E. M. Blackwood and R. N. Eisenman, Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc, Science, vol.251, issue.4998, pp.1211-1217, 1991.
DOI : 10.1126/science.2006410

T. D. Littlewood, B. Amati, H. Land, and G. I. Evan, Max and C-Myc Max DNA-Binding Activities in Cell-Extracts, Oncogene, vol.7, pp.1783-1792, 1992.

M. Conacci-sorrell, L. Mcferrin, and R. N. Eisenman, An Overview of MYC and Its Interactome, Csh. Perspect. Med, vol.4, pp.1-24, 2014.

S. Sauve, L. Tremblay, and P. Lavigne, The NMR Solution Structure of a Mutant of the Max b/HLH/LZ Free of DNA: Insights into the Specific and Reversible DNA Binding Mechanism of Dimeric Transcription Factors, Journal of Molecular Biology, vol.342, issue.3, pp.813-832, 2004.
DOI : 10.1016/j.jmb.2004.07.058

P. Brownlie, T. A. Ceska, M. Lamers, C. Romier, G. Stier et al., The crystal structure of an intact human Max???DNA complex: new insights into mechanisms of transcriptional control, Structure, vol.5, issue.4, pp.509-520, 1997.
DOI : 10.1016/S0969-2126(97)00207-4

W. Fieber, M. L. Schneider, T. Matt, B. Krautler, R. Konrat et al., Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc11Edited by P. E. Wright, Journal of Molecular Biology, vol.307, issue.5, pp.1395-1410, 2001.
DOI : 10.1006/jmbi.2001.4537

D. Kurzbach, T. C. Schwarz, G. Platzer, S. Höfler, D. Hinderberger et al., Compensatory Adaptations of Structural Dynamics in an Intrinsically Disordered Protein Complex, Angewandte Chemie International Edition, vol.135, issue.15, pp.3840-3843, 2014.
DOI : 10.1021/ja4047872

M. M. Babu, R. Van-der-lee, N. S. De-groot, and J. Gsponer, Intrinsically disordered proteins: regulation and disease, Current Opinion in Structural Biology, vol.21, issue.3, pp.432-440, 2011.
DOI : 10.1016/j.sbi.2011.03.011

S. C. Panchal, N. S. Bhavesh, and R. V. Hosur, Improved 3D triple resonance experiments, HNN and HN(C)N, for H-N and N-15 sequential correlations in (C-13, N-15) labeled proteins: Application to unfolded proteins, Journal of Biomolecular NMR, vol.20, issue.2, pp.135-147, 2001.
DOI : 10.1023/A:1011239023422

D. M. Korzhnev and L. E. Kay, Probing Invisible, Low-Populated States of Protein Molecules by Relaxation Dispersion NMR Spectroscopy: An Application to Protein Folding, Accounts of Chemical Research, vol.41, issue.3, pp.442-451, 2008.
DOI : 10.1021/ar700189y

J. P. Carver and E. R. Richards, A general two-site solution for the chemical exchange produced dependence of T2 upon the carr-Purcell pulse separation, Journal of Magnetic Resonance (1969), vol.6, issue.1, pp.89-105, 1972.
DOI : 10.1016/0022-2364(72)90090-X

Z. Luz and S. Meiboom, Nuclear Magnetic Resonance Study of the Protolysis of Trimethylammonium Ion in Aqueous Solution???Order of the Reaction with Respect to Solvent, The Journal of Chemical Physics, vol.82, issue.2, pp.366-370, 1963.
DOI : 10.1021/ja00883a011

G. M. Clore and J. Iwahara, Theory, Practice, and Applications of Paramagnetic Relaxation Enhancement for the Characterization of Transient Low-Population States of Biological Macromolecules and Their Complexes, Chemical Reviews, vol.109, issue.9, pp.4108-4139, 2009.
DOI : 10.1021/cr900033p

M. Nilsson, The DOSY Toolbox: A new tool for processing PFG NMR diffusion data, Journal of Magnetic Resonance, vol.200, issue.2
DOI : 10.1016/j.jmr.2009.07.022

D. Lee, C. Hilty, G. Wider, and K. Wuthrich, Effective rotational correlation times of proteins from NMR relaxation interference, Cooperative Unfolding of Compact Conformations of the Intrinsically Disordered Protein Osteopontin, pp.72-76, 2006.
DOI : 10.1016/j.jmr.2005.08.014

G. Kontaxis, M. Hartl, A. J. Miles, B. A. Wallace, O. Glatter et al., The Metastasis-Associated Extracellular Matrix Protein Osteopontin Forms Transient Structure in Ligand Interaction Sites, Biochemistry, vol.50, pp.6113-6124, 2011.

L. Geist, M. A. Henen, S. Haiderer, T. C. Schwarz, D. Kurzbach et al., Protonation-dependent conformational variability of intrinsically disordered proteins, Protein Science, vol.37, issue.Suppl 1, pp.1196-1205, 2013.
DOI : 10.1002/(SICI)1521-3773(19981102)37:20<2833::AID-ANIE2833>3.0.CO;2-7

L. Reymond, A. Hoffmann, J. Kubelka, B. Heinz, K. Gast et al., Singlemolecule spectroscopy of the temperature-induced collapse of unfolded proteins, Proc. Nat

A. Hoffmann, E. A. Lipman, D. E. Makarov, and B. Schuler, Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy, Proc. Nat

M. Rubinstein and R. Colby, Polymer Physics, 2003.

O. Lequin, P. Pelupessy, and F. Ferrage, Distribution of Pico-and Nanosecond Motions in Disordered Proteins from Nuclear Spin Relaxation, Biophys. J. 2015, vol.109, pp.988-999
URL : https://hal.archives-ouvertes.fr/hal-01191810

G. Bodenhausen, F. Engelke, and F. Ferrage, Nanosecond time scale motions in proteins revealed by high-resolution NMR relaxometry NMR probing and visualization of correlated structural fluctuations in intrinsically disordered proteins, J, Am. Chem. Soc, vol.135, issue.19, pp.18665-18672, 2013.

R. Konrat, The Meandering of Disordered Proteins in Conformational Space, Structure, vol.18, issue.4, pp.416-419, 2010.
DOI : 10.1016/j.str.2010.03.003

N. Salvi, A. Abyzov, and M. Blackledge, Multi-Timescale Dynamics in Intrinsically Disordered Proteins from NMR Relaxation and Molecular Simulation, The Journal of Physical Chemistry Letters, vol.7, issue.13, pp.7-2483
DOI : 10.1021/acs.jpclett.6b00885

URL : https://hal.archives-ouvertes.fr/hal-01396234

M. Lelli, T. Diercks, P. Bernado, and F. J. Blanco, (PAF) Is an Intrinsically Disordered Protein with Nonrandom Structural Preferences at Sites of Interaction with Other Proteins, Biophys. J, vol.106, pp.15-865, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00967481

L. E. Kay, D. A. Torchia, and A. Bax, Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease, Biochemistry, vol.28, issue.23, pp.8972-8979, 1989.
DOI : 10.1021/bi00449a003

J. K. Cheung, P. Shah, and T. M. Truskett, Heteropolymer Collapse Theory for Protein Folding in the Pressure-Temperature Plane, Biophysical Journal, vol.91, issue.7, pp.2427-2435, 2006.
DOI : 10.1529/biophysj.106.081802