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Abstract

We consider an abstract nonlinear second order evolution equation, inspired by some
models for damped oscillations of a beam subject to external loads or magnetic fields,
and shaken by a transversal force. When there is no external force, the system has three
stationary positions, two stable and one unstable, and all solutions are asymptotic for t
large to one of these stationary solutions.

We show that this pattern extends to the case where the external force is bounded
and small enough, in the sense that solutions can exhibit only three different asymptotic
behaviors.
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1 Introduction

Let H be a real Hilbert space, in which |x| denotes the norm of an element x ∈ H ,
and 〈x, y〉 denotes the scalar product of two elements x and y. Let A be a self-adjoint
positive operator on H with dense domain D(A).

We consider some evolution problems of the following form

u′′ + δu′ + k1A
2u− k2Au+ k3|A1/2u|2Au = f(t), (1.1)

where δ, k1, k2, k3 are positive constants, and f : [0,+∞) → H is a given forcing term,
with initial data

u(0) = u0, u′(0) = u1.

A concrete example of an equation that fits in this abstract framework is the partial
differential equation

utt + δut + k1uxxxx + k2uxx − k3

(∫ 1

0

u2x dx

)
uxx = f(t, x) (1.2)

in the strip (t, x) ∈ [0,+∞)× [0, 1], with boundary conditions

u(t, x) = uxx(t, x) = 0 ∀(t, x) ∈ [0,+∞)× {0, 1}. (1.3)

Physical models and experiments Equation (1.2) appears in [9] as a model for the
motion of a beam which is buckled by an external load k2, and shaken by a transverse
displacement f(t) (depending only on time, in that model). The boundary conditions
(1.3) correspond to “hinged ends”, but many different choices are also possible. Equation
(1.2) becomes a special case of (1.1) if we choose H := L2((0, 1)) and Au = −uxx with
homogeneous Dirichlet boundary conditions.

A different physical model leading to equations of the form (1.2), althought with
different boundary conditions, is the so called magneto-elastic cantilever beam described
in Figure 1 of [13]. The physical apparatus consists in a beam which is clamped vertically
at the upper end, and suspended at the other end between two magnets secured to a
base. The whole system is shaken by an external force transversal to the beam.

Both systems exhibit a somewhat complex behavior. To begin with, let us consider
the case without external force. When k2 is small enough, the trivial solution u(t) ≡ 0
is stable. This regime corresponds to a small external load in the first model, and to
a large distance from the magnets in the case of the magneto-elastic beam. When k2
increases, the trivial solution becomes unstable, and two nontrivial equilibrium states
appear. In this new regime, the effect of an external force seems to depend deeply on
the size of the force itself. If the force is small enough, experiments reveal that solutions
remain close to the equilibrium states of the unforced system. On the contrary, when the
external force is large enough, trajectories seem to show a chaotic behavior. Describing
and modelling this chaotic behavior was actually the main goal of [13, 9].
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Simple modes and Duffing’s equation Up to changing the unknown and the operator
according to the rules

u(t) αu(βt), A γA

for suitable values of α, β, γ, we can assume that three of the four constants in (1.1)
are equal to 1. We end up, naming for simplicity the new unknown by u as well, with
the equation

u′′ + u′ + A2u− λAu+ |A1/2u|2Au = f(t). (1.4)

with the initial conditions renamed accordingly

u(0) = u0, u′(0) = u1. (1.5)

Just to fix ideas, we can also assume, as in the concrete example (1.2), that H admits
an orthonormal basis {en} made by eigenvectors of A, corresponding to an increasing
sequence λ1 < λ2 < . . . of positive eigenvalues. If we restrict equation (1.4) to the k-th
eigenspace, we obtain an ordinary differential equation of the form

u′′k + u′k + λk(λk − λ)uk + λ2ku
3
k = fk(t). (1.6)

Of course (1.4) is not equivalent to the system made by (1.6) as k varies, because
of the coupling due to the nonlinear term. Nevertheless, in the special case where both
initial data and the external force are multiples of a given eigenvector ek, equation (1.4)
reduces exactly to (1.6).

Equation (1.6) is known in the mathematical literature as Duffing’s equation. When
there is no external force, namely fk(t) ≡ 0, it is well-known that the behavior of
solutions depend on the sign of the coefficient of uk, or equivalently of λk − λ.

• When λ < λk, we are in the so-called hardening regime, in which the trivial solution
uk(t) ≡ 0 is the unique stationary solution, and it is stable.

• When λ > λk, we are in the so-called softening regime, in which the trivial solution
is unstable, and (1.6) has exactly two nontrivial stable equilibrium solutions

u(t) ≡ ±
√
λ− λk
λk

.

In particular, when λ < λ1, all projections end up in the hardening regime, and this is
the case where experiments revealed stability of the trivial solution. When λ ∈ (λ1, λ2),
the first projection is in the softening regime, while all other projections are in the
hardening regime. This is the range considered in [13, 9], and it is also the range we
consider in this paper. In this range, a natural toy model for (1.4) is the ordinary
differential equation (1.6) with k = 1. This equation, with a simple variable change, can
be put in the more standard form

u′′ + δu′ − u+ u3 = f(t). (1.7)
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Stability vs chaos In the hardening regime, namely when in (1.7) the term −u+ u3 is
replaced by u + u3, it has been known for quite a while that, if f(t) is globally defined
and small enough in uniform norm, there exists a unique solution that is bounded on
the whole line, and this solution is periodic if f(t) is periodic (see [11]).

On the contrary, the behavior of solutions can be quite complicated when f(t) is
large enough. For example, if f(t) is periodic with minimal period T , there may exist
solutions with minimal period equal to a multiple of T , known in the literature as
“subharmonic” solutions (see for example the papers [5] and [6, 14] concerning the
number of subharmonic solutions for large forcing terms). The existence of subharmonic
solutions with arbitrarily large periods may lead to a chaotic dynamic, with, usually, a
classical transition scenario for large multiples of a given forcing term.

This phenomenon has motivated many specialized papers in the middle of the twen-
tieth century, where nonlinear terms more general than the cube have been considered
(see for example [10, 12]).

In the softening regime, in the cubic case the issue is to identify three privileged
solutions playing the role of the equilibria when the forcing term is small enough in
uniform norm. Partial steps in this direction were achieved in [8], where the two following
results are proven assuming that f is defined and bounded on the whole line.

• If f is small enough in L∞(R), equation (1.7) has three special solutions, which
are the generalization of the two stable solutions u(t) ≡ ±1 and of the unstable
solution u(t) ≡ 0 of the unforced equation. When f is periodic with (minimal)
period T > 0, the special solutions are T -periodic as well.

• If f is small enough in L∞(R), and in addition δ ≥ 2
√
2, then all solutions to (1.7)

are asymptotic to one of the special ones as t→ +∞. In the T -periodic case, this
asymptotic convergence result is enough to exclude the presence of subharmonic
solutions or more chaotic behavior.

Unfortunately, the techniques of [8], which have been followed in a more general
context by [4], seem to require in an essential way that δ ≥ 2

√
2, which coming back to

the toy model of (1.6) with k = 1 corresponds to asking that λ1(λ−λ1) is small enough.

Our results In this paper we consider the full equation (1.4) in the infinite dimensional
setting, again in the range λ ∈ (λ1, λ2). Under smallness assumptions on the forcing
term, but without any further restriction on λ, λ1 and λ2, we prove that all solutions
remain close, as t → +∞, to one of the three stationary solutions to the unforced
equation, within a distance depending on the size of the forcing term. Moreover, two
solutions that are eventually close to the same stationary point are actually asymptotic
to each other. Finally, out of the three possible asymptotic profiles, two are stable in
the sense that the set of initial data that originate solutions converging to them is a
nonempty open set; the other one corresponds to the physically irrelevant “solution in
between”.
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These results are new even in the simple setting of (1.7), because they imply that
the asymptotic convergence result of [8] holds true without the technical assumption
that δ ≥ 2

√
2.

Structure of the paper This paper is organized as follows. In section 2 we clarify the
functional setting, we state a preliminary well-posedness result for (1.4) (Theorem 2.1),
and then we state our main result (Theorem 2.7) concerning the existence of three
different asymptotic regimes, and some consequences (Corollary 2.9). In section 3 we
reduce the proof of our main result to the proof of four auxiliary propositions, where we
concentrate the technical machinery of the paper, and we prove Corollary 2.9. Finally,
section 4 is devoted to the proof of the propositions.

2 Statements

2.1 Preliminary results

We start by some basic properties appealing to rather classical techniques.

Theorem 2.1 (Well-posedness). Let H be a Hilbert space, let A be a self-adjoint non-
negative linear operator on H with dense domain D(A), let λ be a real number, and let
f ∈ C0([0,+∞), H).

Then the following statements hold true.

(1) (Global existence and uniqueness) For every (u0, u1) ∈ D(A)×H, problem (1.4)–
(1.5) admits a unique global solution

u ∈ C0 ([0,+∞), D(A)) ∩ C1 ([0,+∞), H) .

(2) (Continuous dependence on initial data) Let {(u0n, u1n)} be any sequence with

(u0n, u1n) → (u0, u1) in D(A)×H,

and let un(t) denote the solution to (1.4) with initial data un(0) = u0n and u′(0) =
u1n.

Then for every T > 0 it turns out that

un(t) → u(t) uniformly in C0 ([0, T ], D(A)) ,

u′n(t) → u′(t) uniformly in C1 ([0, T ], H) .
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(3) (Derivative of the energy) The classical energy

E(t) :=
1

2
|u′(t)|2 + 1

2
|Au(t)|2 − λ

2
|A1/2u(t)|2 + 1

4
|A1/2u(t)|4 (2.1)

is of class C1, and its time-derivative is given by

E ′(t) = −|u′(t)|2 + 〈u′(t), f(t)〉 ∀t ≥ 0. (2.2)

The proof of this result is quite standard. Introducing the vector U(t) := (u(t), v(t)),
equation (1.4) can be written on the product Hilbert space H := D(A)×H in the form

U ′ = LU +G(U) + (0, f(t)),

where
LU := (v,−A2u), ∀U ∈ D(L) := D(A2)×D(A),

and
G(U) := (0,−v + λAu− |A1/2u|2Au).

The linear operator L is skew-adjoint on H, and the nonlinear term G : D(A) → H
is Lipschitz continuous on bounded subsets. This is enough to deduce local existence
through standard techniques (see for example [3]), as well as continuous dependence on
initial data as soon as all solutions are global. In turn, global existence follows from the
bounds on the classical energy (2.1) that can be deduced from (2.2) through Gronwall’s
Lemma. Finally, (2.2) is an immediate application of [7, Lemma 11] combined with the
observation that, since u ∈ C0 ([0,+∞), D(A)) ∩ C1 ([0,+∞), H), we have

F1(t) := |A1/2u(t)|2 ∈ C1 ([0,+∞), H)

with
F ′
1(t) = 2〈Au(t), u′(t)〉.

We leave the details to the reader.

Remark 2.2. The well-posedness result holds true also backward-in-time. In particular

• if f(t) is defined and continuous in the whole real line, then u(t) is defined on the
whole real line,

• if f(t) is defined only for t ≥ 0, but “initial” data are

u(T0) = u0 ∈ D(A), u′(T0) = u1 ∈ H

for some T0 ≥ 0, then the solution is again defined for every t ≥ 0.

In the sequel we restrict our analysis to the case where λ lies between the first two
eigenvalues of A. To be more precise, we introduce the following class of operators.
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Definition 2.3 (Operators with gap condition). Let H be a Hilbert space, and let
λ1 < λ2 be two positive real numbers. We say that an operator A satisfies the (λ1, λ2)
gap condition, and we write A ∈ G(λ1, λ2, H), if A is a self-adjoint linear operator on H
with dense domain D(A), and there exists e1 ∈ H , with |e1| = 1, such that

• Ae1 = λ1e1,

• |Ax|2 ≥ λ22|x|2 for every x ∈ D(A) with 〈x, e1〉 = 0.

Remark 2.4. When A ∈ G(λ1, λ2, H), the parameter λ1 turns out to be the smallest
eigenvalue of A, with corresponding unit eigenvector e1, and the spectrum of A does
not intersect the interval (λ1, λ2). A classical example of operator in G(λ1, λ2, H) is
any operator whose spectrum is a sequence λ1 < λ2 < . . . of positive real numbers, and
whose first eigenvalue λ1 is simple. The Laplacian with homogeneous Dirichlet boundary
conditions in any reasonable bounded domain fits in this framework.

Remark 2.5 (Stationary solutions to the unforced equation). When A ∈ G(λ1, λ2, H),
the unforced equation

u′′ + u′ + A2u− λAu+ |A1/2u|2Au = 0. (2.3)

admits exactly three stationary solutions, namely those of the form u(t) ≡ σe1 with
σ ∈ {−σ0, 0, σ0}, where

σ0 :=

√
λ− λ1
λ1

. (2.4)

Indeed, stationary solutions to (2.4) are the solutions to the abstract elliptic equation

A2u = λAu− |A1/2u|2Au = µAu

with µ := λ− |A1/2u|2. This means that either u = 0, or Au is an eigenvector of A with
eigenvalue µ. Since µ < λ < λ2, the only possibility is that µ = λ1, in which case we
deduce that u = σe1 for some σ ∈ {−σ0, 0, σ0}.

Remark 2.6 (Convergence to equilibria for the unforced equation). If H is a finite
dimensional space, then the classical invariance principle, applied with the classical
energy (2.1) as Lyapunov function, proves that all solutions to the unforced equation
(2.3) converge to one of the three equilibria.

If the dimension of H is infinite, the convergence to equilibria for solutions to the
unforced equation is a corollary of our main result, but it does not follow immediately
from the invariance principle. Indeed, in order to apply this principle one has to know a
priori that trajectories are precompact, a property that does not seem so easy to obtain
in infinite dimension without exploiting the full machinery introduced in the proof of
our main result.

6



2.2 Main result and consequences

For our main result we consider the full equation (1.4) with a small bounded forcing
term. We show that, if the external force is asymptotically small enough, then every
solution lies for t large in a neighborhood of one of the three stationary solutions to
the unforced equation (2.3). Moreover, any two solutions of (1.4) that are eventually
close to the same stationary solution of (2.3) are actually asymptotic to each other as
t→ +∞. The statement is the following.

Theorem 2.7 (Asymptotic behavior for the equation with small external force). Let H
be a Hilbert space, let λ1 < λ < λ2 be three positive real numbers, let A ∈ G(λ1, λ2, H),
let f : [0,+∞) → H be a bounded continuous function, and let σ0 be defined by (2.4).

Then there exist two positive constants ε0 and M0, depending only on the three pa-
rameters λ, λ1, λ2, for which the following statements hold true whenever

lim sup
t→+∞

|f(t)| ≤ ε0. (2.5)

(1) (Alternative) For every solution u(t) to (1.4), there exists σ ∈ {−σ0, 0, σ0} such
that

lim sup
t→+∞

(
|u′(t)|+ |A(u(t)− σe1)|

)
≤M0 lim sup

t→+∞

|f(t)|. (2.6)

(2) (Asymptotic convergence) If u(t) and v(t) are any two solutions to (1.4) satisfying
(2.6) with the same σ ∈ {−σ0, 0, σ0}, then u(t) and v(t) are asymptotic to each
other in the sense that

lim
t→+∞

(
u(t)− v(t), u′(t)− v′(t)

)
= (0, 0) in D(A)×H. (2.7)

(3) (Basin of attraction of stable solutions) The set of initial data (u0, u1) for which
the solution to (1.4)–(1.5) satisfies (2.6) with a given σ ∈ {−σ0, σ0} is a nonempty
open subset of D(A)×H.

(4) (Stable manifold of unstable solution) The set of initial data (u0, u1) for which the
solution to (1.4)–(1.5) satisfies (2.6) with σ = 0 is a nonempty closed subset of
D(A)×H.

Statement (1) of Theorem 2.7 implies in particular that all solutions to the unforced
equation (2.3) converge to one of the equilibria. Actually, the following more general
result is a special case of (2.6).

Corollary 2.8. Under the assumptions of Theorem 2.7, if in addition f(t) → 0 as t→
+∞, then every solution to the forced equation (1.4) converges to one of the stationary
solutions to the unforced equation (2.3).

Another important consequence of Theorem 2.7 is the following.
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Corollary 2.9. Let H, λ1 < λ < λ2, and A ∈ G(λ1, λ2, H) be as in Theorem 2.7, let σ0
be defined by (2.4), and let f : R → H be a globally defined forcing term.

Then there exist two positive constants ε0 and r0 with the following properties.

(1) (Existence of three special bounded solutions) If |f(t)| ≤ ε0 for every t ∈ R, then
for every σ ∈ {−σ0, 0, σ0} there exists a unique solution uσ(t) to (1.4) such that

|u′σ(t)|2 + |A(uσ(t)− σe1)|2 ≤ r0 ∀t ∈ R.

(2) (Asymptotic convergence) Every solution to (1.4) is asymptotic in D(A)×H, as
t→ +∞, to one of the three special solutions.

(3) (Periodic case) If f(t) is T -periodic, then the three special solutions are T -periodic
as well, and they are the unique periodic solutions to the equation (in particular,
subharmonic solutions do not exist).

(4) (Almost periodic case) If in addition f(t) is almost periodic with values in H,
then each of the three special solutions uσ(t) is such that the vector Uσ(t) :=
(uσ(t), u

′
σ(t)) is almost periodic with values in the energy space D(A) × H, with

the module containment property. Moreover, the uσ(t) are the unique solutions of
the equation to be almost periodic with values in any Banach space Z such that
H ⊆ Z with continuous imbedding.

Remark 2.10. When f is just bounded and small, we do not claim that the three special
solutions are the unique solutions that are bounded on the whole real line. Indeed, even
when f = 0, there are most probably infinitely many heteroclinic orbits which lie in
the unstable manifold of the trivial equilibrium, and converge to 0 as t → −∞, and to
one of the two stable equilibria as t → +∞. These orbits do not fit in the framework
of statement (1) of Corollary 2.9 because the do not lie in a small neighborhood of any
equilibrium.

3 Proof of main results

3.1 Proof of Theorem 2.7 – Auxiliary results

The proof of Theorem 2.7 relies on four auxiliary results, whose proof is postponed to
section 4. To begin with, we introduce the constant

γ0 :=
1

8
min

{
1, λ1(λ− λ1), λ2(λ2 − λ)

}
, (3.1)

and the linear operator P on H such that Pe1 = e1/6, and Px = x for every x in the
subspace of H orthogonal to e1.
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For every solution u(t) to (1.4), we consider the classical energy E(t) defined by
(2.1), and the corrected energy

F (t) := E(t) + 2γ0〈Pu(t), u′(t)〉+ γ0〈Pu(t), u(t)〉. (3.2)

In the first result we prove that the energy F (t) of solutions to (1.4) is bounded for
t large in terms of the norm of the forcing term. As a consequence, all solutions are
bounded in D(A)×H .

Proposition 3.1 (Ultimate bound on solutions). Let us consider equation (1.4) under
the assumptions of Theorem 2.7. Let F (t) be the energy defined in (3.2).

Then there exists a positive constant M1 such that

lim sup
t→+∞

F (t) ≤ M1 lim sup
t→+∞

|f(t)|2, (3.3)

and there exist two positive constants M2 and M3 such that

lim sup
t→+∞

(
|u′(t)|2 + |Au(t)|2

)
≤M2 +M3 lim sup

t→+∞

|f(t)|2. (3.4)

In the second result we deal with solutions which lie eventually in the instability
region, namely with their first component close to the origin. We show that in this case
the whole solution is eventually close to the origin, within a distance depending on the
norm of the forcing term.

Proposition 3.2 (Solutions in the unstable regime). Let us consider equation (1.4)
under the assumptions of Theorem 2.7.

Then there exist two constants β0 ∈ (0, σ0) and M4 > 0 for which the following
implication is true:

lim sup
t→+∞

|f(t)| ≤ 1

lim sup
t→+∞

|〈u(t), e1〉| ≤ β0
=⇒ lim sup

t→+∞

(
|u′(t)|+ |Au(t)|

)
≤M4 lim sup

t→+∞

|f(t)| (3.5)

In the third result we consider solutions to (1.4) which at a given time are close to
the stable stationary solution σ0e1 to (2.3). We show that these solutions lie eventually
in a neighborhood of the stationary solution itself, within a distance depending on the
norm of the forcing term.

Proposition 3.3 (Solutions in the stable regime). Let us consider equation (1.4) under
the assumptions of Theorem 2.7. Let F (t) be the energy defined in (3.2).
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Then for every β ∈ (0, σ0) there exist three constants η > 0, ε1 > 0 and M5 > 0 for
which the following implication is true:

∃T0 ≥ 0 such that

sup
t≥T0

|f(t)| ≤ ε1, F (T0) < η, |〈u′(T0), e1〉| < η, 〈u(T0), e1〉 > β

⇓

lim sup
t→+∞

(
|u′(t)|+ |A(u(t)− σ0e1)|

)
≤M5 lim sup

t→+∞

|f(t)|

(3.6)

In the last result we show that any two solutions to the forced equation (1.4) that are
close enough to the same stationary solution to the unforced equation (2.3) are actually
asymptotic to each other.

Proposition 3.4 (Close solutions are asymptotic to each other). Let us consider equa-
tion (1.4) under the assumptions of Theorem 2.7.

Then there exists r0 > 0 with the following property: if u(t) and v(t) are two solutions
to (1.4), and there exists σ ∈ {−σ0, 0, σ0} such that

lim sup
t→+∞

(|u′(t)|+ |A(u(t)− σe1)|+ |v′(t)|+ |A(v(t)− σe1)|) ≤ r0, (3.7)

then u(t) and v(t) are asymptotic to each other in the sense of (2.7).

3.2 Proof of Theorem 2.7 – Conclusion

In this section we prove Theorem 2.7 by relying on the four propositions stated above.
To begin with, we consider the constants β0 and M4 of Proposition 3.2. Then we

select β := β0 in Proposition 3.3, and we obtain three more constants η, ε1, andM5. We
also consider the constant M1 of Proposition 3.1, and the constant r0 of Proposition 3.4.
We claim that the conclusions of Theorem 2.7 hold true if we choose

M0 := max{M4,M5}, ε0 := min

{
1,
ε1
2
,
η

2M1

,
η

2M0

,
r0

2M0

,
(σ0 − β0)λ1

2M0

}
.

Alternative Let us assume that (2.5) is satisfied, and let u(t) be any solution to (1.4).
Let us set

L := lim sup
t→+∞

|〈u(t), e1〉|.

We observe that L is finite because of (3.4), and we distinguish two cases.

• Case L ≤ β0. Since ε0 ≤ 1, we can apply Proposition 3.2, from which we deduce
that in this case u(t) satisfies (2.6) with σ = 0.
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• Case L > β0. We can assume, without loss of generality, that

L = lim sup
t→+∞

〈u(t), e1〉 (3.8)

(without absolute value). Indeed, the other possibility can be treated in a sym-
metric way, or even reduced to this one by considering the function −u(t), which
is a solution to (1.4) with external force −f(t).
When (3.8) holds true, we claim that we are in the framework of Proposition 3.3
with β = β0, namely there exists T0 ≥ 0 for which the four inequalities in the
upper part of (3.6) are satisfied. Indeed, since ε0 ≤ ε1/2, from assumption (2.5)
we deduce that |f(t)| ≤ ε1 when t is large enough. Moreover, since M1ε

2
0 ≤

M1ε0 ≤ η/2, from Proposition 3.1 we deduce that F (t) < η for every t large
enough. Finally, from Lemma 4.1 applied to the function ϕ(t) := 〈u(t), e1〉, we
deduce that there exists a sequence tn → +∞ such that

〈u(tn), e1〉 → L > β0 and 〈u′(tn), e1〉 → 0.

Therefore, all the four inequalities in the upper part of (3.6) are satisfied if we
choose T0 := tn with n large enough. At this point, from (3.6) we conclude that
in this case u(t) satisfies (2.6) with σ = σ0.

Asymptotic convergence Since M0ε0 ≤ r0/2, any pair of solutions satisfying (2.6) with
the same σ ∈ {−σ0, 0, σ0} satisfies also (3.7) with the same σ. At this point, (2.7)
follows from Proposition 3.4.

Basin of attraction of stable solutions Let us consider the case σ = σ0 (but the argu-
ment is symmetric when σ = −σ0). We claim that, under assumption (2.5) with our
choice of ε0, the following characterization holds true: a solution to (1.4) satisfies (2.6)
with σ = σ0 if and only if there exists T0 ≥ 0, possibly depending on the solution, for
which the four inequalities in upper part of (3.6) hold true (as usual with β equal to the
value β0 of Proposition 3.2).

Let us prove this characterization. The “if part” is exactly Proposition 3.3. As
for the “only if part”, it is enough to show that (2.5) and (2.6) imply that the four
inequalities in the assumptions of (3.6) hold true when T0 is large enough. The first
one follows from (2.5) because ε0 ≤ ε1/2. The second one follows from Proposition 3.1
because M1ε

2
0 ≤ η/2, as explained before. The third one follows from (2.6) because

M0ε0 ≤ η/2. Finally, from (2.6) and our definition of ε0 we obtain that

lim sup
t→+∞

|〈u(t), e1〉 − σ0| ≤ lim sup
t→+∞

1

λ1
|A(u(t)− σ0e1)| ≤

M0ε0
λ1

≤ σ0 − β0
2

,

and hence |〈u(t), e1〉 − σ0| < σ0 − β0 when t is large enough. This implies that

〈u(t), e1〉 = σ0 +
(
〈u(t), e1〉 − σ0

)
> σ0 − (σ0 − β0) = β0

11



when t is large enough, from which the last required inequality follows.
Given the characterization, we can prove our conclusions. Indeed, due to the contin-

uous dependence on initial data, the set of initial data (u0, u1) originating a solution u(t)
for which there required T0 exists is an open set. In order to prove that it is nonempty,
we choose T0 ≥ 0 such that |f(t)| ≤ 2ε0 ≤ ε1 for every t ≥ T0, and we consider the
solution u(t) to (1.4) with “initial” data

u(T0) = σ0e1, u′(T0) = 0.

This solution is defined on the whole half-line t ≥ 0 because of Remark 2.2, and it
fits in the assumptions of Proposition 3.3. Indeed, among the four inequalities in the
upper part of (3.6), the only nontrivial is that F (T0) < η, and this is true because

F (T0) =
λ21
2
σ2
0 −

λλ1
2
σ2
0 +

λ21
4
σ4
0 +

γ0
6
σ2
0 =

(
−λ1(λ− λ1)

4
+
γ0
6

)
λ− λ1
λ1

is negative when γ0 in chosen according to (3.1).

Stable manifold of unstable solution Due to the alternative of statement (1), the set
of initial data originating a solution satisfying (2.6) with σ = 0 is the complement of
the basins of attraction of the stable solutions. Since the two basins of attraction are
open, this set is necessarily closed, and nonempty because the phase space D(A)×H is
connected and cannot be represented as the union of two disjoint open sets. �

3.3 Proof of Corollary 2.9

Existence of three special solutions The argument is a quite standard perturbation
method, and parallels the proof of the scalar case (see [8]). The basic idea is to linearize
around the three fixed points. Let us introduce for convenience V := D(A) endowed
with the natural norm. We deal with an equation of the form

w′′ + w′ + Lw = f(t) + g(w), (3.9)

where L ∈ L(V, V ′) is the linear operator defined by

Lw :=

{
A2w − λAw around the trivial equilibrium,

A2w − λ1Aw + 2λ1(λ− λ1)〈e1, w〉e1 around ± σ0e1,

and g ∈ C(V,H) is a nonlinear locally Lipschitz continuous map with

|g(u)− g(v)| ≤ G(‖u‖V + ‖v‖V )‖u− v‖V
for some constant G > 0 whenever ‖u‖V + ‖v‖V is small enough. We introduce the
Banach spaces

X = Cb(R, V ) ∩ C1
b (R, H) ∩ C2

b (R, V
′); Y = Cb(R, H).

12



We observe that when

Lw = A2w − λ1Aw + 2λ1(λ− λ1)〈e1, w〉e1,

on e1
⊥ we have L = A2 − λ1A, and on Re1 we have L = 2λ1(λ − λ1)I. Clearly L is

self-adjoint and coercive with domain D(L) = D(A2). On the other hand when

L = A2 − λA,

since λ1 < λ < λ2 there is just one negative eigenvalue and we can use exponential
dichotomy. Introducing

∀w ∈ X, Λw = w′′ + w′ + Lw

it is now standard that for all h ∈ Y , there is exactly one function w ∈ X such that
Λw = h and moreover K := Λ−1 ∈ L(Y,X). Now equation (3.9) can be written in the
form

w = K(f + g(w))

which suggests to study the dependence of w ∈ X in terms of v in the equation

w = K(f + g(v)) =: F (f, v)

It is readily verified that for f fixed, F is a contraction with Lipschitz norm less than
1/2 when w lies in a sufficiently small closed ball B(0, r) centered at 0 in X . Moreover,
if f is small enough in Y , the inequality

‖F (f, v)‖X ≤ 1/2‖v‖X + ‖K‖L(Y,X)‖f‖Y

shows that the map v −→ F (f, v) leaves the ball B(0, r) invariant. The standard fixed
point theorem concludes the proof, including the uniqueness statement and the Lipschitz
dependence of the solution in X in terms of f ∈ Y . We leave the remaining details to
the reader.

Asymptotic convergence This follows from statement (2) of Theorem 2.7, provided that
ε0 and r0 are small enough.

Periodic case Uniqueness follows from statement (2) of Theorem 2.7 (two periodic
functions that are asymptotic to each other coincide necessarily). The existence of
three periodic solutions follows from the fact that if f is T -periodic and u is the special
bounded solution, then u(t + T ) is a solution for the same f located in the same small
ball of X , therefore it must coincide with u.
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Almost periodic case When f is almost periodic, both almost periodicity of the three
special solutions, and the module containment property, follow in a standard way from
the fact that the three special solutions depend on f in a Lipschitz continuous way.
In alternative, one could rely on the second almost periodicity criterion (double se-
quence characterization) of Bochner (see [2, Theorem 1]), but this requires to know that
bounded solutions have precompact range in the energy space, which does not seem easy
to obtain.

As for uniqueness, it follows again from statement (2) of Theorem 2.7. Indeed, two
almost periodic functions that are asymptotic to each other coincide necessarily, and
it is sufficient for that to assume almost periodicity of the component u instead of the
vector (u, u′), with values in an arbitrarily large Banach space in which either V or even
H is continuously imbedded. �

4 Proof of auxiliary results

4.1 Some useful ultimate bounds

In this subsection we state and prove some simple properties that are going to be useful
in the proof of our main result.

Lemma 4.1. For every bounded function ϕ : [0,+∞) → R of class C1 there exists a
sequence tn → +∞ of nonnegative real numbers such that

lim
n→+∞

ϕ′(tn) = 0 and lim
n→+∞

ϕ(tn) = lim sup
t→+∞

ϕ(t).

Proof. Let us set
ℓ := lim inf

t→+∞
ϕ(t), L := lim sup

t→+∞

ϕ(t).

If ℓ = L, then ϕ(t) has a finite limit as t → +∞. Due to the mean value theorem,
for every positive integer n there exists tn ∈ (n, n+ 1) such that

ϕ(n+ 1)− ϕ(n) = ϕ′(tn).

Since the left-hand side tends to 0, the sequence tn settles the matter in this case.
If ℓ < L, then there exist two sequences xn → +∞ and yn → +∞ such that

xn < yn < xn+1, ϕ(xn) ≤
L+ ℓ

2
, ϕ(yn) ≥ L− 1

n
(4.1)

for every positive integer n. Let tn denote one of the maximum points (there might be
infinitely many of them) of ϕ(t) in [xn, xn+1] . Since yn ∈ [xn, xn+1], clearly ϕ(tn) ≥
ϕ(yn), and from the last inequality in (4.1) it follows that ϕ(tn) → L, as required.
Keeping the first condition in (4.1) into account, we know that tn is not one of the
endpoints of the interval [xn, xn+1] when n is large enough, therefore ϕ′(tn) = 0 when n
is large enough. �
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Lemma 4.2. Let m be a positive real number, let ψ : [0,+∞) → R be a continuous
function, and let y ∈ C2([0,+∞),R) be a solution to

y′′(t) + y′(t)−my(t) = ψ(t). (4.2)

Let us assume that both ψ(t) and y(t) are bounded.
Then it turns out that

lim sup
t→+∞

|y(t)| ≤ 1

m
lim sup
t→+∞

|ψ(t)|, (4.3)

lim sup
t→+∞

|y′(t)| ≤ 2 lim sup
t→+∞

|ψ(t)|. (4.4)

Proof. First, interpreting (4.2) as a first order equation with unknown y′(t), we obtain

y′(t) = y′(0)e−t + e−t

∫ t

0

(ψ(s) +my(s))es ds.

It follows clearly that y′ is bounded with

lim sup
t→+∞

|y′(t)| ≤ lim sup
t→+∞

(|ψ(t)|+m|y(t)|).

In particular (4.4) will be an immediate consequence of (4.3). By changing all
functions to their opposites, to prove (4.3) it is clearly enough to establish

lim sup
t→+∞

my(t) ≤ lim sup
t→+∞

(−ψ(t)).

This inequality can be viewed as a topological variant on the half-line of the classical
maximum principle in a bounded interval relying on the simple idea that a function
achieving its maximum at an interior point has a zero derivative and a non-positive
second derivative there. As a consequence of Lemma 6.2 from [8] we know the existence
of a sequence of reals tn ≥ 0 such that tn → +∞ and

lim sup
n→+∞

y′′(tn) ≤ 0, lim
n→∞

y(tn) = lim sup
t→+∞

y(t)

Since by the equation y′′ is bounded, it is immediate to see, for instance reasoning
by contradiction, that

lim
n→∞

y′(tn) = 0.

Then the result becomes an immediate consequence of the equation. �

Lemma 4.3. Let X be a Hilbert space, and let B be a self-adjoint linear operator on X
with dense domain D(B). Let us assume that there exists a constant m > 0 such that

〈Bx, x〉 ≥ m|x|2 ∀x ∈ D(B).
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Let ψ : [0,+∞) → X be a bounded continuous function, and let y : [0,+∞) → X be
a solution to

y′′(t) + y′(t) +By(t) = ψ(t).

Then it turns out that

lim sup
t→+∞

(
|y′(t)|2 + |B1/2y(t)|2

)
≤ 9max

{
1,

1

m

}
· lim sup

t→+∞

|ψ(t)|2.

Proof. This is an immediate consequence of [1, formula (3.6)]. �

4.2 General notation and energies

Let H+ denote the subspace of H orthogonal to e1. Let us write u(t) in the form

u(t) = u−(t)e1 + u+(t),

where u−(t) = 〈u(t), e1〉 is the component of u(t) with respect to e1, and u+(t) is the
orthogonal projection of u(t) in H+. Similarly, let us write the forcing term in the form
f(t) = f−(t)e1 + f+(t).

In this setting, equation (1.4) is equivalent to the system (for the sake of shortness,
we do not write the explicit dependence on t in the left-hand sides)

u′′− + u′− − λ1(λ− λ1)u− + λ21(u−)
3 + λ1

∣∣A1/2u+
∣∣2 u− = f−(t), (4.5)

u′′+ + u′+ + A2u+ − λAu+ +
∣∣A1/2u+

∣∣2Au+ + λ1(u−)
2Au+ = f+(t), (4.6)

where the first one is a scalar equation, and the second one is an equation in H+.
The energy E(t) defined in (2.2) can be decomposed as

E(t) = E−(t) + E+(t) + I(t),

where

E−(t) :=
1

2
|u′−(t)|2 −

λ1(λ− λ1)

2
|u−(t)|2 +

λ21
4
|u−(t)|4, (4.7)

E+(t) :=
1

2
|u′+(t)|2 +

1

2
|Au+(t)|2 −

λ

2
|A1/2u+(t)|2 +

1

4
|A1/2u+(t)|4, (4.8)

I(t) :=
λ1
2
|u−(t)|2 · |A1/2u+(t)|2. (4.9)

We can interpret E−(t) and E+(t) as the contributions of u−(t) and u+(t) to the
total energy E(t), with I(t) representing some sort of interaction term between the
components.
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Analogously, the energy F (t) defined in (3.2) can be decomposed as

F (t) = F−(t) + F+(t) + I(t), (4.10)

where I(t) is the same as above, and

F−(t) := E−(t) +
γ0
3
u−(t) · u′−(t) +

γ0
6
|u−(t)|2, (4.11)

F+(t) := E+(t) + 2γ0〈u+(t), u′+(t)〉+ γ0|u+(t)|2. (4.12)

Estimates on the energy of the first component We show that, for every solution u(t)
to (1.4), and every t ≥ 0, it turns out that

F−(t) ≥
λ21
4
|u−(t)|4 −

λ1(λ− λ1)

2
|u−(t)|2, (4.13)

and
F ′
−(t) ≤ −γ0F−(t) + 2|f−(t)|2 − λ1|A1/2u+(t)|2 · u−(t) · u′−(t). (4.14)

To begin with, from the definition of γ0 we find that

γ0
3

∣∣u−(t) · u′−(t)
∣∣ ≤ γ0

6
|u′−(t)|2 +

γ0
6
|u−(t)|2 ≤

1

2
|u′−(t)|2 +

γ0
6
|u−(t)|2.

Plugging this inequality into (4.11) we obtain (4.13). In order to prove (4.14), with
some algebra we write the time-derivative of F−(t) in the form

F ′
−(t) = −γ0F−(t)−

(
1− 5γ0

6

)
|u′−(t)|2 −

γ0
6
λ1(λ− λ1)|u−(t)|2 −

γ0
12
λ21|u−(t)|4

− λ1|A1/2u+(t)|2 · u−(t) · u′−(t)−
2γ0
3
I(t) +

γ20
6
|u−(t)|2

+
γ20
3
u−(t) · u′−(t) +

γ0
3
u−(t) · f−(t) + u′−(t) · f−(t). (4.15)

The terms in the last line can be estimated as follows

γ20
3
u−(t) · u′−(t) ≤

γ20
6
|u−(t)|2 +

γ20
6
|u′−(t)|2,

γ0
3
u−(t) · f−(t) ≤

γ20
36

|u−(t)|2 + |f−(t)|2,

u′−(t) · f−(t) ≤
1

4
|u′−(t)|2 + |f−(t)|2.
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Plugging all these estimates into (4.15) if follows that

F ′
−(t) ≤ −γ0F−(t)−

(
3

4
− 5γ0

6
− γ20

6

)
|u′−(t)|2 −

γ0
6
λ1(λ− λ1)|u−(t)|2

+
13γ20
36

|u−(t)|2 + 2|f−(t)|2 − λ1|A1/2u+(t)|2 · u−(t) · u′−(t). (4.16)

Finally, our choice of γ0 guarantees that

3

4
− 5γ0

6
− γ20

6
≥ 0, −γ0

6
λ1(λ− λ1) +

13γ20
36

≤ 0,

and therefore (4.16) implies (4.14).

Estimates on the energy of high frequencies We show that, for every solution u+(t) to
(4.6), and every t ≥ 0, it turns out that

F+(t) ≥ min

{
1

4
,
λ2 − λ

2λ2

}(
|u′+(t)|2 + |Au+(t)|2

)
, (4.17)

and

F ′
+(t) ≤ −γ0F+(t)−

1

4
|u′+(t)|2 −

λ2 − λ

λ2
γ0|Au+(t)|2 + 2|f+(t)|2

− λ1〈Au+(t), u′+(t)〉 · |u−(t)|2 − 4γ0I(t). (4.18)

In order to prove (4.17), we observe that

|2γ0〈u+(t), u′+(t)〉| ≤ γ0|u′+(t)|2 + γ0|u+(t)|2, (4.19)

and we exploit the coerciveness of A in H+ in order to deduce that

|Au+(t)|2 − λ|A1/2u+(t)|2 ≥
λ2 − λ

λ2
|Au+(t)|2. (4.20)

Plugging these estimates into (4.8) and (4.12) we conclude that

F+(t) ≥
(
1

2
− γ0

)
|u′+(t)|2 +

λ2 − λ

2λ2
|Au+(t)|2,

which implies (4.17) because γ0 ≤ 1/4.
In order to prove (4.18), with some algebra we write the time-derivative of F+(t) in

the form

F ′
+(t) = −γ0F+(t)−

(
1− 5γ0

2

)
|u′+(t)|2 −

3γ0
2

(
|Au+(t)|2 − λ|A1/2u+(t)|2

)

− 7γ0
4

|A1/2u+(t)|4 − λ1〈Au+(t), u′+(t)〉 · |u−(t)|2 − 4γ0I(t) + γ20 |u+(t)|2

+ 2γ20〈u+(t), u′+(t)〉+ 2γ0〈u+(t), f+(t)〉+ 〈u′+(t), f+(t)〉. (4.21)
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The first term in the last line can be estimated as in (4.19). The second and third
term can be estimated as follows

2γ0〈u+(t), f+(t)〉 ≤ γ20 |u+(t)|2 + |f+(t)|2,

〈u′+(t), f+(t)〉 ≤
1

4
|u′+(t)|2 + |f+(t)|2.

Finally, from the coercivity of A in H+ we obtain both (4.20) and

|u+(t)|2 ≤
1

λ22
|Au+(t)|2.

Plugging all these estimates into (4.21) we deduce that

F ′
+(t) ≤ −γ0F+(t)−

(
3

4
− 5γ0

2
− γ20

)
|u′+(t)|2 −

(
3

2

λ2 − λ

λ2
− 3γ0

λ22

)
γ0|Au+(t)|2

+ 2|f+(t)|2 − λ1〈Au+(t), u′+(t)〉 · |u−(t)|2 − 4γ0I(t). (4.22)

Finally, our choice (3.1) of γ0 guarantees that

3

4
− 5γ0

2
− γ20 ≥ 1

4
,

3

2

λ2 − λ

λ2
− 3γ0

λ22
≥ λ2 − λ

λ2
,

and therefore (4.22) implies (4.18).

4.3 Proof of Proposition 3.1

From (4.10) it follows that

F ′(t) = F ′
−(t) + F ′

+(t) + I ′(t) ∀t ≥ 0.

Now we estimate the first two terms as in (4.14) and (4.18), and we observe that

I ′(t) = λ1〈Au+(t), u′+(t)〉 · |u−(t)|2 + λ1|A1/2u+(t)|2 · u−(t) · u′−(t). (4.23)

We deduce that
F ′(t) ≤ −γ0F (t) + 2|f(t)|2 ∀t ≥ 0.

Integrating this differential inequality we obtain (3.3) with M1 := 2/γ0.
In order to prove (3.4), we write F (t) in the form (3.2), and we observe that

1

4
x4 − λ

2
x2 ≥ −λ

2

4
∀x ∈ R,

and

∣∣2γ0〈Pu(t), u′(t)〉
∣∣ ≤ γ0|P 1/2u′(t)|2 + γ0|P 1/2u(t)|2 ≤ γ0|u′(t)|2 + γ0|P 1/2u(t)|2.

19



Plugging the first estimate into (2.1), and the second one into (3.2), we obtain that

F (t) ≥
(
1

2
− γ0

)
|u′(t)|2 + 1

2
|Au(t)|2 − λ2

4
∀t ≥ 0.

Since γ0 ≤ 1/4, this proves that

|u′(t)|2 + |Au(t)|2 ≤ 4F (t) + λ2 ∀t ≥ 0.

At this point, (3.4) follows from (3.3). �

4.4 Proof of Proposition 3.2

Let us choose β0 > 0 small enough so that

16β4
0λ

2
1 ≤

λ2 − λ

λ2
γ0, β2

0 ≤ λ− λ1
2λ1

. (4.24)

Let us write as usual u(t) = u−(t)e1 + u+(t), and f(t) = f−(t)e1 + f+(t). The
constants c1, . . . , c6 in the sequel depend only on the three parameters λ, λ1, λ2.

Estimate on high frequencies We show that

lim sup
t→+∞

(
|u′+(t)|2 + |Au+(t)|2

)
≤ c1 lim sup

t→+∞

|f+(t)|2. (4.25)

To this end, let us consider the energy F+(t) defined in (4.12). Since we assumed
that the limsup of |u−(t)| is less than or equal to β0, there exists t0 ≥ 0 such that
|u−(t)| ≤ 2β0 for every t ≥ t0. Keeping into account the first inequality in (4.24), it
follows that

−λ1|u−(t)|2 · 〈Au+(t), u′+(t)〉 ≤ 1

4
|u′+(t)|2 + λ21|u−(t)|4 · |Au+(t)|2

≤ 1

4
|u′+(t)|2 + 16β4

0λ
2
1 · |Au+(t)|2

≤ 1

4
|u′+(t)|2 +

λ2 − λ

λ2
γ0|Au+(t)|2

for every t ≥ t0. Plugging this estimate into (4.18), and recalling that I(t) is nonnegative,
we deduce that

F ′
+(t) ≤ −γ0F+(t) + 2|f+(t)|2 ∀t ≥ t0.

Integrating this differential inequality, we conclude that

lim sup
t→+∞

F+(t) ≤
2

γ0
lim sup
t→+∞

|f+(t)|2.

Due to (4.17), this estimate implies (4.25).
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Estimate on the first component We show that
(
|u′−(t)|2 + |Au−(t)|2

)
≤ c2 lim sup

t→+∞

|f(t)|2. (4.26)

To this end, we rewrite (4.5) in the form

u′′− + u′− − λ1(λ− λ1)u− = −λ21(u−)3 − λ1|A1/2u+|2u− + f−(t),

and we interpret it as a non-homogeneous linear equation with a prescribed right-hand
side. This equation fits in the framework of Lemma 4.2 with y(t) := u−(t), m :=
λ1(λ− λ1), and

ψ(t) := −λ21[u−(t)]3 − λ1|A1/2u+(t)|2 · u−(t) + f−(t).

Indeed, the solution u−(t) is bounded because the lim sup of |u−(t)| is bounded, and
the forcing term ψ(t) is bounded because u−(t) and f−(t) are bounded, and |A1/2u+(t)|
is bounded because of (4.25) and the coercivity of A. Thus from conclusion (4.3) of
Lemma 4.2 it turns out that

lim sup
t→+∞

|u−(t)| ≤
1

λ1(λ− λ1)
lim sup
t→+∞

|ψ(t)|. (4.27)

In order to estimate the right-hand side, we observe that

|ψ(t)| ≤ λ21|u−(t)|2 · |u−(t)|+ λ1|u−(t)| · |A1/2u+(t)|2 + |f−(t)|.
When we pass to the lim sup, we use again (4.25) and the coercivity of A, and we

deduce that

lim sup
t→+∞

|ψ(t)| ≤ λ21β
2
0 · lim sup

t→+∞

|u−(t)|+ λ1β0 · c3 lim sup
t→+∞

|f+(t)|2 + lim sup
t→+∞

|f−(t)|

≤ λ1(λ− λ1)

2
· lim sup

t→+∞

|u−(t)|+ c4 lim sup
t→+∞

|f(t)|, (4.28)

where in the last step we exploited the second inequality in (4.24), and our assumption
that the lim sup of |f(t)| is less than or equal to 1.

Plugging this estimate into (4.27), we conclude that

lim sup
t→+∞

|u−(t)| ≤ c5 lim sup
t→+∞

|f(t)|. (4.29)

Similarly, from conclusion (4.4) of Lemma 4.2 we deduce that

lim sup
t→+∞

|u′−(t)| ≤ 2 lim sup
t→+∞

|ψ(t)|.

Keeping (4.28) and (4.29) into account, we conclude that

lim sup
t→+∞

|u′−(t)| ≤ c6 lim sup
t→+∞

|f(t)|. (4.30)

At this point, (4.29) and (4.30) imply (4.26), which together with (4.25) implies the
conclusion in (3.5). �
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4.5 Proof of Proposition 3.3

Double well potential Let us introduce the double well potential defined by

W (x) :=
λ21
4

(
x2 − σ2

0

)2 ∀x ∈ R,

where σ0 is the constant defined in (2.4). We observe that equation (4.5) can now be
written in the form

u′′− + u′− +W ′(u−) + λ1|A1/2u+|2u− = f−(t),

and that the energy E−(t) of the first component defined in (4.7) can now be written as

E−(t) =
1

2
|u′−(t)|2 +W (u−(t))−W (0).

Choice of parameters Given any β ∈ (0, σ0) as in the statement of the proposition, let
us choose β1 ∈ (0, β) such that

δ :=W (β1)−W (0) +
γ0
6
β2 > 0, (4.31)

and let us observe that there exist three positive constants K1, K2, and K3 such that

W (x) ≥W (0) + 1 ∀x ≥ K1, (4.32)

W (x) ≤ K2(x− σ0)
2 ∀x ∈ [0,

√
2σ0], (4.33)

(x− σ0) ·W ′(x) ≥ K3(x− σ0)
2 ∀x ≥ β1. (4.34)

Let γ1 be a positive real number satisfying the following five inequalities

γ1 ≤
1

4
, K2γ1 +

γ1
4

+ γ21 ≤ K3, λ1γ1
√
2 σ2

0 ≤ (λ2 − λ)γ0, (4.35)

γ21 ≤ γ0, 2(K1 + σ0)
2γ1 ≤ δ. (4.36)

Let η be a positive real number satisfying the following two inequalities

η ≤ 1,
[
1 +

(γ0
3

+ γ1

)
(K1 + σ0)

]
η ≤ δ

4
. (4.37)

Let ε1 be a positive real number such that

ε21 <
δ

4
γ21 . (4.38)

We claim that implication (3.6) holds true for this choice of the parameters.
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Definition of energies For every solution u(t) to (1.4), let us consider the energy

R(t) :=
1

2
|u′−(t)|2 +W (u−(t)) + γ1(u−(t)− σ0) · u′−(t) +

γ1
2
|u−(t)− σ0|2, (4.39)

depending only on the first component, and the global energy

S(t) := R(t) + F+(t) + I(t), (4.40)

where F+(t) and I(t) are defined in (4.12) and (4.9).
We show that F (t) estimates the first component u−(t) in the sense that

W (u−(t)) ≤ F (t) +W (0) ∀t ≥ 0, (4.41)

that R(t) estimates the first component u−(t) in the sense that

R(t) ≥ γ1
4

(
|u′−(t)|2 + |u−(t)− σ0|2

)
∀t ≥ 0, (4.42)

R(t) ≥W (u−(t)) ∀t ≥ 0, (4.43)

and that the global energy S(t) estimates the distance between the whole solution u(t)
and the stationary point σ0e1 in the sense that there exists a positive constant c7 such
that

S(t) ≥ c7
(
|u′(t)|2 + |A(u(t)− σ0e1)|2

)
∀t ≥ 0. (4.44)

In order to prove (4.41), we just observe that the terms F+(t) and I(t) in the defi-
nition of F (t) are nonnegative, and therefore form (4.13) it follows that

F (t) ≥ F−(t) ≥
λ21
4
|u−(t)|4 −

λ1(λ− λ1)

2
|u−(t)|2 =W (u−(t))−W (0).

In order to prove (4.42) and (4.43), it is enough to plug the inequality

|γ1(u−(t)− σ0) · u′−(t)| ≤
γ1
4
|u−(t)− σ0|2 + γ1|u′−(t)|2

into (4.39) in order to obtain that

R(t) ≥
(
1

2
− γ1

)
|u′−(t)|2 +

γ1
4
|u−(t)− σ0|2 +W (u−(t)).

Since γ1 ≤ 1/4 and W (u−(t)) ≥ 0, this proves both (4.42) and (4.43).
Finally, in order to prove (4.44), it is enough to consider (4.40) and recall that

• R(t) controls u−(t)− σ0 and its time-derivative because of (4.42),

• F+(t) controls u+(t) and its time-derivative because of (4.17),

• I(t) is nonnegative.
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Global energy and potential well We show that, for every t ≥ 0, the following implica-
tion holds true:

S(t) ≤W (β1) and u−(t) ≥ 0 =⇒ β1 ≤ u−(t) ≤
√
2σ0 (4.45)

Indeed, since F+(t) and I(t) are nonnegative, from (4.40) and (4.43) it follows that

W (u−(t)) ≤ R(t) ≤ S(t) ≤W (β1).

When u−(t) is nonnegative, this inequality implies that u−(t) lies between β1 and a
positive number less than

√
2σ0.

Energy estimate at the initial time Let T0 ≥ 0 be the time mentioned in the assump-
tions of (3.6). We show that

S(T0) ≤W (β1)−
δ

2
. (4.46)

To this end, we first observe that S(t) and F (t) are related by the equality

S(t) = W (0) + F (t)− γ0
3
u−(t)u

′
−(t)−

γ0
6
|u−(t)|2

+ γ1(u−(t)− σ0) · u′−(t) +
γ1
2
|u−(t)− σ0|2,

from which it follows that

S(t) ≤ W (0) + F (t)− γ0
6
|u−(t)|2

+
(γ0
3

+ γ1

) (
|u−(t)|+ σ0

)
· |u′−(t)|+

γ1
2

(
|u−(t)|+ σ0

)2
(4.47)

for every t ≥ 0. In order to estimate all these terms, we exploit our assumptions that
F (T0) < η, |u′−(T0)| < η, and u−(T0) > β. We need also an estimate from above for
u−(T0), which we deduce again from the assumption that F (T0) < η. Indeed, since
η ≤ 1, from (4.41) we deduce that W (u−(T0)) ≤ W (0) + 1. Thanks to (4.32), this
inequality implies that u−(T0) ≤ K1.

Plugging all these estimates into (4.47), and keeping the second smallness assump-
tions in (4.36) and (4.37) into account, we conclude that

S(T0) ≤ W (0) + η − γ0
6
β2 +

(γ0
3

+ γ1

)
(K1 + σ0)η +

γ1
2
(K1 + σ0)

2

≤ W (0)− γ0
6
β2 +

δ

2
,

which is exactly (4.46) when δ is given by (4.31).
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Energy estimate in the potential well We show that the time-derivatives of R(t) and
S(t) satisfy the following two inequalities

R′(t) ≤ −γ21R(t) + 2|f−(t)|2 − λ1|A1/2u+(t)|2u−(t)u′−(t) +
λ2 − λ

λ2
γ0|Au+(t)|2, (4.48)

S ′(t) ≤ −γ21S(t) + 2|f(t)|2, (4.49)

as long as the solution lies in the potential well, more precisely for every t ≥ 0 such that

β1 ≤ u−(t) ≤
√
2σ0. (4.50)

To this end, with some algebra we write the time-derivative of R(t) in the form

R′(t) = −γ21R(t)−
(
1− γ1 −

γ21
2

)
|u′−(t)|2 +

γ31
2
|u−(t)− σ0|2

− γ1(u−(t)− σ0) ·W ′(u−(t)) + γ21W (u−(t))

− λ1|A1/2u+(t)|2u−(t)u′−(t)− γ1λ1|A1/2u+(t)|2(u−(t)− σ0)u−(t)

+ u′−(t)f−(t) + γ1(u−(t)− σ0)f−(t) + γ31u
′
−(t)(u−(t)− σ0). (4.51)

The terms in the last line can be estimated as follows

|u′−(t) · f−(t)| ≤
1

4
|u′−(t)|2 + |f−(t)|2,

|γ1(u−(t)− σ0) · f−(t)| ≤
γ21
4
|u−(t)− σ0|2 + |f−(t)|2,

|γ31u′−(t) · (u−(t)− σ0)| ≤
γ31
2
|u′−(t)|2 +

γ31
2
|u−(t)− σ0|2.

Moreover, from (4.50) we deduce that |u−(t)− σ0| ≤ σ0, and therefore

γ1λ1|A1/2u+(t)|2 · |u−(t)− σ0| · |u−(t)| ≤
γ1λ1
λ2

|Au+(t)|2 · σ0 ·
√
2σ0.

Finally, from (4.33) and (4.34) (in this point we need again (4.50)) we deduce that

−γ1(u−(t)− σ0) ·W ′(u−(t)) + γ21W (u−(t)) ≤
(
−γ1K3 + γ21K2

)
|u−(t)− σ0|2.

Plugging all these estimates into (4.51) we obtain that

R′(t) ≤ −γ21R(t)−
(
3

4
− γ1 −

γ21
2

− γ31
2

)
|u′−(t)|2

− γ1

(
K3 −K2γ1 −

γ1
4

− γ21

)
|u−(t)− σ0|2

+ 2|f−(t)|2 − λ1|A1/2u+(t)|2u−(t)u′−(t) +
γ1λ1
λ2

√
2 σ2

0|Au+(t)|2

25



as long as condition (4.50) is satisfied. At this point, (4.48) follows from the three
smallness conditions on γ1 stated in (4.35).

Finally, since γ21 ≤ γ0, estimate (4.49) follows from (4.18) and (4.23), which hold
true for every t ≥ 0, and (4.48), which holds true as long as the solution satisfies (4.50).

Solutions remain in the potential well We show that

S(t) ≤W (β1) and u−(t) ≥ 0 ∀t ≥ T0. (4.52)

To this end, let us set

T1 := sup
{
t ≥ T0 : S(τ) < W (β1) and u−(τ) > 0 for every τ ∈ [T0, t]

}
.

We observe that T1 is the supremum of an open set containing t = T0, and hence it
is well defined and greater than T0, and it satisfies

S(t) ≤ W (β1) and u−(t) ≥ 0 ∀t ∈ [T0, T1]. (4.53)

If T1 = +∞, then (4.52) is proved. Let us assume by contradiction that T1 < +∞.
Due to the maximality of T1, it follows that either S(T1) = W (β1) or u−(T1) = 0. Now
we show that both possibilities lead to an absurdity.

From (4.53) and (4.45) it follows that (4.50) holds true for every t ∈ [T0, T1], and
hence also the differential inequality (4.49) is satisfied for every t ∈ [T0, T1]. Recalling
that |f(t)| ≤ ε1 for every t ≥ T0, integrating this differential inequality we deduce that

S(t) ≤ S(T0) +
2ε21
γ21

∀t ∈ [T0, T1].

Setting t = T1, and keeping into account (4.46) and the smallness condition (4.38),
we conclude that S(T1) < W (β1), which rules out the first possibility.

On the other hand, we already know from (4.45) that the two inequalities S(T1) ≤
W (β1) and u−(T1) ≥ 0 imply that u−(T1) ≥ β1, thus ruling out the possibility that
u−(T1) = 0.

Conclusion From (4.52) and (4.45) we deduce that the potential well assumption (4.50)
holds true for every t ≥ T0, and hence also the differential inequality (4.49) is now
satisfied for every t ≥ T0. Integrating this differential inequality we obtain that

lim sup
t→+∞

S(t) ≤ 2

γ21
lim sup
t→+∞

|f(t)|2,

which is equivalent to the conclusion in (3.6) because of (4.44). �
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4.6 Proof of Proposition 3.4

Since u(t) and v(t) are solutions to (1.4), their difference r(t) := u(t)− v(t) satisfies

r′′(t) + r′(t) + A2r(t)− λAr(t) = g(t), (4.54)

where

g(t) := −|A1/2u(t)|2Au(t) + |A1/2v(t)|2Av(t)
= −|A1/2u(t)|2Ar(t)− 〈u(t) + v(t), Ar(t)〉Av(t). (4.55)

This equation requires a separate treatment in the unstable case σ = 0 and in the
stable cases σ = ±σ0. The constants c8, . . . , c22 in the sequel depend only on the three
parameters λ, λ1, λ2.

Unstable case From (4.55) we deduce that

|g(t)| ≤
(
|A1/2u(t)|2 + |u(t) + v(t)| · |Av(t)|

)
|Ar(t)|. (4.56)

On the other hand, from (3.7) with σ = 0 and the coerciveness of A we know that

lim sup
t→+∞

|A1/2u(t)|2 ≤ c8r
2
0 and lim sup

t→+∞

|u(t) + v(t)| · |Av(t)| ≤ c9r
2
0,

and therefore from (4.56) we obtain that

lim sup
t→+∞

|g(t)| ≤ c10r
2
0 · lim sup

t→+∞

|Ar(t)|. (4.57)

Now let us write as usual r(t) = r−(t)e1 + r+(t) and g(t) = g−(t)e1 + g+(t), so that
equation (4.54) is equivalent to the system

r′′−(t) + r′−(t)− λ1(λ− λ1)r−(t) = g−(t), (4.58)

r′′+(t) + r′+(t) + A2r+(t)− λAr+(t) = g+(t). (4.59)

Equation (4.58) is a scalar equation that fits in the framework of Lemma 4.2 with

y(t) := r−(t), m := λ1(λ− λ1), ψ(t) := g−(t).

Indeed, r−(t) is bounded because u(t) and v(t) are bounded, and for the same reason
also g−(t) is bounded. As a consequence, from Lemma 4.2 we deduce that

lim sup
t→+∞

(
|r′−(t)|2 + |Ar−(t)|2

)
≤ c11 lim sup

t→+∞

|g−(t)|2. (4.60)

Equation (4.59) fits in the framework of Lemma 4.3 with

X := H+, B := A2 − λA, m := λ2(λ2 − λ), ψ(t) := g+(t).
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In addition, there exists a constant c12 such that

|Ax|2 ≤ c12|B1/2x|2 ∀x ∈ D(A) ∩H+.

As a consequence, from Lemma 4.3 we deduce that

lim sup
t→+∞

(
|r′+(t)|2 + |Ar+(t)|2

)
≤ c13 lim sup

t→+∞

(
|r′+(t)|2 + |B1/2r+(t)|2

)

≤ c14 lim sup
t→+∞

|g+(t)|2. (4.61)

From (4.60), (4.61), and (4.57) we conclude that

lim sup
t→+∞

(
|r′(t)|2 + |Ar(t)|2

)
≤ lim sup

t→+∞

(
|r′−(t)|2 + |Ar−(t)|2

)

+ lim sup
t→+∞

(
|r′+(t)|2 + |Ar+(t)|2

)

≤ c15 lim sup
t→+∞

|g(t)|2

≤ c16r
4
0 · lim sup

t→+∞

|Ar(t)|2

≤ c16r
4
0 · lim sup

t→+∞

(
|r′(t)|2 + |Ar(t)|2

)
.

If r0 is small enough, the coefficient of the last lim sup is less than 1. It follows that

lim
t→+∞

(
|r′(t)|2 + |Ar(t)|2

)
= 0, (4.62)

which in turn is equivalent to (2.7).

Stable case We assume, without loss of generality, that σ = σ0 (the case σ = −σ0
being symmetric). In order to exploit the smallness of u(t)− σ0e1 and v(t)− σ0e1, with
some algebra we rewrite (4.55) in the form

g(t) = −σ2
0λ1Ar(t)− 2σ2

0λ1〈Ar(t), e1〉e1 + ĝ(t), (4.63)

where

ĝ(t) := −
(
|A1/2(u(t)− σ0e1)|2 + 2〈A(u(t)− σ0e1), σ0e1〉

)
Ar(t)

−〈u(t) + v(t), Ar(t)〉A(v(t)− σ0e1)

−〈u(t) + v(t)− 2σ0e1, Ar(t)〉λ1σ0e1.

Therefore from (3.7) with σ = σ0, we deduce that

lim sup
t→+∞

|ĝ(t)| ≤
(
c17r0 + c18r

2
0

)
lim sup
t→+∞

|Ar(t)|. (4.64)
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Plugging (4.63) into (4.54), we obtain that r(t) is a solution to

r′′(t) + r′(t) + A2r(t)− λAr(t) + σ2
0λ1Ar(t) + 2σ2

0λ1〈Ar(t), e1〉e1 = ĝ(t).

Keeping (2.4) into account, this equation can be rewritten as

r′′(t) + r′(t) + Lr(t) = ĝ(t), (4.65)

where L is the linear operator on H defined by

Lx =

{
A2x− λ1Ax if x ∈ D(A2) ∩H+,

2λ1(λ− λ1)e1 if x = e1.

This operator is coercive, more precisely

〈Lx, x〉 ≥ min
{
2λ1(λ− λ1), λ2(λ2 − λ1)

}
|x|2 =: m0|x|2 ∀x ∈ D(A),

and therefore (4.65) fits in the framework of Lemma 4.3 with

X := H, B := L, y(t) := r(t), m := m0, ψ(t) := ĝ(t).

In addition, there exists a constant c19 such that

|Ax|2 ≤ c19|B1/2x|2 ∀x ∈ D(A).

As a consequence, from Lemma 4.3 we deduce that

lim sup
t→+∞

(
|r′(t)|2 + |Ar(t)|2

)
≤ c20 lim sup

t→+∞

(
|r′(t)|2 + |B1/2r(t)|2

)

≤ c21 lim sup
t→+∞

|ĝ(t)|2.

Keeping (4.64) into account, we can continue this chain of inequalities, and obtain
that

lim sup
t→+∞

(
|r′(t)|2 + |Ar(t)|2

)
≤ c21

(
c17r0 + c18r

2
0

)2 · lim sup
t→+∞

|Ar(t)|2

≤ c22(r
2
0 + r40) · lim sup

t→+∞

(
|r′(t)|2 + |Ar(t)|2

)
.

If r0 is small enough, we obtain again (4.62), which in turn is equivalent to (2.7). �
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