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Abstract 

Tumors are highly heterogeneous tissues where malignant cells are surrounded by and 
interact with a complex tumor microenvironment (TME), notably composed of a wide variety 
of immune cells, as well as vessels and fibroblasts. As the dialectical influence between 
tumor cells and their TME is known to be clinically crucial, we need tools that allow us to 
study the cellular composition of the microenvironment. In this focused research review, we 
report MCP-counter, a methodology based on transcriptomic markers that assesses the 
proportion of several immune and stromal cell populations in the TME from transcriptomic 
data, and we highlight how it can provide a way to decipher the complex mechanisms at play 
in tumors. In several malignancies, MCP-counter scores have been used to show various 
prognostic impacts of the TME, which we also show to be linked with the mutational burden 
of tumors. We also compared established molecular classifications of colorectal cancer and 
clear-cell renal cell carcinoma with the output of MCP-counter, and show that molecular 
subgroups have different TME profiles, and that these profiles are consistent within a given 
subgroup. Finally, we provide insights as to how knowing the TME composition may shape 
patient care in a near future.  

 

Keywords: tumor microenvironment, immune cells, transcriptome, gene expression, MCP-
Counter, NIBIT 2016 

Précis 

A newly available method can infer cellular composition of the tumor microenvironment from 
transcriptomic data, which can be linked to prognosis, mutational burden and immune 
classifications of several malignancies and can guide immunotherapies.  

 



Abbreviations: 

 

ccRCC clear cell renal cell carcinoma 

CIBERSORT cell-type identification by estimating relative subsets of RNA transcripts 

CMS consensus molecular subgroups 

CRC colorectal cancer 

GSEA gene set enrichment analysis 

MCP-counter microenvironment cell population-counter 

MSI microsatellite instable 

NGS next-generation sequencing   

NIBIT Network Italiano per la Bioterapia dei Tumori (the Italian network for 
cancer biotherapy) 

TCGA PANCAN the cancer genome atlas pan-cancer cohort 

Th17 T helper lymphocyte producing interleukin 17 

TME tumor microenvironment 

Treg regulatory T cell 



 

Introduction 

Tumors are living and dynamic tissues where malignant cells are intricated with host 

components recruited and modified by tumor cells. Either through direct interactions or 

through the chemokines and cytokines they produce, host cells influence tumor growth, 

migration and metastasis, and therefore patient clinical outcome [1, 2]. The composition of 

the tumor microenvironment (TME) is diverse, containing cancer cells- supporting partners 

such as matrix fibroblasts, feeding and routing elements such as blood and lymphatic 

vessels, and hematopoietic cells such as lymphocytes, granulocytes, macrophages, mast 

cells, dendritic cells (DC) and myeloid derived suppressor cells (MDSC)[3].  

As a general rule, high densities of T and B lymphocytes, cytotoxic T and NK cells, M1 

macrophages and mature DC correlate with patient’s favorable prognosis, while high 

densities of M2 macrophages, granulocytes, mast cells, MDSC, immature DC, Treg and TH17 

lymphocytes are associated with poor prognosis [1, 2, 4]. Quantification of these cell 

populations in tumors provides a major insight in patient’s outcome. The composition of the 

TME, at each stage of a cancer, untreated or even after chemo-, radio- or immunotherapy 

often represents the strongest predictor for disease control [5, 6]. Moreover, it has recently 

been established, and continuously updated, that the TME provides targets and tools for 

efficient immunotherapies such as checkpoint blockade [7] and bi-specific antibodies [8], 

tumor-infiltrating lymphocytes or chimeric antigen receptor expressing T cells [9]. It is 

therefore essential to quantify the numbers and the types of TME cells at diagnosis, and if 

possible following treatment, to guide efficient patient’s care. Different methodologies have 

been successfully developed, including cell quantification by immunohistochemistry (IHC), or 

immunofluorescence (IF) [10–12].  These methods have the advantage of taking into account 

the architecture of the cancerous tissue. However, they are complex to interpret and time 

consuming. Transcriptome analyses require small amounts of RNA, allowing sequential 

analyses and the study of both malignant cells and TME characteristics in large series of 



cancers. In addition, they enable the simultaneous analysis of a very large number of 

markers and, by measuring gene expression of chemokines, cytokines and inflammatory 

molecules, they inform about the functional orientation of tumor-host interactions. Moreover, 

transcriptomic studies allow for the use of Next-Generation Sequencing (NGS) technologies, 

with a high throughput. Finally, they can easily be integrated with other molecular analyses, 

such as the calling of molecular subgroups. We will review here several transcriptomic 

methodologies and provide examples of integration of TME composition analysis with the 

molecular subgroups of tumors. 

 

Analysis of whole-tumor transcriptomic data to study the TME 

Many efforts have been devoted to analyze tumor transcriptome and estimate the 

composition of the TME. The difficulty lies in the extremely high cellular heterogeneity within 

and/or around tumors, creating several sources of variability in the transcriptomic signal [13], 

notably the frequency of the cell populations and the plasticity of their phenotypes. All these 

aspects contribute to the transcriptomic measure for a given gene, which is an average of the 

single-cell signals for all cells present in the sample.  

Several approaches have been used to solve this problem. In a pioneering work [14], a 

mathematical framework has been established to estimate cell types participation to 

heterogenous samples gene expression. Another work [15] focused on immune cells, using 

four immune-originated transformed cell lines to establish distinct expression profiles of B 

cells, monocytes and T cells, hence allowing deconvolution of micro-array transcriptomic 

data for these 3 cell types. Gene expression signatures have been described for 28 

subclasses of immune cells [16], including effector, memory and helper T lymphocytes. 

These signatures have been used for instance with Gene Set Enrichment Analysis (GSEA) 

to derive scores for each immune cell subset [17]. GSEA has also been used to define the 



“immunophenoscore” [18], which interestingly associates with the response to anti-

checkpoint therapies. 

Recent methods aim at providing highly precise quantitative information about the cell 

content of heterogenous samples using deconvolution techniques. CIBERSORT, a method 

using support vector regression [19] allows to estimate relative proportions of 22 immune cell 

subtypes within heterogenous tumor samples. Our team has established extremely stringent 

and robust gene signatures for 8 immune cell types, as well as fibroblasts and vessels [20] 

and used them in a method called MCP-counter, which scores are proportional to the cell 

amounts within the samples. It has been validated against controlled RNA mixtures and 

correlates well with IHC measures, demonstrating that it can provide an interesting 

alternative. ISOpure [21] is a software that allows for identification of cancer profiles in tumor 

samples, quantification of the contribution of malignant and healthy cells to the transcriptomic 

signal from tumor data coupled with reference profiles. MCP-counter does not allow for the 

quantification of malignant cells, but does not need any reference “normal” profile. In some 

cases, such profile may be hard to obtain, for instance when working with biopsies. 

In the context of the analysis of the TME, it is important to highlight that these methods are 

not intended for the same use. CIBERSORT allows to compare cell populations within a 

sample, whereas MCP-counter allows inter-sample comparison of immune and stromal cell 

populations. This is illustrated in figure 1. CIBERSORT estimates each screened population 

as a proportion within the total of the screened populations, but ignores unscreened 

populations. Therefore, it is a powerful tool to compare populations one with the other, but is 

limited when used to compare different samples. On the contrary, MCP-counter scores are 

expressed in arbitrary units specific for each population, and are proportional to the 

proportion of cells of this population within the whole sample, thus allowing comparisons 

between samples in a cohort.  

We summarized in table 1 the availability, methodology, requirements and outputs provided 

by the MCP-counter, CIBERSORT and ISOpure. 



 

One of the major hurdles of transcriptomic analyses of cell quantification is the potential 

discrepancies between quantification of cell population by gene signatures expression and 

the density of the corresponding cell type in a tissue, particularly in a tumor. We addressed 

this question recently. We have shown using in-vitro mRNA multi-populations spike-in 

experiments that MCP-counter scores strongly correlate with the abundance of the 

corresponding population (Pearson’s r between 0.92 and 0.99). Moreover, although not as 

perfect, the metagene expression of T cells, cytotoxic cells and monocytes correlated (r ≥ 

0.67) with the tumoral density of CD3+, CD8+ and CD68+ cells quantified by IHC [20]. 

Applying MCP-counter to 25 different cancers, we confirmed that the inferred densities of 

lymphoid subsets, particularly T, B, NK and cytotoxic cells correlate with favorable prognosis 

in most cases whereas those of fibroblasts are markers of poor prognosis [20]. Endothelial 

cells metagene expression is variably correlated with prognosis [20], renal cell cancer being 

an interesting example. In this disease, high density T cells, including CD8+ lymphocytes [11] 

as well as the expression of their corresponding metagene correlate with shorter disease free 

survival while the metagene expression of endothelial cells correlates with longer survival 

[20]. We have recently shown that the deleterious impact of T cells on clear cell renal cell 

cancer (ccRCC) patients’ clinical outcome correlates with a strong infiltration by T regulatory 

cells [22] which, in addition to PD-L1 and PD-L2 expression in malignant cells [11], 

potentially inhibit the anti-tumor immune reaction [22]. In addition it is surprising that a high 

endothelial cell density and subsequent angiogenesis positively correlates with patient’s 

survival [20]. Whether it may be due to a good response rate of these patients to anti-

angiogenic therapies [23] remains an open question [24]. 

It is of interest that, depending on the cancer type, combination of different metagene 

expression impedes patients’ survival. Thus, combination of high T and B lymphocyte 

metagene expression, reflecting probably the density of tertiary lymphoid structures [25, 26], 

is the strongest favorable parameter for lung adenocarcinoma, whereas combination of high 



T cells and low fibroblast gene signatures expression predict best survival in colorectal 

cancer; combination of high cytotoxic lymphocyte and low monocytic lineage signatures sign 

best prognosis in breast cancer [20]. It is therefore highly conceivable that the phenotypes of 

the malignant cells influence the composition and functional orientation of the TME. To 

address this question, we investigated the relationships between molecularly defined 

subgroups of cancers and TME composition.  

 

Association between TME composition and mutational load of tumors 

In parallel with the apparition and accumulation of somatic mutations, tumors tend to express 

a growing number of neoantigens that may trigger anti-tumoral immune response by the 

activation of lymphocytes directed against these neoantigens [27]. We therefore 

hypothesized that the immune infiltrate, and more generally the whole TME, may vary 

according to the mutational load of the tumors. Following Schumacher and Schreiber’s 

classification of malignancies according to their propensity to generate neoantigens (as 

defined by the somatic mutation prevalence)[27], we analyzed the cohort-wide TME of 20 

cancers from the TCGA PANCAN cohort, using MCP-counter (Figure 2). Malignancies are 

classified into 4 groups, referring to the formation of neoantigens: frequently, regularly, 

occasionally to regularly, and occasionally. We grouped them according to the TME 

composition in terms of T cells, CD8+ T cells, cytotoxic lymphocytes, NK cells, monocytic 

lineage, neutrophils, endothelial cells and fibroblasts (Figure 2a). Interestingly, this analysis 

grouped the cancers having the least amount of somatic mutations (thyroid, low grade 

glioma, glioblastoma and kidney chromophobe) in the same cluster characterized by low 

lymphocytic and fibroblastic infiltrates associated with heterogenous myeloid and 

vascularization contents. In particular, when comparing CD8+ T cells (Figure 2b) and 

fibroblasts (Figure 2c) with the mutational burden of malignancies, we found that the 

infiltration in the “occasionally mutated” tumors was significantly lower. However, of all the 



other screened populations, only T cells exhibited a variation of their infiltrate between the 

cancer groups (Figure S1). 

 

Integration of molecular subgroups and TME composition 

Whole transcriptome analyses have been already used to classify different malignancies with 

prognostic-impacting molecular subgroups. The first reports were made in lymphomas [28, 

29] and breast cancers [30, 31]. Many others have been published and are being refined 

(reviewed in [1]). 

We have applied MCP-counter to characterize tumors that were previously classified into 

molecular subgroups: colorectal cancer (CRC) and ccRCC.  

Efforts associating 6 laboratories have converged into a consensus classification of CRC in 4 

molecular subgroups named “Consensus Molecular Subgroups” 1 to 4 [32]. CMS1 

corresponds to highly mutated tumors, encompassing most microsatellite instable (MSI) 

tumors lacking DNA-repair genes; it is known to be highly infiltrated by lymphocytes. CMS2 

contains canonical tumors with WNT / β-Catenin / MYC activation. CMS3 is rich in 

metabolically deregulated tumors, with some prevalence of KRAS mutated cancers. CMS4 

has markers of epithelial-mesenchymal transition, with a TGF-β signature and high 

fibroblasts content. Using MCP-counter, we confirmed and extended the analysis of Guinney 

et al., validating our approach, defining CMS1 as a sub-group highly enriched in cytotoxic T 

cells and moderate fibroblastic abundance, and we also showed that this subgroup had high 

immune checkpoint expression, IFNγ signature, high class 1 major histocompatibility 

complex (MHC1) expression, moderate inflammation and angiogenesis [33]. It is striking that 

it is indeed the best prognostic group for disease free survival [32] and that most if not all 

MSI patients from this group respond to anti-PD1 antibodies [34], which is consistent Guiney 

et al. findings showing PD-1 activation for CMS1 tumors. CMS2 and CMS3 are immune 

“deserts” with low MHC1 expression, no signs of immune and/or inflammatory cells. CMS4 



has a high lymphocytic infiltration, with checkpoint inhibitors and high MHC1 expression but 

lacking IFNγ gene expression, together with high inflammatory, angiogenic and fibroblastic 

invasion. Strikingly, despite its high infiltration by lymphocytes, this subgroup, exhibits the 

worst clinical outcome. It illustrates the putative overcoming of a potential anti-tumor reaction 

by inflammatory, angiogenic, and immunosuppressive (via TGFβ for instance) mechanisms. 

Therefore, the integration of TME and malignant cells classifications paves the way for 

different immunotherapeutics, combined and/or sequential, to control CRC. These ways are 

being explored [35, 36]. 

Metastatic ccRCC has also been recently stratified into 4 molecular subgroups [37] that we 

have subjected to MCP-counter analysis [38]. ccRCC1 is a poor prognosis group, with a low 

response rate to tyrosine kinase inhibitor (TKI) Sunitinib, with little to no immune infiltration; it 

also exhibits low MHC1 expression. Patients from ccRCC2 and ccRCC3 subgroups respond 

to Sunitinib and depict good prognosis; their tumors are heterogeneous in terms of TME 

composition. ccRCC4 is the worst prognostic group, very poorly responding to Sunitinib; it is 

highly enriched in T and NK lymphocytes in the context of high myeloid and fibroblastic 

infiltration. It probably corresponds to the subgroup recently being defined as being rich in 

Treg [39]. This subgroup, which also exhibits high MHC1 expression, checkpoint inhibitors on 

T cells and their ligands on malignant cells certainly might benefit from therapies associating 

immune checkpoint inhibition with other approaches. 

 

Conclusions 

The dialectic interactions of TME components with malignant cells depend on the organ 

where they happen, the oncogenic processes involved and their modification by treatments. 

The recent availability of high throughput methodologies to quantify the different elements of 

the TME and understand their functionality opens the time of the generalization of these 

approaches and the subsequent application of precision tailored therapies based on these 



landscapes rather than on cancer subtypes only. The time of associating cancer targeted 

therapies with TME targeted agents is at its dawn (Figure 3). The main issue in the years to 

come will be to bring these powerful tools from the bench to the bedside. To use these high 

throughput methodologies in the clinical routine, two pre-requisites will be needed: first we 

will have to prove and validate their predictive value of response to tailored therapies rather 

than their overall prognostic value; second, we will have to validate these approaches using 

widely available tissues such as formalin-fixed and paraffin embedded tumor tissues. Once 

these major steps have been achieved, we will be ready to enter in a new era of a real 

precision and tailored medicine and there can be no doubt that we will see more patients 

cured. 
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Figures captions 

 

Fig.1 Comparison of CIBERSORT estimates and MCP-counter scores for different 
configurations of mixtures composition. The left panel is a schematic representation of 3 
possible cell mixtures compositions, while the middle and right panels represent respectively 
the estimates that would be suggested by CIBERSORT and MCP-counter. We notice that 
the estimates of CIBERSORT for the first two mixes are similar, as they are expressed as 
percentages of cells among the screened populations only, regardless of the total infiltration 
in the sample. Conversely, MCP-counter scores are proportional to the amount of each cell 
population in the total sample, which allows inter-sample comparison for each population. 
However, these scores are expressed in a different arbitrary unit for each population, which 
forbids intra-sample comparison between population. CIBERSORT allows this type of 
comparison. 

 

Fig.2 (a) Classification of 20 malignancies based on the TME composition assessed by 
MCP-counter, along with the estimation of the frequency of neoantigens proposed by 
Schumacher and Schreiber [27]. (b) and (c) Infiltration by CD8+ T cells (b) and fibroblasts (c) 
is significantly lower in tumors in which mutations occur only occasionally.  

 

Fig.3 Main targeted therapies currently approved or in a late stage development in human 
solid tumors. Targeted therapies act directly on tumor cells or on populations of the tumor 
microenvironnement (TME). (a) Tumor cells harbor activating DNA mutations or 
translocations which can be efficiently targeted by monoclonal antibodies (mAb) or TKI. (b) 
Endothelial cells involved in neoangiogenesis are efficiently targeted either by a VEGF or a 
VEGFR blocking mAb, a VEGF-trap or a VEGFR-TKI. Effector function of CD8 T cells can be 
restored by (c) antagonist mAb of co-inhibition signals such as PD-1, Tim-3, Lag-3 or CTLA-
4, or by (d) agonist mAb of co-stimulation signals such as CD137, CD40L. Regulatory T cells 
(Treg) impede the anti-tumor immune response by a direct effect on CD8 T cells and by the 
blockade of the maturation of dendritic cells. Treg functions, as well as Myeloid-Derived 
Suppressor Cells (MDSC), may be suppressed by (e) IDO inhibitors or VEGF-VEGFR axis 
inhibitors. Fibroblasts control the trafficking of T cells from the invasive margin (IM) to the 
tumor stroma, hamper DC maturation, inhibit T-cell proliferation and sustain angiogenesis. 
Fibroblast might be targeted by TGFb blocking mAb. 

 

Fig. S1 Infiltration of the different categories of cancers, based on their mutational burden, 
for (a) T cells, (b) Monocytic lineage, (c) Neutrophils, (d) Cytotoxic lymphocytes, (e) NK cells 
and (f) Endothelial cells.    
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