Multiple effects of a Gracilaria vermiculophylla invasion on estuarine mudflat functioning and diversity

D. Davoult, G. Surget, Valérie Stiger-Pouvreau, F. Noisette, P. Riera, D. Stagnol, T. Androuin, N. Poupart

To cite this version:

HAL Id: hal-01614910
https://hal.sorbonne-universite.fr/hal-01614910
Submitted on 11 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Multiple effects of a *Gracilaria vermiculophylla* invasion on estuarine mudflat functioning and diversity

D. Davoult, G. Surget, V. Stiger-Pouvreau, F. Noisette, P. Riera, D. Stagnol, T. Androuin, N. Poupart

PII: S0141-1136(17)30412-9
DOI: 10.1016/j.marenvres.2017.09.020
Reference: MERE 4388

To appear in: *Marine Environmental Research*

Received Date: 4 July 2017
Revised Date: 29 September 2017
Accepted Date: 30 September 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Multiple effects of a *Gracilaria vermiculophylla* invasion on estuarine mudflat functioning and diversity

D. Davoult*1, G. Surget2,3, V. Stiger-Pouvreaux2,3, F. Noisette1, P. Riera1, D. Stagnol1, T. Androuin1 & N. Poupart2,3

1 Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 7144, Station Biologique de Roscoff, F. 29680 Roscoff, France
2 Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, 29280 Plouzané, France
3 CNRS, UMR 6539 LEMAR-IUEM-UBO, Institut Universitaire Européen de la Mer, 29280 Plouzané, France

* davoult@sb-roscoff.fr

Short title: Effects of *Gracilaria vermiculophylla* on estuaries

Acknowledgements

The authors thank Klervi Le Lann, Renaud Michel, and Gaspard Delebecq for field support and Cédric Leroux for isotopic analyses. The study was part of the project INVASIVES (Invasive seaweeds in rising temperatures: impacts and risk assessments), supported by the EU FP7 ERA-NET Seas-Era (2012-2016) and financed by the French National Research Agency ANR (ANR-12-SEAS-0002).

Compliance with Ethical Standards

Funding: This research was funded by the French National Research Agency - ANR (ANR-12-SEAS-0002).

Disclosure of potential conflicts of interest: The authors declare that they have no conflicts of interest.

Research involving animals: All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent: Informed consent was obtained from all individual participants included in the study.

Abstract

The invasive Japanese seaweed *Gracilaria vermiculophylla* has become established over the past several years in numerous European estuaries, from Portugal to Norway. In the Faou estuary (48.295°N-4.179°W, Brittany, France), it forms a dense population at the mud’s surface. The effects of *G. vermiculophylla* on metabolism, diversity, and the food web were studied. Community gross primary production (GPP) and respiration (CR) during emersion, chlorophyll-α content, macrofaunal and meiofaunal diversity and abundance, and stable
isotopes ($\delta^{13}\text{C}$ and $\delta^{15}\text{N}$) of representative macrofaunal species and main food sources were measured at low tide in winter, spring, summer 2014, and winter 2015. Results show significant seasonal variation in GPP and CR. Moreover, GPP was significantly higher in areas where $G.\ \text{vermiculophylla}$ was present than in the control area (bare mud). However, this high GPP appeared to be linked to the increase in biomass in primary producers, with their efficiency (primary productivity, i.e. assimilation number) remaining relatively stable compared with the control area. Significant variation in abundance of meiofauna and macrofauna was also detected and new epifaunal species were collected, mainly in $Gracilaria$-colonized areas. Isotopic food-web Bayesian mixing models strongly suggested that $G.\ \text{vermiculophylla}$ plays a major role in the diet of some dominant species. Mechanisms interacting with the functioning and diversity of the mudflat are discussed. Finally, the invasive seaweed $G.\ \text{vermiculophylla}$ affected the mudflat ecosystem in three ways: as a new primary producer (increase in metabolism), as a habitat-forming species (changes in diversity and abundance of macrofauna and meiofauna), and as a new abundant food source, likely through the detrital pathway.

Key-words: Invasive – Non-indigenous species – Red alga – Metabolism – Food web – Macrofauna diversity – Meiofauna diversity – Engineer species

Introduction

Among reported marine non-indigenous species (NIS) in Europe, between 20 and 40% are macroalgae (Schaffelke et al. 2006; Stiger-Pouvreau and Thouzeau 2015). Owing that some of them can act as foundation species (Dayton 1972; Ellison et al. 2005) or ecosystem engineers (Jones et al. 1994, 1997), they may deeply alter the structure and functioning of local communities by changing abiotic conditions (Jones et al. 1997), local diversity (Wallentinus and Nyberg 2007 and references therein), and food webs (Hastings et al. 2007). Reports on these changes generally indicate negative effects on indigenous species (Levine et al. 2003), although there may also be some positive effects (Crooks 2002). Studies on macroalgal introductions generally focus on rocky shores and explore potential competition with native seaweeds for space (Schaffelke and Hewitt 2007 and references therein). Less frequently, non-indigenous seaweeds can also colonize biotopes that originally have no significant macroalgal populations. For example, the perennial red seaweed $Gracilaria\ \text{vermiculophylla}$ (Ohmi) Papenfuss is now reported on the Pacific coast of USA, on the west and east coasts of the North Atlantic (Freshwater et al. 2006; Thomsen et al. 2007, 2009; Krueger-Hadfield et al. 2017) and especially along the French Atlantic coasts (Stiger-Pouvreau and Thouzeau 2015).

This species, originating from East Asia, can be found in Europe from Norway to Portugal (Rueness 2005; Hammann et al. 2013 and references therein), as well as along the Atlantic coast of Morocco (Guillemin et al. 2008; Krueger-Hadfield et al. 2017). Its introduction in France likely occurred in the vicinity of oyster farms (Mollet et al. 1998): a recent study on this species using population genetics (Krueger-Hadfield et al. 2017) indicates that the
probable main source of the invasion is northeastern Japan, the area from which the majority
of *Crassostrea gigas* oysters were imported during the 20th century. In its native range, the
species is characterized by a haplo-diplontic life cycle and is attached by holdfasts to hard
substrata. Along west and east coasts of the North Atlantic, its populations are dominated by
diploid thalli without holdfasts that colonize estuarine mudflats through vegetative
fragmentation (Krueger-Hadfield et al. 2016). Similarly, in French mudflats, *G.
vermiculophylla* occurs without attaching to a (however small) hard substratum. The presence
of *G. vermiculophylla* on mudflats on the northeastern coasts of the United States seems to be
linked to, or at least facilitated by, the presence of the tube-dwelling worm *Diopatra cuprea*
(Thomsen and McGlathery 2005; Wright et al. 2014). Nevertheless, it has been reported in
various types of substrata in Europe, including immersed soft sediments and stones, e.g. in the
Baltic Sea (Weinberger et al. 2008), where it may constitute a competitor of the native brown
algae *Fucus vesiculosus*.

Invasive *G. vermiculophylla* may be less palatable than *G. vermiculophylla* in its native range
both for grazers from its native range and from its invaded range (Hamman et al. (2013).
Invasive populations of *G. vermiculophylla* defend themselves better against bacterial
epibionts isolated from their respective introduced ranges than from the ones from their native
range, suggesting a rapid adaptation of its chemical defense mechanism to new bacterial
epibionts in the invaded range (Saha et al. 2016).

For more than 10 years, *G. vermiculophylla* has been considered as an occasional species on
French coasts, without any effect on ecosystems (Martinez-Lüscher and Holmer 2010).
Currently, it is now broadly distributed in estuarine ecosystems where it visibly constitutes a
habitat-forming species at the surface of the mud. *G. vermiculophylla* can be now considered
as invasive because it tends to occupy a large part of the mudflats it has colonized. It also
represents a new benthic primary producer on the mudflat, the microphytobenthos being the
only primary producers until this invasion.

The expansion of the species has been monitored in three estuaries in the Bay of Brest since
2013 (Surget et al. 2017). Among them, the Faou estuary appears to be the most heavily
colonized field site (Surget et al. 2017). Therefore, this estuary was chosen for a study on the
impact of *G. vermiculophylla* that was carried out from February 2014 to January 2015. The
aim was to determine whether this alga present in mudflats previously colonized only by
microphytobenthos (1) is significantly modifying mudflat metabolism (primary production
and respiration) as a new primary producer, (2) is significantly modifying the diversity and
abundance of the benthic community (macrofauna and meiofauna) as a habitat-forming
species, and (3) is significantly modifying the macrobenthic food web by providing a new
food source.

Materials and Methods
All sampling and measurements were performed simultaneously during low tide, about 4.10 m above chart datum, in February, May, September 2014, and January 2015 in the Faou estuary (48.295°N-4.179°W, Brittany, France) (Figure 1).

Ecosystem metabolism

Ecosystem metabolism was measured during low tide with three 0.071 m2 benthic chambers to estimate CO$_2$ fluxes at the air-sediment interface using the method described in Migné et al. (2002). Sediment (including *G. vermiculophylla* when present) was enclosed down to 10 cm depth. Changes in air CO$_2$ concentration (ppm) in the benthic chamber (10 L) were measured with an infrared gas analyzer (LiCor Li-820) for 10-15 min. CO$_2$ concentrations were recorded in a data logger (LiCor Li-1400) at a 5 s frequency. CO$_2$ flux was calculated as the slope of the linear regression of CO$_2$ concentration (µmol mol$^{-1}$) against time (min) and expressed in mg C m$^{-2}$ h$^{-1}$ assuming a molar volume of 22.4 L at standard temperature and pressure. Transparent chambers were used to estimate the net benthic community production (NCP), the difference between community gross primary production (GPP) and community respiration (CR). Opaque chambers were used to estimate CR. During light incubations, incident photosynthetically available radiation (PAR, 400-700 nm) was monitored with a LiCor SA-190 quantum sensor. On each sampling date, stratified sampling was performed, with three replicates on the *Gracilaria*-colonized area (% cover *G. vermiculophylla* > 50%) and three replicates on the bare-mud area, considered as the control. Benthic chambers were deployed within a few meters of each other to limit any spatial variation.

Considering the low number of replicates and the absence of homoscedasticity even after metric transformation, we used the non-parametric Scheirer-Ray-Hare test (Sokal and Rohlf 1995), the non-parametric equivalent of a two-way ANOVA, on sampling date (n = 4) and colonization status (area) (bare-mud and *G. vermiculophylla*-colonized areas, n = 2).

Chlorophyll a

Four replicates of 1.96 cm2 and 1 cm depth (including *G. vermiculophylla* when present) were sampled within each benthic chamber at each sampling date during low tide. Samples were kept cool, in the dark, and brought back to the laboratory where they were stored at -24°C until analysis. Fresh samples were ground 30 sec in pure acetone (5 mL), placed in the dark at 4°C for at least 4 h, and centrifuged (4°C, 3500 rpm, Eppendorf Centrifuge 5810R) to extract chlorophyll a. Chlorophyll a contents (Chl a) were determined on homogenized supernatants using spectrophotometry according to the trichromatic method described in Jeffrey and Humphrey (1975). In microplates (UVStar F-Bottom, Greiner Bio-one), optical density (OD) of 200 µL samples was read at 630, 647, 664, and 750 nm with a POLARstar Omega spectrophotometer (BMG Labtech). Chlorophyll a contents were calculated using the following equation and expressed in mg.m$^{-2}$:

\[
\text{Chl a (mg.m}^{-2}\text{)} = 50 \times [11.85 \times (\text{OD}_{664} - \text{OD}_{750}) - 1.54 \times (\text{OD}_{647} - \text{OD}_{750}) - 0.08 \times (\text{OD}_{630} - \text{OD}_{750})] / 1.96
\]

Data were also analyzed using the Scheirer-Ray-Hare test.
Macro- and meiobenthos

On each occasion, three 0.1 m² quadrats were sampled on the *Gracilaria*-colonized area and three other quadrats on the bare-mud area for macrofauna identification. Samples were isolated in the field on sieves of 1 mm mesh size, and stored in 4% salted and buffered formalin in the lab. Individuals were identified at the species level and counted.

Three replicates (1.77 cm², 2 cm deep) were also collected on the *Gracilaria*-colonized area along with three other replicates from the bare-mud area, and sieved with a mesh size of 40 µm. Individuals of the meiofauna were identified, belonging to the 10 following taxonomic categories: nematodes, platyhelminths, interstitial polychaetes, oligochaetes, harpacticoid copepods, ostracods, halacarid mites, foraminifers, gastropods, and bivalves.

Given the low number of replicates and the absence of homoscedasticity even after metric transformation, we used the non-parametric Scheirer-Ray-Hare test.

Food web

Sample collection and preparation. Invertebrates and the main potential organic matter sources from the sampling area were collected on the four sampling dates. Suspended particulate organic matter (POM) from the site was sampled by collecting 2 L of seawater. POM was obtained by filtration on pre-combusted Whatman GF/F glass fiber membranes within 2 h after collection. Membranes were then acidified (10% HCl) to remove carbonates, briefly rinsed with Milli-Q water, dried (60°C), and kept at -32°C until analysis. Sediment samples were taken by scraping the upper 1 cm of the sediment. For the measurements of carbon isotope ratios in sedimented organic matter (SOM), SOM was acidified (10% HCl) rinsed several times with distilled water, dried (60°C), and ground to a powder (Riera 2010). δ¹³C measurements were conducted on acidified samples, and measurements of nitrogen isotope ratios were conducted on non-acidified samples. Samples of terrestrial organic matter, dead leaves of terrestrial plants abundant on the muddy sediment, were collected by hand and, back at the laboratory, were rinsed with filtered seawater (pre-combusted GF/F) to clean off epibionts, quickly acidified (10% HCl) to remove any possible residual carbonates, and rinsed with distilled water. The macroalga *G. vermiculophylla* was also collected by hand and washed with distilled water to remove any attached material. In the sampling area, benthic diatoms occurred only as algal mats in May and September and were extracted for stable isotope analyses on these two dates. The absence of dense mats of benthic microalgae at the sediment surface in January 2014 and February 2015 may be due to local strong hydrodynamic conditions and frequent stormy weather during winter. When present, benthic diatom mats were collected at low tide by scraping the surface of the sediment and extracting them using the method in Riera (2007) for intertidal muddy sediment. Diatoms were then collected on pre-combusted glass fiber filters, quickly acidified (10% HCl), and rinsed with distilled water. These samples were then dried (60°C) and kept at -32°C until analysis.
Individuals of the surface deposit-/suspension-feeder bivalve *Scrobicularia plana*, the grazing gastropod *Hydrobia ulvae*, and the dominant generalist/suspension-feeder polychaete *Nereis diversicolor*, which were among the most representative macrobenthic species of the study area, were collected within the macrobenthic replicates (see above). After collection, specimens were kept alive overnight at the laboratory in filtered water from the sampling site to allow evacuation of gut contents and then frozen. For mollusks, the flesh was dissected from the shell and quickly treated with 10% HCl to remove any carbonate debris, and then rinsed with distilled water. All individuals were then freeze-dried and ground to a powder using mortar and pestle. *N. diversicolor* specimens were treated in the same way with 10% HCl. Collected *H. ulvae* individuals being very small, composite samples (4-5 individuals) were pooled to obtain sufficient tissue for accurate stable isotope analyses. Finally, all samples were dried (60°C) and kept frozen (-32°C) until analysis. Samples, crushed with a mortar and a pestle, were then put in tin capsules before mass-spectrometry analyses.

Stable isotope measurements. Carbon and nitrogen isotope ratios were determined using a Flash EA CN analyzer coupled with a Finnigan Delta Plus mass spectrometer, via a Finnigan Con-Flo III interface. Data are expressed in the standard δ unit:

$$\delta X (\%e) = \left(\frac{R_{\text{sample}}}{R_{\text{reference}}} - 1 \right) \times 10^3$$

with $R = ^{13}\text{C}/^{12}\text{C}$ for carbon and $^{15}\text{N}/^{14}\text{N}$ for nitrogen. These abundances were calculated relative to the certified reference materials Vienna Pee Dee Belemnite-limestone (V-PDB) and atmospheric dinitrogen (at-air). The VPDB and at-air scaling was carried out using in-house protein standards that have been calibrated against NBS-19 and IAEA N3 reference materials. The standard deviation of repeated measurements of $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values of the laboratory standard was 0.10‰ versus V-PDB and 0.05‰ versus at-air, respectively.

Data analysis. The number of individuals analyzed for each species was not sufficient to satisfy the conditions of normality; therefore, non-parametric Kruskal-Wallis tests were carried out.

For the food-web study, the isotopic values of consumers were pooled because (1) the consumers considered showed similar isotopic values in sediments with or without apparent macroalgae (see Figure 5) and (2) macroalgae were considered as detritus equally available to consumers within the total sampling area through the important physical reworking and the bioturbation of sediments. The trophic links were then considered for the whole area.

The Bayesian mixing model SIAR (Stable Isotope Analysis in R; Parnell et al. 2010) was run to infer the feasible contribution of the potential sources to the consumers’ diets at each sampling date. Bayesian statistics have proven to be a powerful tool because they allow models to incorporate the variability in the stable isotope ratios of both sources and consumers, as well as in the isotopic fractionation (Parnell et al. 2010). Trophic enrichment factors ranged from $0.30 \pm 0.21\%e$ for $\delta^{13}\text{C}$ and $2.5 \pm 0.25\%e$ for $\delta^{15}\text{N}$, corresponding to values for invertebrate species (whole body) as reviewed by Caut et al. (2009).
Results

Ecosystem metabolism (Figure 2)

Gross primary production (GPP) showed strong seasonal variation (Scheirer-Ray-Hare test: $H = 17.447, df = 3, p < 0.001$) and significant differences between *Gracilaria*-colonized and bare-mud areas ($H = 3.853, df = 1, p < 0.05$), with GPP values for *Gracilaria*-colonized areas being more than twice those of bare-mud areas in spring (Figure 2A), but without interaction.

The same seasonal trend occurred for community respiration (CR) ($H = 18.407, df = 3, p < 0.001$) but no significant differences appeared between *Gracilaria*-colonized and bare-mud areas over the study year ($H = 3.203, df = 1, p > 0.05$) despite the higher CR values recorded on *Gracilaria*-colonized areas than on bare mud in spring and summer (Figure 2B).

Consequently, NPP also exhibited strong seasonal variation ($H = 17.767, df = 3, p < 0.001$) but there was no difference between the two areas ($H = 2.430, df = 1, p > 0.05$) across the year (Figure 2C).

Chlorophyll a content was much higher on areas colonized by *Gracilaria* than in bare-mud areas ($H = 12.813, df = 1, p < 0.001$), but no seasonal trend occurred ($H = 1.873, df = 3, p > 0.05$) and chlorophyll a content remained high in winter 2015 on *Gracilaria*-colonized areas (Figure 2D).

Considering primary productivity (i.e. photosynthetic efficiency, also called assimilation number) as the ratio between GPP and chlorophyll a and expressed in mg C mg Chl.a$^{-1}$ h$^{-1}$, a strong seasonal trend was again highlighted ($H = 17.820, df = 3, p < 0.001$), with no significant differences ($H = 0.003, df = 1, p > 0.05$) between the two areas, which showed very similar values each season (Figure 2E).

Macro- and meiobenthic diversity and abundances (Figures 3 & 4)

A total of 5533 macrofaunal individuals belonging to 21 taxa were collected and identified during the study. The most abundant taxa were the polychaete *N. diversicolor* (40.6% of sampled individuals), the gastropod *H. ulvae* (19.7%), the isopod crustacean *Anthura gracilis* (11.9%), oligochaetes (9.9%), the polychaete *Streblospio shrubsolii* (8.2%), and the bivalve *Scrobicularia plana* (2.8%), with *S. Shrubsolii* only appearing on the last sampling date and mainly in the area colonized by *Gracilaria*.

The number of sampled taxa varied significantly among sampling dates ($H = 11.222, df = 3, p < 0.05$) but also between the two areas ($H = 5.026, df = 1, p < 0.05$), with a strong increase in colonized areas (Figure 3A). This increase can be explained by the appearance of species uncommon on mudflats such as epifaunal amphipods (*Jassa marmorata*, *Melita palmata*, *Allomelita pellucida*), decapods (*Pilumnus hirtellus*, *Liocarcinus pusillus*) and polychaetes (*Scrobicularia plana*) with *S. Shrubsolii* only appearing on the last sampling date and mainly in the area colonized by *Gracilaria*.

Density of macrofauna (Figure 3B) did not exhibit any seasonal trends ($H = 5.343, df = 3, p > 0.05$) but remained higher in colonized areas ($H = 14.313, df = 1, p < 0.001$). Among the
abundant taxa, *N. diversicolor* (Figure 3C) showed higher densities in colonized areas regardless of the season ($H = 14.976, df = 1, p < 0.001$), as did *A. gracilis* (Figure 3D) ($H = 17.333, df = 1, p < 0.001$) and oligochaetes ($H = 8.316, df = 1, p < 0.01$) (Figure 3E).

For meiofauna, a total of 12,020 individuals belonging to 10 taxa were collected during this study. Main taxa were nematodes (83.6% of sampled individuals), harpacticoid copepods (4.9%), platyhelminths (3.5%), ostracods (2.5%), and interstitial polychaetes (2.1%).

Densities differed significantly (Figure 4A) among dates ($H = 10.800, df = 3, p < 0.05$) and between area types ($H = 7.397, df = 1, p < 0.01$). Among the dominant taxa, the abundance of nematodes (Figure 4B) varied significantly across seasons ($H = 11.687, df = 3, p < 0.01$) and areas ($H = 12.718, df = 3, p < 0.01$; area: $H = 5.572, df = 1, p < 0.05$). The abundance of harpacticoid copepods (Figure 4D) only varied significantly across seasons ($H = 13.058, df = 3, p < 0.01$), and interstitial polychaetes (Figure 4E) were significantly more abundant in *Gracilaria*-colonized areas ($H = 11.519, df = 1, p < 0.001$).

Food web (Figures 5 & 6 and supplementary material)

The $\delta^{13}C$ of the potential food sources varied widely (from -30.7‰ for terrestrial organic matter to -17.6‰ for benthic diatoms) due to the presence of ^{13}C-enriched sources (*G. vermiculophylla* and benthic diatoms) compared with more ^{13}C-depleted SOM, POM and terrestrial inputs. *G. vermiculophylla* was slightly less ^{13}C-depleted and showed $\delta^{15}N$ values similar to mean values previously reported in brackish lagoons of Japan (-21.7 and 9.6‰ for $\delta^{13}C$ and $\delta^{15}N$, respectively) (Kanaya et al. 2008). The range of $\delta^{15}N$ displayed by the food sources decreased slightly during the study year ranging from 9.6‰ in February 2014 to 6‰ in January 2015. Except for $\delta^{13}C$ of benthic diatoms and $\delta^{15}N$ of terrestrial organic matter, there were no isotopic differences among sampling dates for the different food sources, whereas consumer isotopic signatures displayed significant temporal variation for $\delta^{13}C$ and $\delta^{15}N$ (Table 1). At each sampling date, significant differences were observed among the consumer species for $\delta^{13}C$ (Kruskal-Wallis, $p = 0.0023, 0.0025, 0.017,$ and 0.027 in February, May, September, and January, respectively) and for $\delta^{15}N$ (Kruskal-Wallis, $p = 0.043, < 0.001,$ < 0.001 and < 0.001 in February, May, September, and January, respectively). The $\delta^{15}N$ for *G. vermiculophylla* (between 9.0 and 10.9‰) and the primary consumers considered in this study (between 10.1 and 14.3‰) were relatively high, which may be due to a highly nitrogen-polluted environment.

For SIAR calculations, the main potential food sources were considered at each sampling date, namely *G. vermiculophylla*, POM, SOM, and terrestrial organic matter carried by the river to the estuary, and benthic diatoms. However, when the number of sources is greater than five, the solution of Bayesian mixing-models becomes less robust (Parnell et al. 2010). In this study, macroalgae, and, to a lesser extent, benthic diatoms contributed to most of the diet for the three main consumer species considered. During the total sampling period, results of the SIAR models indicated that *G. vermiculophylla* was the main assimilated food source for *S. plana* (mean relative contributions from 67.5 to 83.2%), *H. ulvae* (34.8 to 61.4%), and *N. diversicolor* (55.0 to 92.7%). During spring, and to a lesser extent in summer, benthic diatoms
also contributed significantly to consumers’ diet with the highest median relative contributions for *N. diversicolor* (35% in May) followed by *S. plana* (23.9% in May) and *H. ulvae* (25.3% in May). Local POM and SOM and terrestrial inputs were much less important in consumers’ diet across the entire sampling year (Figure 6).

Discussion

The seasonal variation in GPP and CR measured in the bare mudflat was characteristic of these systems (Spilmont et al. 2006; Davoult et al. 2009; Migné et al. 2016), but the rates in the area colonized by *G. vermiculophylla* were intermediate to values typical of mudflats and those typical of macroalgae-dominated rocky shores (Golléty et al. 2008; Bordeyne et al. 2015). GPP appeared greatly increased in the presence of the red alga *G. vermiculophylla*, with important consequences on ecosystem functioning. However, this increase tended to vary with chlorophyll *a* content, resulting in the same productivity for both areas. Therefore, although *G. vermiculophylla* added biomass to the benthic system, primary productivity hovered around 0.8-1 mg C mg Chl.a⁻¹ h⁻¹ in spring and summer, and dropped in winter, with values typical of mudflats and macroalgae (Davoult et al. 2009). Similarly, a study of a *G. vermiculophylla* invasion of a *Zostera noltei* bed showed a decrease in photosynthetic efficiency at low light intensity but higher metabolic performance due to increasing *G. vermiculophylla* biomass (Cacabelos et al. 2012). Finally, despite the invasion of a new primary producer, the productivity of the mudflat remained stable, at least under saturating light and during emersion.

Nevertheless, our results confirm that this seaweed is well adapted to muddy conditions and remains in good physiological condition even in this extreme environment (Nyberg 2007; Thomsen et al. 2013). Measurements of primary production were not performed during immersion, but water turbidity is likely too high during high tide to allow photosynthesis, as already suggested for bays and estuarine mudflats along the English Channel (Spilmont et al. 2006; Migné et al. 2009) and the French Atlantic coast (Migné et al. 2016).

Typical macrofaunal species were collected both on bare mud and *Gracilaria*-colonized areas. Compared with bare mud, macrobenthic abundance and diversity were positively impacted in the *Gracilaria*-colonized area, corroborating previous studies (e.g. Thomsen et al. 2013). Total density significantly increased in *Gracilaria*-colonized areas due to the rise in density of some common species such as *Nereis diversicolor* and the high abundances of species that were absent or rare in bare mud, such as *Streblospio shrubsolii*. Moreover, species newly recorded in the studied area (e.g. the amphipods *Jassa marmorata*, *Melita palmata* and *Allomelita pellucida*, and the decapods *Pilumnus hirtellus* and *Liocarcinus pusillus*) are generally absent from bare sediments and usually found among seaweeds and hydrozoans on hard substrata or on eelgrass (Hayward and Ryland 1995). These species were found at low densities in *Gracilaria*-colonized areas, likely favored by the complexity of the habitat driven by the settlement of this engineer seaweed (Thomsen et al. 2013). These new epifaunal species led to a significant increase in the number of sampled taxa and therefore in the
diversity of the community, due to new available habitat (Wallentinus and Nyberg 2007). Non-native ecosystem engineers, such as the reef-building tubeworm \textit{Ficopomatus enigmaticus}, may also favor the occurrence of opportunistic species (Heiman and Micheli 2010).

The density of some meiofauna taxa was also higher in the \textit{Gracilaria}-colonized area, particularly the dominant group of nematodes, but also ostracods and interstitial polychaetes. Similar to the macrofaunal polychaete \textit{N. diversicolor}, these taxa belong to endofauna and their density is not expected to be positively influenced by the occurrence of a new habitat-forming seaweed, even some \textit{G. vermiculophylla} are partially buried in the mud.

This increase in endofaunal density may be related to a change in food availability, possibly due to the effective use of \textit{G. vermiculophylla} in the diet of these species. Accordingly, for three common species of the community — the bivalve \textit{Scrobicularia plana}, considered as a surface deposit-feeder and a suspension-feeder (Hughes 1969), the gastropod \textit{Hydrobia ulvae}, considered as a grazer of benthic diatoms (Hautbois et al. 2005), and the polychaete \textit{Nereis diversicolor}, considered as opportunistic, exhibiting behavior ranging from suspension-feeding to predation and generalist scavenging (Fidalgo e Costa et al. 2006) —, our estimates based on stable isotopes showed that \textit{G. vermiculophylla} could represent their main food source, even if other algae such as \textit{Ulva} sp. could also be sparingly consumed and have not been sampled in the vicinity of our studied site. Nevertheless, benthic diatoms also contributed substantially to their diets in spring and summer, conversely to local POM, SOM, and terrestrial inputs.

To our knowledge, there is no previous evidence for the predominance of this invasive macroalga in the diet of suspension- and/or deposit-feeder species. In its native brackish lagoons of Japan, \textit{G. vermiculophylla} does not significantly contribute to the local food web (Kanaya et al. 2008). Moreover, previous feeding experiments and field isotope data show that although the invasive \textit{G. vermiculophylla} can be consumed by the amphipod \textit{Gammarus locusta}, this alga is clearly not targeted in its diet compared with other local food sources (Wright et al. 2014). The predominance of \textit{G. vermiculophylla} as a food source appears paradoxical in light of its chemical defense activity that protects it from strong grazing activity (Nylund et al. 2011). However, previous studies have pointed out that macroalgae enter the coastal food web mostly through detrital pathways (Pomeroy 1980; Raffaelli and Hawkins 1996), losing their repellent properties upon degradation. In particular, a fraction of the detrital macroalgal pool degrades \textit{in situ}, becoming available to nearshore pelagic and benthic filter-feeders through resuspension processes (Bustamante and Branch 1996). In addition, when abundantly present, macroalgae also become readily available for the organisms inhabiting sediments due to the lack of lignin content in their tissues and their rapid physical fractionation due to the effect of wave action and sediment motion (Rossi 2007).

Interestingly, our results indicate that benthic diatoms were not preferentially used by the benthic consumers, even when they were present at the sediment surface as brown mats. In contrast, several previous studies have highlighted the role of benthic diatoms as a major food source for marine invertebrates inhabiting intertidal sediments (De Jonge and Van Beusekom...
1992; Decottignies et al. 2007). The significant, but non-dominant, contribution of
190 microphytobenthos (diatoms) to benthic food sources observed in our study may be caused by
191 the irregular presence and abundance of this resource in these estuarine sediments, mainly due
192 to hydrodynamic variability and/or low production, at least in winter. Previous stable isotope
193 analyses have shown that in other types of ecosystems, decaying macroalgae are major
194 contributors to H. ulvae and meiofaunal diets in intertidal muddy/sandy sediments compared
195 with benthic diatoms (Riera and Hubas 2003; Riera 2010).

Finally, these three macrofaunal species were likely representative of the macrofauna in this
196 estuarine site and, considering their intermediate trophic position of primary consumer
197 species, the food web of this area appears to be largely based on the use of this invasive
198 seaweed which probably generates the main source of detritus in this estuarine environment.

Three major points can be highlighted from these results. First of all, there were no
199 differences in consumers’ isotopic signatures between bare-mud areas and seaweed-colonized
200 areas. When sampling bare muds, we actually collected some macro-detritus of G.
201 vermiculophylla which is easily fragmented in the environment, and abundant micro-debris
202 certainly also present, which may thus explain the homogeneous signatures found in the two
203 close sub-systems. The species’ diet was therefore similar in the bare-mud and seaweed-
204 colonized areas due to this mixing. The second interesting point was that densities were
205 higher in colonized areas, likely due to higher food availability. Access to more food may
206 directly favor deposit-feeders and grazers that can ingest both microphytobenthos and
207 seaweed micro-debris. In addition, this can indirectly benefit suspension-feeders through
208 resuspension of microphytobenthos, when present, and seaweed micro-debris. Finally, this
209 study highlighted that a NIS species can profoundly influence and even potentially change the
210 trophic structure of the macrobenthic community, although NIS are generally not readily
211 consumed by native species (Hammann et al. 2013). This lack of palatability may partly
212 explain NIS success in colonizing new ecosystems (Wright et al. 2014 and references herein).
213 As Pintor and Byers (2015) underlined: "although non-native prey may have a lower per
214 capita value than native prey, they seem to benefit native predators by serving a supplemental
215 prey resource", that could apply here.

In a nutshell, the settlement of the NIS G. vermiculophylla affected the mudflat ecosystem of
217 the Faou estuary (1) as a new primary producer increasing the local benthic primary
218 production, (2) as a habitat-forming species changing the size and shape of the habitat
219 vertically, thereby favoring the occurrence of epifaunal species, and (3) as a new and
220 abundant food source, confirming its high potential to transform estuaries (Byers et al. 2012).

Finally, observations suggest that our study took place during the expansion of the invasive
222 seaweed in this estuary (G. Surget, pers. obs.). Monitoring should be planned with the goal to
223 follow this expansion and measure the consequences on the associated community and
224 potential increase in sedimentation.

References

Jeffrey SW, and Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz BPP 167: 191-194

Rueness J (2005) Life history and molecular sequences of *Gracilaria vermiculophylla* (Gracilariales, Rhodophyta), a new introduction to European waters. Phycologia 44: 120-128

Thomsen MS, Staehr PA, Nejrup L, Schiel DR (2013) Effects of the invasive macroalgae *Gracilaria vermiculophylla* on two co-occurring foundation species and associated invertebrates. Aquatic Invasions 8: 133-145

Figures

Figure 1. Location of the study site in the Faou estuary where *Gracilaria vermiculophylla* occupies more than 50% of the mudflat surface.

Figure 2. Metabolic characteristics of the bare-mud area (Control) and the area colonized by *Gracilaria vermiculophylla* (Gracilaria).

Figure 3. Macrofauna. Number of taxa, total density, density of *Nereis diversicolor*, *Anthura gracilis*, and oligochaetes in the bare-mud area (Control) and the area colonized by *Gracilaria vermiculophylla* (Gracilaria).

Figure 4. Meiofauna. Total density, density of nematodes, ostracods, harpacticoids and interstitial polychaetes in the bare-mud area (Control) and the area colonized by *Gracilaria vermiculophylla* (Gracilaria).

Figure 5. $\delta^{13}C$ vs $\delta^{15}N$ (mean ± standard deviation) of food sources (*Gracilaria vermiculophylla*, SOM = sedimented organic matter, POM = particulate organic matter, Ter-plant = terrestrial plants, and benthic diatoms) and consumers during February, May and September 2014 and January 2015.

Figure 6. Boxplots of the contributions of potential food sources to the diets of *Scrobicularia plana*, *Hydrobia ulvae* and *Nereis diversicolor*, obtained with Bayesian stable isotope mixing models at the four sampling dates. Credibility intervals are 95% (in light gray), 75% (in medium gray) and 50% (in dark gray). POM = particulate organic matter, SOM = sedimented organic matter, Ter-plant = terrestrial plants.

Supplementary material. Carbon and nitrogen isotope ratios ($\delta^{13}C$ and $\delta^{15}N$, respectively) (mean values ± SD) of organic matter sources and consumers. Four-date comparisons were performed using the Kruskall-Wallis test and two-date comparisons (benthic diatoms) the Mann-Whitney U test.
Figure 1. Location of the studied site in Le Faou estuary. *Gracilaria vermiculophylla* occupying more than 50% of the mudflat.
Figure 2. Metabolic characteristics of the bare mudflat (Control) and the area colonized by *Gracilaria vermiculophylla* (Gracilaria).
Figure 3. Macrofauna. Number of taxa (A), total density (B), density of *Nereis diversicolor* (C), *Anthura gracilis* (D) and Oligochaeta (E) in bare mudflat (Control) and area colonized by *Gracilaria vermiculophylla* (Gracilaria).
Figure 4. Meiofauna. Total density (A), density of Nematoda (B), Ostracoda (C), Harpacticoidea (D) and interstitial Polychaeta (E) in bare mudflat (Control) and area colonized by *Gracilaria vermiculophylla* (Gracilaria).
Figure 5. $\delta^{13}C$ vs $\delta^{15}N$ (mean ± standard deviation) of food sources (Gracilaria vermiculophylla, SOM = Sedimented Organic Matter, POM = Particulate Organic Matter, Ter-plant = Terrestrial Plants, and benthic diatoms) and consumers during February, May and September 2014, and January 2015.
Figure 6. Boxplots of the contributions of potential food sources to the diet of the three species *Scrobicularia plana*, *Hydrobia ulvae* and *Nereis diversicolor*, obtained with Bayesian stable isotope mixing models at four sampling periods. Credibility intervals are 95% (in light grey), 75% (in medium grey) and 50% (in dark grey). POM = Particular Organic Matter, SOM = Sedimented Particular Organic Matter, Ter-plant = Terrestrial Plants.
Highlights – Davoult et al.

A holistic approach is proposed to understand the effects of a *Gracilaria vermiculophylla* invasion on estuarine mudflat

The species affected the ecosystem as a primary producer, as a habitat-forming species and as a new abundant food source