip to no-stress
[28]. It is attributed to the accomodation of the singu-
larity via tearing of the viscoelastic material [29]. Wall
slip clearly smoothes out the singularity hence limits the
development of sharkskin. This suggests that the strong
attenuation of ∆R is due to the concomitant build up of
wall slip.
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Furthermore, the data of Fig.13.a show that, quite un-
expectedly, the relevant variable when the capillary ra-
dius is changed is not the shear rate but rather the av-
erage velocity V . This can be understood as a hint for
the occurence of gross slip with a velocity Vs ∼ V . The
no slip condition is then replaced by a tribological re-
lationship σw = f(Vs) which depends on “microscopic”
characteristics of the fluid-wall interface, and not on the
“macroscopic” radius. So, the residual shear rate at the

wall γ̇w(Vs) ∼ σ
1/n
w , must be determined by Vs, hence

by V rather than V/R. Accordingly, we have plotted
the relative oscillation amplitudes for different radii as a
function of V (Fig.13.c). It is clear that, although in the
growing part of the amplitude development this variable
is not the relevant one, in the decreasing part it leads to
a reasonable collapse of the data.

These results, though preliminary, indicate that the
non-linear development of the instability is probably mit-
igated by the gradual build-up of wall slip. We cannot
conclude at this point whether the fact that both phe-
nomena occur at neighbouring values of the wall shear
rate is a mere coincidence or signals some correlation.
Interestingly, non-trivial coupling between flow instabil-
ity and wall slip can be found in the previously discussed
study of Bodiguel et al. [16] (their Fig.2) although the
authors have rather focussed on the drag reduction as-
sociated with the occurence of elastic turbulence in their
microfluidic channel flow.

V. CONCLUSION

We have studied in detail the helical instability which
occurs when extruding an entangled polymer solution
through glass capillaries with large aspect ratios. Cou-
pling the quantitative analysis of the extrudate undu-
lations with the visualization of tracer paths inside the
capillaries we were able to demonstrate that this extru-
sion instability is the downstream manifestation of the
destabilization of the base flow occuring everywhere in-

side the pipe. The instability exhibits the characteristics
of a supercritical Hopf bifurcation occuring above a crit-
ical Weissenberg number Wic = 5± 1.

As suggested by the seminal theoretical work of Wil-
son & Rallison [10], a key rheological characteristic of
our fluid system, as regards its flow stability, is certainly
its rather strong shear-thinning behavior. Recent stud-
ies have also brought out the essential role played by
shear thinning in the stability of viscoelastic flows at zero
[30] or moderate [31] Reynolds numbers. In serpentine
micro-channels, shear thinning is found to stabilize the
flow against the onset of elastic turbulence [30]. In large
pipes, it yields an new type of symmetry-breaking super-
critical transition [31]. In our case, as well as probably
in microchannel planar flow [16], “strong” shear-thinning
is responsible for the linear instability of the base flow,
whereas Boger fluids designed to exhibit negligible shear-
thinning are only non-linearly unstable [12–14].

The present work therefore suggests to make use of
fluid systems with increasing shear-thinning exponents
n in order to study experimentally the evolution of the
pipe flow instability, from weakly non-linear subcritical
at small n to linear supercritical at larger ones.

An intriguing issue that the present work leaves open
is the origin of the large aspect ratio (L/R ' 40) re-
quired for an “infinite” pipe regime to be reached. To
our knowledge, it is the first time that this phenomenon
is put forward and we hope that it will stimulate further
theoretical and numerical studies.

Finally, preliminary results show that, at least for glass
capillaries, the non-linear development of the helical un-
dulations is mitigated by the gradual build-up of wall slip.
In the case studied here, the helical instability and the
onset of gross slip occur in a narrow bracket of control
parameter, leaving open the possibility of some causal
relationship. Our set-up makes it possible to change the
die material from glass to metal or even PTFE, and will
therefore be suitable for future investigation of the role
of wall slip in pipe flow instabilities.
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