An infinite dimensional Duffing-like evolution equation with linear dissipation and an asymptotically small source term

Abstract : We consider an abstract nonlinear second order evolution equation, inspired by some models for damped oscillations of a beam subject to external loads or magnetic fields, and shaken by a transversal force. When there is no external force, the system has three stationary positions, two stable and one unstable, and all solutions are asymptotic for $t$ large to one of these stationary solutions. We show that this pattern extends to the case where the external force is bounded and small enough, in the sense that solutions can exhibit only three different asymptotic behaviors.
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01618055
Contributeur : Alain Haraux <>
Soumis le : mardi 17 octobre 2017 - 14:01:19
Dernière modification le : vendredi 31 août 2018 - 09:06:03
Document(s) archivé(s) le : jeudi 18 janvier 2018 - 14:01:11

Fichiers

Duffing-ter.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01618055, version 1
  • ARXIV : 1710.08159

Collections

Citation

Marina Ghisi, Massimo Gobbino, Alain Haraux. An infinite dimensional Duffing-like evolution equation with linear dissipation and an asymptotically small source term. 2017. 〈hal-01618055〉

Partager

Métriques

Consultations de la notice

117

Téléchargements de fichiers

20